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The condition that must be satisfied by a Hartree-Fock. wavefunction if it is to give an absolute minimum
of the energy, is derived by variation of the one-electron density matrix. If the energy is not an absolute
minimum, the state is unstable. Introducing spin explicitly into the equations, we find that there are two
classes of variational functions which are particularly suitable in investigations of stability. The one variation
is related to the alternate orbital transformation, while the other is connected with Hund s rule and the con-
ditions for ferromagnetism. The first of these variations is used in two numerical examples. In the erst
example we investigate the stability of a restricted Hartree-Fock wavefunction for LiH relative to an
unrestricted one. We find that for the chosen basis set, the restricted Hartree-Fock wavefunction is stable
at the equilibrium internuclear distance (3.0 a.u. ), but that at 4.0 a.u. it becomes unstable. The second
example investigates the relative stability of the restricted and unrestricted Hartree-Fock approximations
for the electron gas. It is shown that at a sufficiently low density, the unrestricted Hartree-Fock method
gives a lower energy. The resulting state has a nonzero spin density. The importance of the stability con-
dition in atomic, molecular, and solid-state problems is emphasized,

i. INTRODUCTION
' 'N evaluating Hartree-Fock wavefunctions, one
& - usually minimizes the sum of the orbital energies,
not the total energy of the system. The Hartree-Fock
equation is a necessary coedition that must be satisfied
by the orbitals which minimize the total energy. It is
not a sufficient condition. This is a well-known property
of the equations derived by the methods of the varia-
tional calculus. ' That the intuitive idea of putting the
electrons in the orbitals of lowest energy to minimize
the total energy is not sufficient, can be seen from the
properties of the iron group elements.

In the case of the iron-group elements, it. has been
argued that the 4s orbitals are filled before the 3d
orbitals because they lie lower in energy. ' This explana-
tion ignores the experimental set of one-el. ectron
energies given by Slater. ' Slater's one-electron energies
show that in the iron group, the 3d orbital always has a
lower energy than the 4s orhita, l. LThe smallest energy
difference is 0.02 a.u. ; the average, 0.066 a.u.] In
addition to Slater's experimental one-electron energies,
one can examine the one-electron energies found by
Watson in his restricted Hartree-Pock calculations on
the iron group. ' Watson found that the orbital energy
of the 4s electron was greater than that of the 3d
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electron and that the 3d" '4s' configuration was always
lower in energy than the 3d" configuration. In this case,
it. seems safe to conclude that the intuitive idea fails;
the total energy is not minimized by filling up the
lowest energy orbitals.

The implication of the preceding arguments is that
there exists more than one set of orbitals which satisfy
the Hartree-Fock equation. In this paper, when we
speak. of a IIartree-Iiock stole, we shall mean the state
defined by a set of orbitals which satisfy the Hartree-
Fock equation. The set of orbitals which yield the
lowest total energy describes the IIartree-F&ock ground
state of the system. As one hopes that the Hartree-Fock
ground-state wavefunction is adequate for describing
the ground state of a system, one might hope that the
other Hartree-Fock state functions will describe
excited states of the system. '

There is one problem for which two sets of self-
consistent solutions of the Hartree-Fock equation exists.
This is the problem of the one-dimensional Fermion gas
with 6-function repulsion. In addition to the well-known
plane-v ave solutions, overhauser' has found a set of
orbitals which satisfies the appropriate Hartree-Pock
equation and gives a lower total energy than the
plane-wave orbitals. But until Overhauser found this
Hartree-Fock state, no one knew that there was a
Hartree-Fock state with lower total energy than the
plane-wave state.

In this paper we shall give a criterion for deciding
whether a given Hartree-Fock state corresponds to an
absolute minimum of the energy or not. The criterion
will be derived by requiring that the second variation
of the total energy be positive definite. ' Although this
criterion is adequate for showing that a given state does
or does not correspond to an absolute minimum of the
total energy, we shall 6nd that the nonlinearity of the

5 H. A. Bethe and E. E. Salpeter, Quantum 3Iechanics of One-
and Two-E&lectron Aromas (Springer-Verlag, Berlin, 1957), pp.
140-143, 354; and the references cited there.

6 A. W. Overhsuser, Phys. Rev. Letters 4, 415, 462 (1960).
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Hartree-Pock. equation introduces the possibility of
having more than one state which gives an absolute
minimum of the energy.

The criterion for an absolute energy minimum that
we shall give has been given in a more specialized form
by Thouless. ' From his equation he has obtained a
connection with the theory of collective motions,
showing that if a Hartree-Fock state does not corre-
spond to an absolute minimum of the energy, it must
be unstable with respect to a collective mode. Thus, he
chose the name s/ability condition for the criterion for an
absolute minimum of the energy. We feel that the
importance of the stability condition justifies our
discussing Thouless' result in a more general form.

The stability condition is important for several
reasons. In performing a Hartree-Fock calculation, one
must either guess or know what the ground-state
configuration is. One assumes that the true ground state
and the Hartree-Fock ground state correspond to the
same configuration. This assumption can be checked
by performing Hartree-Fock calculations for other
configurations, but this involves considerable extra
labor. The stability condition is a less laborious way
of testing the assumption. The assumption needs
testing if we are to infer from Hartree-Fock calculations
the properties of experimentally uninvestigated systems.

