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Spin-Lattice Relaxation of S-State Ions: Mn’* in a Cubic Environment
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The theory of spin-lattice relaxation is developed for S-state ions: in particular for Mn?* in a cubic en-
vironment. The wavefunctions for Mn?* are generated to first order in the spin-orbit coupling parameter,
the orbit-lattice interaction is formulated in terms of spherical harmonics, and the rate equations are derived
for this system. Estimates are given of the interaction coefficients based on a point-charge model, and it is
shown that excellent agreement is obtained with observed spin-lattice relaxation times. However, a detailed
comparison with recent experiments which give the magnitude and sign of these coefficients directly shows
that though the point-charge model gives the right order of magnitude, it gives the wrong sign for the

interaction coefficients.

I. INTRODUCTION

HE theory of spin-lattice relaxation in iron-group
salts as developed by Waller,! Kronig,?2 and Van
Vleck? has been moderately successful in predicting
the order of magnitude and temperature variation of
the relaxation times of iron-group ions whose free-ion
group states have nonzero orbital angular momentum.
According to this theory, a spin in a magnetic field can
change its direction (and hence its energy) by absorbing
or emitting phonons. This exchange of energy proceeds
via the so-called orbit-lattice interaction, a modulation
by phonons of the electric crystalline field due to ions
surrounding the paramagnetic ion. This field then
interacts with the orbital moment of the ion, which in
turn interacts with the spin via the spin-orbit coupling,
causing transitions between different spin states.

In an S-state ion, such as Mn?*, the orbital angular
momentum is zero, and working within a given con-
figuration it is necessary to mix excited states with
nonzero angular momentum into the ground state using
the spin-orbit coupling to find nonzero matrix elements
of the orbit-lattice interaction. This situation is at first
sight not very different from that of the non-S-state
ions in the iron series. In these ions the orbital angular
momentum is usually quenched by the crystalline field
and nonzero matrix elements of the orbit-lattice
interaction are obtained only after mixing in of excited
states via spin-orbit coupling. The excited states in this
case may have the same total spin as the ground state,
and there will be matrix elements of the orbit-lattice
interaction between the ground state and the admixed
excited state. Since the admixture is proportional to
¢/A, where A is the energy of the excited state relative
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to the ground state and { is the spin-orbit coupling
constant, the matrix element itself will be proportional
to ¢/A. In an S-state ion, however, the spin-orbit
coupling will mix only states with different total spin
values into the ground state. This implies that the
matrix elements of the orbit-lattice interaction, which
is independent of spin coordinates, will be of order
(f/A)% This is a very small number, and indicates
relaxation times longer for Mn*t by 10? than for other
iron-group salts at low temperatures, other things being
equal.

We have calculated the relaxation times for Mn*t
in a cubic environment in the low-temperature region,
where the direct process (energy exchange by absorp-
tion or emission of a single phonon) is expected to be
dominant. In the next section we outline briefly the
computation of the wave functions for Mn**. Section
IIT deals with the orbit-lattice interaction and Sec. IV
with the resulting rate equations. In Sec. V, we give
estimates of the relaxation time based on a point-charge
model for the crystalline field, using the results of Van
Vleck,® and in Sec. VI we compare these estimates
with the values recently determined from static strain*
and microwave saturation measurements.5

II. THE WAVEFUNCTIONS FOR Mn?* IN A
CUBIC ENVIRONMENT

In Fig. 1 we show the low-lying states of Mn** in the
absence of spin-orbit coupling. On the left are the
free-ion sextet and quartet states, while on the right
are the states in the presence of a cubic crystalline field.
There are three three-fold orbitally degenerate *T'4
states, each of which is a linear combination of the ‘G,
1P, and *F states. We show only the *T'y states because
the spin-orbit coupling ¢ > 1;-s; will, to first order, mix
into the °T'; ground state only those states which

( 4 G. D. Watkins and E. Feher, Bull. Am. Phys. Soc. 7, 29
1962).
5N. S. Shiren, Bull. Am. Phys. Soc. 7, 29 (1962).
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Fic. 1. The low-lying atomic energy levels of Mn?* in the

absence of spin-orbit coupling. On the left are indicated the

free-ion sextet and quartet states, while on the right are those

states suitably admixed in the presence of a cubic crystalline field.