The stability condition can be used as an aid in
calculations of Hartree-Fock wavefunctions. It supple-
ments the rule of thumb that the lowest energy orbitals
should be occupied. We will see that this rule of thumb
is a good rule of thumb according to the stability condi-
tion, when we are solving for the Hartree-Fock orbitals
which diagonalize the matrix of orbital energies.
However, when one solves directly for Wannier func-
tions' or some other kind of localized orbitals, " the
rule of thumb could be less reliable. And if one solves
directly for the one-electron density matrix by Mc-
Weeny's method, " one gives up the rule of thumb
entirely. One could accidentally obtain the density
matrix for a self-consistent excited state since in
McWeeny's method the change in the density matrix
in each step of the iteration process is determined by the
lack of self-consistency.

In this paper we shall derive the stability condition
in a general form and exhibit some of its properties,
including its one weakness, which appears not to have
been discussed previously. Then we shall consider some
simple applications. A numerical application of the
stability condition to the LiH molecule will be made,

coupled with a brief discussion of the behavior of the
Hartree-Fock wavefunction and energy when a molecule
is pulled into its component parts. Finally, we shall
show that the electron gas plane-wave state is un-
stable with respect to a state having a nonzero spin
density, when the electron density is very small.

2. THE STABILITY CONDITION

YVe discuss the Hartree-Fock approximation for a
system of Ã electrons moving in an arbitrary external
field and interacting with one another only through the
Coulomb repulsion. We adopt the conventions of the
transformation theory, summing over discrete indices
and integrating over continuous ones. The one-electron
density matrix p of the system in the coordinate
representation is defined in terms of the Hartree-Fock
spin orbitals by

It is an idempotent matrix. In addition to the matrix lo,

we define three others in the coordinate representation.
Writing 3'.; for that part of the total Hamiltonian which
operates on the coordinate of the jth electron, we define

(H)„.„,. = 3 (x,—x,)X;.

Similarly, we define the Coulomb matrix

(B),,„,=b(x;—x,) dxs(r, e) 'P(xelxq), (3)

and the exchange matrix

(&).;.;= (r' ) 'p(x, lx, ) (4)

The important thing to remember with respect to 8
and A is that they are linear in 9. The total energy of the
system is the trace of a sum of matrix products:

In the Hartree-Fock method, one chooses the
orthonormal functions P„so tha, t E is a minimum. It
has been shown that lo contains all possible information
about the system. "We shall work directly with varia-
tions of the fundamental invariant p.

We wish to replace 9 in Eq. (5) by a 9' containing
arbitrary first- and second-order variations subject to
the condition that g' is indempotent to the second order.
McWeeny has shown how to do this. " Let 4 be an
arbitrary matrix. Representing the unit. matrix by I
(in a continuous representation, it is the 8 function),
we define

(6)

Letting X be the parameter that defines the order of the

"P. O. Lowdin, Phys. Rev. 97, 1490 (1955).
rs R. McWeeny, Revs. Modern Phys. 32, 335 (1960), Eqs. (74)

and (75).

' D. J. Thouless, Nuclear Phys. 21, 225 (1960); The Qnantnm
Mechanics of Many Body Systems -(Academic Press Inc. , New
York, 1961),pp. 24—29.' For other discussions of the stability condition problem see
I. Ia. Pomeranchuk, Soviet Phys. —JETP 8, 361 (1959); and K.
Sawada and X. Fukuda, Progr. Theoret. Phys. (Kyoto) 25, 653
(1961).' G. F. Koster, Phys. Rev. 89, 67 (1953); G. Parsen, ibid 89, .
237 (1953).

'e W. H. Adams, J. Chem. Phys. 34, 89 (1961)."R.McWeeny, Proc. Roy. Soc. (London) A235, 496 (1956).
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g(P) = vvl —vtv+v'+v'i. (9)

The connection of these formulas with those for the
variation of the orbitals has been given by McWeeny. "

We substitute y' into Eq. (5), obtaining E as a power
series in X. The requirement that E be stationary with
respect to an arbitrary first-order variation of the
electron density is

E")= (BE/BX)),=p
——0. (10)

The requirement that E be an absolute minimum is

equivalent to

variation, and writing

9'= ~+}(P(&)+}(29(P)+.. . (7)

then an arbitrary first-order variation can be written as

9")= v+ v).

To the second-order variation, the first-order variation
contributes vvt —v~v. This insures that the indempotency
condition on g will be satisfied. Writing 4' for a second
arbitrary matrix, and defining v' in terms of A' as v was
defined in terms of A, we can write the arbitrary
second-order variation as

Turning to the second variation E,"&, we can intro-
duce one simplification due to Eq. (17). From the
arbitrary part of the second-order variation the contri-
bution to I:&" is

[F(v+v t)]) = [F(1—9)a y+Fpa "(I )p)]('

But this is equivalent to Eq. (15) and, hence, must
vanish if Eq. (17) is satisfied. Thus, in general, the
second-order variation may be written entirely in terms
of V.

E('& = [F(vvt —vtv)+-,' (8")—A "&)(v+ vt) ](,. (18)

If E is an absolute minimum of the energy, then E"))0
for any v. Conversely, if we choose v so as to make E")
'is small as possible, and if this minimum value of E(')
is positive, then E is an absolute minimum. In other
words, we can derive from Eq. (18) an equation that
v must satisfy if E"' is to be an extremal. The variation
of v in E") is subject to the constraint that [vvt]&,
=finite number. This constraint must be applied if
E(P) is to be finite. (This point is discussed in Appendix
A.) If E(') is not finite then the expansion of 8 in powers
of A. is not valid. Applying the variational calculus to
Eq. (18) with the constraint [vvtf&, =1, we obtain

E(') =-,'(O'E/BV)&, p)0. Fv —vF+ (I—9) (8("&—A("))a= o)v. (19)
As we shall discuss later, this requirement is not as
strong as one would like it to be. Defining I(') and
A"', respectively, by Eqs. (3) and (4), with 9 replaced
by g(') in each case, we obtain from (10) and (11)

jV()) = [89(r)+(g A)9(r)] (12)

g(P) —[Hg(P)+ (g—A)9(P)+r (g(&) AO))90)j (13)

We discuss E&" first.
Ke can write E&') in a more compact form by

defining
F=H+B—A. (14)

This is the familiar Hartree-Pock effective Hamiltonian.
We write out y(') in Eq. (12) explicitly in terms of the
arbitrary matrix b, .

~"'=[F(I—9)&P+FP»(I—9)3 ~

= [P'(I—6)&+ (I—e)Fe&'j~ = o

For an arbitrary 4, this implies that

PF(1—9)=0.
This is equivalent to

(20)

for all choices of v. If coo)0, then E is an absolute
minimum.

A clearer understanding of the meaning of the
condition E('))0 can be obtained by going over to a
particular representation. Letting the orbitals P„(x)
be those that diagonalize the Hartree-Fock Hamil-
tonian, we write

(v). = g P lt'~(x))C~ li.*(x-) (21)

The orbital energy eigenvalue corresponding to P„(x)
is e„. Using the def(nition of Eq. (21), we arrive at

The Hermitian conjugate of this equation is satisfied

by vt. Equation (19) is equivalent to Thouless' stability
condition, but it is not restricted to a, particular
representation. (Thouless expands v in terms of the
complete set of IIartree-Fock orbitals. ) If the smallest
eigenvalue of (19) is (pp, then

Fy —gF= 0. (17) [FP")3~.= 2 2 ("—") I C"I'
iM) Ã+l v=1

(22)

This equation and the requirements that g be idem-
potent and Hermitian, and that [yjt, =lV, the number
of occupied orbitals, are equivalent to the Hartree-Fock
equation and the requirement that the Hartree-Fock
orbitals be orthonormal. ""

'4 P. A, M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930}.

If we assume that the orbital energies of the lV occupied
orbitals are smaller than the smallest virtual orbital
energy, then the trace of Eq. (22) is positive definite.
Thus, the intuitive idea of filling up the Ã orbitals with
the lowest orbital energy first, corresponds to making
one contribution to 8&') positive for any variation. If
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such a state is unstable, we will have

—lL(B"'—A"')9"') .& rFe"') .&o (23)

In general, one finds that Coulomb and exchange
integrals are relatively small, so that unless the diRer-
ences between the energies of some occupied and some
unoccupied orbitals are small, one should not expect
to find. that Eq. (23) could be satisfied. Substitution
of v, as defined in Eq. (21) into Eq. (18), and variation
of the C„„leads to the form of the stability condition
given by Thouless. '

At this point we can profitably examine what we
mean when we say that E('))0 indicates that the state
under consideration corresponds to an absolute mini-
mum of the energy. Ke do not mean that there exists
only one a,bsolute minimum of the energy. If the
electrons did not interact. we would have L'""'= t Fy"']i,
and there wouM be only one absolute minimum of the
energy, namely, the state in which the orbitals of lowest
energy are occupied. Because the electrons interact, a
nonlinear term is included in E(".This nonlinear term
can be positive or negative, and can lead to the in-

stability of the state in which the electrons fill the
lowest energy orbitals. It also makes it possible for
two or more absolute minima to exist. At least we
cannot show, in general, that only one absolute mini-
mum exists. If several absolute minima of the energy
exist for a given system, however, these states should
not diRer greatly in energy from the state of lowest
energy. This is a rather qualitative statement, but
that is because it is based on rather qualitative reason-
ing. The rea, soning is presented in Appendix B.

At present, most Hartree-Fock calculations are done
by expanding the orbitals in terms of a basis set of 3f
orthonormal functions (3f&E) Going over .to a basis
set representation in Eq. (19), we see that we have M'
simultaneous and homogeneous linear equations to
solve. This gives a secular equation of degree M'. Thus,
if the basis set is very large, the size of the secular
equation arising from Eq. (19) may make the exact
application of the stability condition numerically
impractical. Using Thouless' representation, the secular
equation is reduced to one of deg lV(M —X). This is a
considerable reduction, but unless M—E is relatively
small, it is not a sufficient reduction. The alternative
is to work directly in terms of the condition E(')&0,
choosing the arbitrary matrix so that it will mix states
and combinations of states with respect to which one
might expect the system to be unsta, ble. We shall come
back to this point in the examples.