The admixture parameters, defined in the text, are given in
Table I.

contain *P. Using the notation
| T ) =0 | *P)4B: | *F)+v:| ‘G), M

Table I shows the states #I's and their energies A;
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TaBLe I. The cubic field wavefunctions and splittings for
various values of Dg. The spin-orbit admixture coefficients of the
excited cubic field states into the ground state are also listed. The
notation is defined in the text.

i @ Bi vi A; (em™)
10Dg=9000 cm™*
1 0.594 —0.140 0.792 17 256
2 0.784 0.325 —0.530 33441
3 0.183 —0.935 —0.303 41 303
10Dg=10 000 cm™
1 0.601 —0.148 0.785 16 311
2 0.767 0.383 —0.514 34000
3 0.225 —0.912 —0.344 41 688
10Dg=11 000 cm™!
1 0.607 —0.156 0.779 15 360
2 0.748 0.442 —0.494 34 498
3 0.268 —0.883 —0.385 42 142
M, 5/2 32 1/2 —1/2  —3/2 —5)2
a(Ms)  —v/5 =3  —3/6 —3V2 0 0
b(Ms) 0 0 —5V2 —3v/6 =3 —4/5
c(Ms) 0 —VZ -3 —V3 —V2 0

relative to the ground state for various values of the
cubic field parameter 10Dq. These values were com-
puted by Powell® by direct diagonalization of the cubic
field matrix elements.

In the absence of spin-orbit coupling, a magnetic
field would split the ground state into six states,
|$SM ) with M,==5/2, £3/2, and =4-1/2. The spin-
orbit coupling mixes in the ‘I'y states with the above,
and to first order in { the wavefunctions are

<'L'4P4_7'Msl I §' Z‘u lu ‘ s‘u[ GSMS>

IM5>=IGSMS>__ Z

TgMs’

[#Ta M), (2)

T

where the subscript ¢ distinguishes the three different “I'y states which occur, and j= =1, 0 labels the three orbitally
degenerate states belonging to each of the #I's. The matrix elements of spin-orbit coupling appearing in (2) were
calculated using Racah’s” coefficients of fractional parentage.

The resulting eigenfunctions can be written as

|M.)=|SM)—% %{a(M )| ATAM —1)+b(M )| AT4— 1M A1) +c(M,) | AT O0M,)},

where

[Tl M )= {e:| PY+HBL (R} F1)+ (D} F—3) 1+ [ ()?

()

GO+ GEPG=3) B EM.),

[ AT 0M )= {ai| PO)—B:| FO)+vi[ — (3)}| G4)+ ()} G—4) ]} [§M.),
| 47— 1M )= {as| P=1)F+BL B F3)+ @ F— 1) ]+v[— $)G3)— (D G-1)]} | 3M,),

and
a(M)=3(¢P1M,—1 l > li+Sz‘_| 6SM,),
b(M)=3(P—1M +1]|3; lsit|SSM ),
c(M,)= <4-P0Mx l > lizsizl 65M8>.
These coefficients are also shown in Table I.
It is between these states | M) that transitions are

observed in a paramagnetic resonance or relaxation
experiment, and we wish now to calculate the proba-

bility per unit time that the orbit-lattice interaction
induces a transition between two such levels. The
transition probability is related to the relaxation times
by the rate equations (see Sec. IV).

One further comment concerning these wavefunctions
can be made. It is well known that the 65 state of the
free Mn®* ion splits into a doublet and a quartet state

6 M. J. D. Powell (private communication).
7 G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943).
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on entering a cubic field, with a splitting of about
5X10~% cm™. This splitting has recently been in-
vestigated in detail by Gabriel, Powell, and Johnston,?
who show that it requires the spin-orbit coupling to
fourth order. The magnitude of the splitting is much
smaller than those caused by magnetic fields of the
size with which we are concerned, and we shall accord-
ingly neglect it in the following.