We have assumed so far that there were no conditions
on the variation other than the preservation of idem-
potency. In most atomic, molecular, and solid-state
problems supplementary conditions are imposed on the
form of g. Many, but not all, of these supplementary
conditions can be incorporated into our equations by
restricting the form of b. This is the way one usually

introduces into the Hartree-Fock approximation the
restriction of doubly occupied orbitals, and various
symmetry and equivalence restrictions. "

Except for the remarks of the preceding paragraph,
our discussion would seem to be applicable only to
the unrestricted Hartree-Fock approximation. The
general approach is, however, applicable to the extended
Hartree-Fock schemes. "In an extended Hartree-Fock
scheme, the energy expression is more complicated, but
can be written in terms of two idempotent matrices

p+ and p ."One may vary p+ and p independently,
again looking at the second variation.

LAi'ig&'i]„= dxrdxs(ri. ) 'p&" (xi
~

x )p"'(xi
j xi)

dx,dxs(ris)
—

'~ po~(x,
~
x,) t'&0.

This is a well-known property of the exchange integral. "
With the explicit introduction of spin into the

Hartree-Fock approximation, one is led to consider
several variants on that approximation. The most
common variants are the restricted and unrestricted
Hartree-Fock approximations. Both are characterized
by two fundamental invariants, p+ and y . Writing o.

and. p for the spin-up and spin-down eigenfunctions,
respectively, the one-electron density matrix is

p=nn'e++ pp'9
ntn=PtP=1, ntP=Ptn=0. (24)

Thus, y+ and p give the density of spin-up and spin-
down electrons, respectively. One requires that y+ and

be idempotent, thus, guaranteeing that p is idem-
potent. With no restrictions placed on y+ and p, we
have the unrestricted Hartree-Fock approximation. "
"A thorough discussion of the various common restrictions has

been given by R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312
(1955);Revs. Modern Phys. M, 28 (1961).

rs P. O. Lowdin, Phys. Rev. 97, 1509 (1955); Revs. Modern
Phys. 32, 328 (1960). The latter article contains a large number
of references.

'7 P. 0. Lowdin, Colloq. intern. centre natl. recherche sci.
(Paris) 82, 23 (1958).

See J. C. Slater, Quantum Theory of 3tomi c Structure
(McGraw-Hill Book Company, Inc. , New York, 1960), Vol. I,
pp. 486—487; C. C. J. Roothaan, Revs. Modern Phys. 23, 69
(1.951); Appendix I.

"Professor P. 0. LOwdin has emphasized to the author that
it would be better to call it the Hartree-Pock approximation, since
I'ock's original proposal assumed there were no restrictions on the
orbitals. See V. Pock, Z. Physik 61, 126 (1930}.

3. IIITTCLVSION OF THE SPIN

To introduce spin into our equations is no problem,
but it does have some interesting consequences. The
important consequence is that there exist two ways of
choosing 4 so that LB&'&9&'i]„=0. This means tha. t
L(B"i—A"')P"']„, which can be either positive or
negative, is reduced to —LA"'P"']„, which is always
negative. It is always negative, because
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S=Ms=-,'(iV+ —cV ). (26)

Finally, one might consider the case in which the
orbitals are generat spin orbitals' 'i.e. ,

-

4') (x) =rr&) (r)+po) (r) (27)

In this case the Slater determinant is not an eigen-
function of 5, and 9 will have nPt and Peart components. "
If we require the )P„'s to be orthonormal, t) will be
idempotent.

Having simultaneously generalized our notation and
reviewed the usual variants of the Hartree-Fock
approximation, we can now look at those variations
which satisfy (B")9")j&,= 0. There are two such
variations. %e consider first a variation for which

90) =rrrrtt) 0)+PPit) l)) (28)

We require that
(i) —

p
(i) (29)

which guarantees that [Bi')tel') jt, vanishes. If we are
initially in the restricted Hartree-Fock approximation,
such a variation takes us into the unrestricted approxi-
mation. The alternate orbital transformation, "which has
been investigated extensively by I-owdin and co-
workers in connection with the method of alternate
orbitals, '4 belongs to the class of variations defined by
Eq. (29).

The other variation which we wish to point out is
characterized by

t)")=nPIv+Pntvt. (30)

This choice guarantees the vanishing of t Bo)t)&"jt,.
Furthermore, if we are considering the restricted or
unrestricted Hartree-Fock approximation, the form of

' R. McWeeny, Proc. Roy. Soc. (London) A253, 242 (1959)."P. O. Lowdin, Advances in Chem. Phys. 2, 207 (1959),
Sec. II D. (2)."R.McWeeny, Revs. Modern Phys. 32, 335 (1960). See Sec.
4.2. This case has been investigated numerically in Uppsala
by R. McWeeny and K. F. Berggren."The alternate orbital transformation is used to obtain
different orbitals for electrons of different spin. In the method of
alternate orbitals one defines the wavefunction for a system to be
the spin projection of a Slater determinant of alternate orbitals.

'-' P. O. Lowdin, Proceedings of the Japanese Conference oil
Theoretical Physics, Nikko Symposium, 1953 (unpublished);
.k'hys. Rev. 97, 1509 (1955); Revs. Modern Phys. 32, 328 {1960);
it. Pannez, J. de Heer and P. 0. j'.o)vdin, J. Cheni, Phys. 36,
2247, 2257 (1962).

. That the one-electron density matrix has the form
given by Eq. (24), implies that the single determinant
wavefunction is an eigenfunction of the s component of
the total electron spin, 5,."The restricted Hartree-Fock
approximation is obtained when one requires that the
Slater determinant be an eigenfunction of S', the square
of the total electron spin. I.eti'V~ and.V be the number
of electrons of up and down spin, respectively. Then it
can be shown" that when

[P~9 ]g, Ã, ——1V (iVg, (23)

the Slater determinant has the spin eigenvalues

y&" indicates that states of diQerent Mg are being
mixed. Equation (30) is written explicitly for the case
in which one mixes a state of given M8 with those of
higher 3fs Th.e variation given in (30) can be restricted
so that one stays within the restricted Hartree-Fock
approximation. If the energies of some occupied and
unoccupied orbitals do not differ significantly, one
would expect that E(') could be made negative by
considering variations of the type defined by Eq. (30).
This is, of course, related to Hund's rule that in a given
term, the state of highest multiplicity will lie lowest.
It is also related to the well-known fact that at low
densities $r,)6 a.u. (4)r/3)r, s is the volume per elec-
tronj t:he electron gas is ferromagnetic. '" This property
of the electron gas implies that a solid which has a
partially filled energy band with a sufficiently high
density of states, will be ferromagnetic. This is, of
course, just the assumption made in the band theory
of ferromagnetism. "

In addition to a variation of the kind exhibited in

Eq. (30), one ca,n adopt a, more general spin mixing
variation. For example one might choose

9")=npt(v +vt t)+peart(v 1+v~).

This form gives a test of stability relative to a state
described by the general spin orbitals Lsee Eq. (27)j
even if the state we are investigating is described by a
restricted or unrestricted Hartree-Fock wavefunction.
Thus, if we wish to test the stability of a restricted or
unrestricted Hartree-Fock wavefunction relative to
other restricted or unrestricted wavefunctions, the
above variation is the wrong one to choose. At present
it is not clear that the use of general spin orbitals will
lead to lower energies than those found in the un-
restricted Har tree-Fock approximation.

We see that the inclusion of spin leads in a naturat
way to variations which take maximum advantage in
E."' of the exchange term involving p"'. In view of this
one may well ask if the orbital angular momentum
can also be incorporated easily. Unfortunately, it
cannot. If one allows only those variations which have
the same symmetry as the wavefunction, one can build

up an approach similar to the one treated here. Varia-
tions which alter the symmetry of the wavefunction
are more easily treated by working with the total
wavefunction rather than with the orbitals. We have
not required the Hartree-Fock states we have con-
sidered to be eigenfunctions of the square of the orbital
angular momentum. For this reason, we have not
investigated the interesting problem of the stable
states of the iron group transition elements discussed
in the introduction. (Two members of this group are
known to have only one electron in a 4s level but it has
llot. beell show1l ttl~i t. t.lllh is t}le ('its(.' 111 tel(' IIilTtl ee=-3'0('k

PPl'OXJIIld. t:lO)1.)
-'" F. BIoch, Z. Pllysil 57, 545 (1929).
"N. I&. Mott, Proc. Phys. Soc. (London) 47, 571 (1935). J. C,

Slater, Phys, Rev. 49, 537, 931 (1936),
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4. MOLECULAR ORBITALS

The restricted Hartree-Fock approximation works
well for a molecule when the atoms are at their equi-
librium distances. When one separates the atoms,
however, one finds that the binding energy does not
approach zero, but some relatively large positive
number. (The only exception is the case of a system
of closed shell atoms. ) This has been explained by the
observation that the doubly occupied molecular
orbitals describe at infinite internuclear distances a
state which is a mixture of ionic and nonionic states,
or a pure ionic state." It was shown by Coulson and
Fischer" that when the requirement that the orbitals
be doubly occupied is dropped, the Hartree-Fock
approximation leads to the correct state at infinite
nuclear separation for the hydrogen molecule, i.e.,
the neutral atoms. Furthermore, they found that at
the equilibrium distance, the doubly occupied molecular
orbitals gave the lowest energy.

The calculation of Coulson and Fischer for H2
implies that the Hartree-Fock approximation wi/1

correctly describe the behavior of a molecule as it is
pulled apart, if we let it. That this should. be true for
other systems may be inferred from a comparison of
the total energies of systems of atoms and ions at
infinite internuclear distance. For example, for the
alkali halides one finds that the stable state at infinite
separation is always the neutral alkali and halogen
atoms. (Data are available for Li, Na, F, C1, Br and
their singly charged ions. )" This is in agreement with
experience. Application of the restricted Hartree-Fock
approximation to a molecule results in the ionic state
being the stable species. But this is only because we
have required the orbitals to be doubly occupied. This
requirement is introduced to force the single determi-
nant wav function to be in a definite spin multiplet
state. At infinite separation it may be important to
have each atom in a particular spin state, but does not
matter what spin state the system as a whole is in.

The question that we wish to investigate is the one
raised by the observation that at the equilibrium
internuclear distance, the doubly occupied molecular
orbitals minimized the energy of H~. We shall investi-
gate the stability of the restricted Hartree-Fock
approximation for LiH with respect to an unrestricted
Hartree-Fock approximation. We have chosen to
investigate LiH because it is a conveniently small

molecule, and because Karo and Olson have published

"J .C. Slater, Phys. Rev. BS, 509 (1930}."C.A. Coulson and I. Fischer, Phil. Mag. 40, 38(i (1949). See
also J. C. Slater, Phys. Rev. 82, 538 (1951).

2'Li, Na, and I: L. M. Sachs, Technical Report, , Argonne
National Laboratory, May, 1961 (unpublished). Li: Roothaan,
Sachs and gneiss, Revs. Modern Phys. 32, 186 (1960). F: L. C.
Allen, J. Chem. Phys. 84, 1156 (1961).Cl: R. E.Watson and A. J.
VfeeIIlan, Phys. Rev. 123, 52 1 (1961,). 8I: R. E. Watson ancl
A. J. I'reeman, ibid. 124, 1117 (1961).There is a misprint in their
energy for Hr. It should be —2582.443 a,u.

The second variation we choose is

t'II &II t'II-= (1+~') '"(q s+ap4) q s. (II)

This variation also belongs to the class defined by
Eq. (29) and uses the Hartree-Fock orbitals as Thouless
does. We minimize E&'& with respect to x.

Since the question of stability is rather a qualitative
one, we present our results for the variations (I) and
(II) as a graph of E&'& vs E. Our calculations cover the
range 3.0 (E.(6.0 a.u. which is only part of the range
covered by the calculations of Karo. We see that A&2)

is positive at the equilibrium internuclear distance
(R= 3.0 a.u. ), but becomes negative for 2t.'a little larger
than 4.0 a.u. It is for E.&4.0 a.u. that the restricted
Hartree-Fock approximation fails. That the restricted
Hartree-Fock state should be unstable before 8=5.0

FIG. 1. The second
variation of the elec-
tronic energy as a func-
tion of the internuclear
distance in LiH for two
different choices of b.

0.0
Aj

0.1-

-0.2-

A. M. Karo and A. R. Olson, J. Chem. Phys. 30, 1232 (1959).
'r A. M. Karo, J. Chein. Phys. 30, 1241 (1959).

values for all of their integrals. ""We have found that
at the equilibrium distance the doubly occupied
molecular orbitals are stable.

The calculations have been performed in two ways.
In neither case have we used the full power of the
stability condition, but we have instead used our
physical intuition to decide how A should be chosen.
Our first observation was an obvious one, namely, that
the 1o orbital would remain doubly occupied. (This
is in part a consequence of the limited basis set. ) Then
we asked how the orbitals of the unrestricted Hartree-
Fock approximation should differ from those of the
restricted. Obviously in the former, one 20. orbital will
be increased about the Li nucleus, the other about the
H nucleus. Following Karo and Olson, we use the
symbols h for the 1s orbital of H; s, 5, and p for the
1s, 2s, and 2p orbitals, respectively, of Li. The mo.

orbital is denoted by p„. Using this notation the varia-
tion we choose is

~r (1 l2) = ~+(1 I2) = —~-(1 l2) =~(1)~s(2) (I)

This va, ria, tion is of the class defined by Eq. (29).
From the definition of v and the restriction thn. t
Lvvtj„,=1, we obtain from (I)
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a.u. can be inferred from the potential energy curve
given by Karo (his Fig. 1)."At 8=5.0 a.u. the total
energy found by Karo is larger than the energy of an
isolated Li atom and an isolated H atom. (This energy
is, in turn, larger than the energy obtained from a
Slater determinant wave function with a doubly
occupied s, and an up-spin in S and a down-spin
in k.)"One cannot infer in this way, however, that the
restricted Hartree-Fock state for I.iH is stable out to
E.=4.0 a.u. One can only infer that with the small
basis set used in this calculation, the restricted Hartree-
Fock approximation cannot be improved upon by
going over to the unrestricted approximation for
E (4.0 a.u.

Finally, we remark on the helpfulness of our physical
intuition. Quite plainly the variation (II) yielded a
significantly smaller J'.'&" than variation (I). However,
using variation (I) is simpler and gives an indication
of where the stability breaks down. I In the example we

have considered (I) is only a little simpler than (II), a
situation which should not be true in general. ) Thus,
we really needed to use (II) only at one point, R=4.0
a.u. The other calculations with (II) were done merely
to exhibit the behavior of E('& as a function of E.

S. THE ELECTRON GAS

It is well known that plane waves provide a self-

consistent solution to the Hartree-Fock equation for
an electron gas. Recently Overhauser'" has raised a
question as to the existence of other self-consistent
solutions which have a lower total energy than the
plane-wave solutions. For a one-dimensional Fermion
gas with 6-function repulsions, Overhauser found a
self-consistent solution of lower energy than the plane-
wave state. (Other examples have been discussed
since. )'4 This state exhibits a nonzero spin density, or,
as Overhauser says, "giant spin-density waves". No
one, however, has published an Overhauser-type
solution to the electron gas problem. " Indeed argu-
ments have been presented to demonstrate that in an
electron gas an Overhauser state can exist only at very
low densities. "In this section we shall use the stability
condition to investigate this problem.

In our investigation of the electron gas we have not
looked for a self-consistent solution of the Hartree-Fock
equation, but have merely tried to find a simple
variation function v which gives rise to a spin density.

3s William H. Adams (unpublished calculation).
"A. W. Overhauser, Bull. Am. Phys. Soc. 5, 433 (1960).
3 E. M. Henley and Th. W. Ruijgrok, Ann. Phys. (New York)

12, 409 (1961);E. M. Henley and L. Wilets, r'bid 14, 120 (1961). .
"Overhauser has described one. See reference 32. After this

manuscript had been completed an abstract of a report on a
stability calculation on the electron gas was fouI&d. Iwamoto and
Sawada report that the plane wave state is unstable for r, &4.5.
See F. Iwamoto and K. Sawada, Bull. Am. Phys. Soc. 7, 66 (1.962).
Tote added in Proof. Their paper has now been published: I'.
Iwamoto and K. Sawada, Phys. 14ev. 126, 887 (1962).

's W. Kohn and S. J. Nettel, Phys. Rev. Letters 5, 8 (1960).

9 i'&= —9. i"=v+vt,
n (ri

~

rs) = 2V2ps(ri
~

r.) cos (2irExt)
&& cos (2n.Eyr) cos (2~Ez,).

(32)

I'his variation gives rise to a nonzero spin density in
the first order in X, and a nonzero density periodicity in

the second order. The integrals arising in E(" from the
v defined in (32) may be evaluated rather easily.
(Only one integral had to be evaluated by numerical

integration, and then only over one variable. ) We find

that the plane-wave state is unstable with respect to
the above variation, for r, &32 a.u. , a density well

below those found in metals. LOne defines r, so that
(4~/3)r, ' is the volume per electron. f

Although the plane-wave state is stable with respect
to the variation defined by Eq. (32) for r, (32 a.u. ,
this does not mean that there does not exist another
choice of v with respect to which the plane-wave state
is unstable at higher densities. Indeed v can be chosen
so that LFyt"j„is smaller than for the above variation.
Unfortunately these other choices lead to integrals
which are much less easy to evaluate. Furthermore, even
though the v we have chosen gives rise to a periodicity
in the electron density, this does not imply that the
Hartree-Fock ground state of the electron gas has this
property. That the variation leads to a nonzero spin
density does imply that the Hartree-Fock ground state
in the unrestricted approximation has a spin density.

6. CONCLUSION

The stability condition when used in its complete
form LEq. (19) and the requirement res) Oj, tells
whether a given Hartree-Fock state is stable or not. If
the state is stable then it will correspond to an absolute
minimum of the energy. Unfortunately it has not been
possible to show that there is only one absolute
minimum of the energy in the Hartree-Fock approxi-
mation. It may be that. the number of absolute minion;&.

will depend upon the nature of the system considered.
whatever the case may be, one may well ask if the

(We cannot imagine how E can be improved without
introducing a spin density, if we stay within the
Hartree-Fock approximation. ) By our definition v was

simple if it led to integrals that could be easily evaluated.
Here we present only one of these v's, and reserve a
discussion of the physics of such states for a later
publication.

The variation we consider is of the type defined by
Eq. (29). Writing ki; for the Fermi momentum, and
considering the case in which there are the same
number of up- and down-spin electrons, the spinless
Fock-Dirac density matrix is

S= 1y
—I'2

ps(ri
~
rs) = (27r's') 'Lsin(27rkrs) —2xki;s cos(2~ki;s) j.

Defining IC= (2/&3)kr, , the variation we have chosen is
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stablllty of the wavefunct ion mat ters, If we are
interested only in having approximate charge densities
magnetic form factors, etc. , for experimentally known
states of a system, it should not matter. Tf, however, we
wish to use the Hartree-Fock approximation as a
model of the physical world, then stability does matter.
In chemistry in particular, one is interested in the
stable state. There is no guarantee that the Hartree-
Fock approximation will predict the stable states found.
in nature, but we may hope that it will. The stability
condition gives us a tool for investigating this equation.

As a tool the stability condition has its weaknesses.
One of these weaknesses is the question that exists
regarding the number of absolute minima. Another
weakness is that in its complete form it is numerically
as complicated as solving the Hartree-Fock equations.
We have given two examples in which we have used
intuition to pick out variations for which one might
expect to find instability. But in doing so we did not
answer the question, is this state stableP Instead we
answered the question, is this state unstable with
respect to this variations Whenever we get a "no"
answer to this question, we still cannot be certain that
the state is stable. Whenever we get a "yes" answer,
then we know the state in question is unstable. By
investigating the stability of a Hartree-Fock state with
respect to particular choices of 4, we can make it seem
improbable that the state is unstable, even though we
cannot prove that it is stable.

(~)-,,=0.(x) (81)

Let %'~ and %'2 be the orbital matrices of states 1 and 2,
respectively. The Fock-Dirac density matrices of these
states can be written in terms of their orbital matrices

Defining l~ to be the E&&X unit matrix, then

Thus, if Lvv"]„ is not finite, LFy&'&j», is not finite, and
only for very special variations will E"' be finite. This
argument can be generalized by observing that only a
finite number of the differences e„—e„ in Eq. (22) can be
negat, ive.

APPENDIX 8

The purpose of this Appendix is to present the
quantitative and qualitative reasoning behind the
statements made in Sec. 2 regarding the number of
absolute minima of the energy. We asserted there that
if several absolute minima of the energy exist, these
minima do not differ greatly from the lowest. To see
this we shall test the stability of a state of energy
E2 (we shall call it state Z) relative to a state of energy
I;~. We assume that A'~) L~:~. We shall see that we can
suppose that states 1 and 2 are both stable without
meeting a contradiction. We define the orbital matrix,
which is composed of the X occupied orbitals, by
writing down its elements.

%' »%' = liv. (83)

APPENDIX A

We have stated that one should have

Lvvt j»,——finite number, (A1)

if E('~ is to be finite. This can be rather easily seen from
Eq. (22). Let us assume that the smallest nonzero
difference between the orbital energy of an occupied
orbital and an unoccupied orbital is d~, and that
Ac&0. Then we have the inequality
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It has been necessary to introduce these orbital matrices,
so that we can easily write down a suitable expression
for A.

We choose our variation to be

b g =%'g%'2t. (83)

The subscript 2 on b, indicates that b ~ is used to test
the stability of the state 2. We shall attach similar
subscripts to 8&", 8&", and A&'&. Although E2 and p2

are unchanged by unitary transformations of %'2 or by
linear transformations that do not. decrease the number
of linearly independent orbitals, our expression for
b, 2 would appear to depend on our definition of the
orbitals that make up W2. In reality 42 depends only
on how %'& is chosen, for any linear transformation of
%'2 can be regarded as a linear transformation of %'j.
in Eq. (85). From Eq. (6) and the definitions given
in (83) and (85) we obtain

v2= %'i%'2t —%'2S%'2t. (86)

Using the definition of Eq. (9), we obtain with the
above

The orbitals of states 1. and 2 will overlap, in general.

S=%2% i.

LFe"'j».»~L»'3»' (A2) 92"'= ei—e2—pip2 —eei+ peie2+~2S'S'F2' (8&)
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F„=8+8„—A„. (Bg)

Note that only the last term of y2{') depends upon how
the orbitals of %'~ are defined. We have not written
down g2") because we have not been able to introduce
any simplihcations hy considering it explicitly.

Introducing y&") as given in Eq. (87) into the
expression for E~{" we can show tha, t the difference
E~—E2 is introduced. Ke have first to extend our
notation a little. To do this, we define S„and A.„ in
terms of g„ in the same way tha, t 8 and A a,re defined
in terms of y. LSee Eqs. (3) and (4).] With these two
matrices we can define

An immediate consequence of this, is

Oi {&)—
~~

l.&)

~{)— ~{)
(812a)

(812b)

If the orbitals of states 1 a,nd 2 can be chosen so that S
has large elements (=1) only along the diagonal, then
the Eqs. (81.2) can be regarded as approximately valid.
In what follows we shall assume that, these corrections
a,re too small to alter the sign of the second varia, tion
of E.

Introducing the assumption that. S is diagonal,
having the elements zero or one, we obtain, using
Eq. (810),

The usual form of the Hartree-1'ock equation is

F„e„=e„E„.

In terms of these matrices we have

(89)

gi.~(~)= jvi —j» 2+iL(8~o) A2(i))~~(!)]
—5L(82—8i) (y&

—yi) —(Ag —Ai) (yg —y, )7,„. (B13)

To construct E~{'),we first note that in view of a,ssump-
tions concerning S

LF e.")7.= LF e.7,+LE,(—I +s»s —sst)]„
=Ei—E,+LEg (StS—S'S»)7,„

—kl:(8~—8i) (e2—ei)
—(A2 —Ai) (92—Pi)7»' (810)

Note that linear transformations of %'& affect only one
term of LF2y~"']», . Thus, bv linear transformations of
%'~ we can minimize

l E2S'S]»,+-,'L(82"' —A2"') p2"'7» .

vl= v2 ~ (811)

Although Eq. (810) is exact, we have not been able
to proceed further without introducing approximations.
The most revealing approximation is to assume that
S is diagonal, the diagonal elements being either zero or
one. Then the orbitals of %'2 are either identical with
those of %'i, or linear combinations of the virtual
orbitals of state i. Thus, v~ is a bilinear combination of
orbitals which are orthogonal. If we were to construct
in analogy to v2, a variation v& to test the stability of
state 1 relative to state 2, then in view of our assump-
tions regarding S,

With the aid of Eqs. (812), we find that

p)P) = jv2 jvi+ i L(8~o) A2(i)) g»(i)7
—lL(8 —8)(e —e)—(A —A)(~ —e)]' (»4)

Then we see that E&{') and E&") differ only in the sign
of E2—E~. If E2&EI, as we assumed at the beginning
of this appendix, then

E {~))E {2)

This inequality is valid only under the rather restrictive
assumption we have introduced concerning S. The
important point is tha, t we cannot say definitely that
E2{')(0.The Coulomb and exchange integrals which
are common to E~") and E~{') can be either positive or
negative. But on the other hand, we know that Coulomb
and exchange integrals are rather small, so that we
would expect tha, t E&{') can be positive only if E2—EI
is not too large. This forms the basis of our statement,
that if there exists more than one absolute minimum
of the energy, the energy differences between the various
stable states should not differ greatly from the lowest
energy.