III. THE ORBIT-LATTICE (OL) INTERACTION

Van Vleck? has pointed out that for an octahedron of
charges surrounding a paramagnetic ion cluster,
vibrations of the type I'sy and I's, are the only terms
which need be considered for inducing relaxation
transitions. This can be seen by decomposing the motion
of the six charges into irreducible representations of the
octahedral group O, (see, Landau and Lifshitz?) after
subtracting simple translations and rotations of the
cluster as a whole. Only even vibrations need be
considered as we restrict our matrix elements to be
internal to the d° configuration. We shall assume the
Mn?** ion to be at the center of such a cluster in what
follows. It turns out to be suitable for our purposes to

(lﬂa/SL,MsML,tC)\y”naSLMsML>= (—)L"‘JWL’(

with

!
(l"a’SL’HCle”aSL>=n(ZH—l)[(ZL-{—l)(2L’+1)]%<0

a1 S Ly

where the three- and six-j symbols are tabulated by
Rotenberg et al.,”® and the fractional percentage
coefficients are given by Racah.” If we work within the
d® configuration, only A\<4 gives nonvanishing matrix
elements. A simple decomposition of the Cy,’s according
to the irreducible representations of the cubic group also
limits X to be even for I's, and T'5,. Hence, we need only
consider A=2, 4. The linear combinations of Cj, and
Cs, appropriate to I's; and I's, are given by Griffith':
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express the I'y; and I's, vibrations in terms of Racah’s
Cyy Writing

Crvu=2_: [An/ 2N+ 1) J T #(3).

The Yy* are spherical harmonics of orbital index X\ and
azimuthal quantum number .
We, thus, may write

Vor=2i,; Vi(Tis)e(Tis))
=2 iinm @ ()COne(Tigf)
:Zi,j)\,u VM“CMG(PMj); (3)

where the €(I';;7) are those linear combinations of
components of the strain tensor which transform as the
4th subvector of the representation I';,, and the V ;(T;,)
are constants. We then group the C,, terms in Vor,
using the coefficients ay,*, to transform as I';, and
I's,. We refer to these grouped terms as Vor(I's,), etc.
We now wish to compute the matrix elements of the
Cy. between the Mn?t wave functions listed in Table 1.
These matrix elements can also be calculated using the
fractional parentage expansion for the d° wavefunctions.
We find, noting that C, is independent of spin,
77

)

L
)(l"a'SL’ G l1aSL),
M/ M,

N

X 3 (=) AU SL{ |1 aS1 Ly asS1La | }"aSL) {1; 2 l; }, (4)
1
and for A=4,
V5 NGi VT
————Cyo Cut Cyy= C(P3a4>0);
24/3 24/6 24/6
(Coat+Cyy)/V2=C(T354e);
(\/7043*044)/2\/2—: C(P5074;1)7
(Caa—Cas) N2=C(T'544,0),
[C41_\/7C4——3)/2\/?:C(P5g4; - 1)- (6)

For \=2,
C20=C(T'3,2,0),

(Coot Cz—z)/\/z—= C(T352,6) 5

Co1=C(T542,1),

(Caoa— CL2)/V2_= C(T'5,2,0),
—Cu=C(T's2, —1); )

8 J. R. Gabriel, M. J. D. Powell, and D. F. Johnston, Proc. Roy.
Soc. (London) A264, 503 (1961).

9L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon Press, New York, 1958), p. 367.

10 M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten,
Jr., The 3-j and 6-j Symbols (Technology Press, Massachusetts
Institute of Technology, Cambridge, 1959).

1 1, S, Griffith, The Theory of Transition Metal Tons (Cambridge
University Press, New York, 1961).

We note that we can now regroup the terms in our
expansion for Vor, Eq. (3), into the form

VoL= Z Z V(P?»yl)C(FSal:m)é(F!in;m)
1=2,4 m=4 ¢ )
+2X X V(@sd)CTsbym)e(Tsg, —m)(—1)™; (7)
1=2,4 m=+1,0
where!!

e(D30,0) =3 (2esa— €ao—€y),
€(I'3g,€) = 3V3 (€2a— €4,
E(PSﬂ,1)= ”i(3/2>%(5y1+iézr>>
€(D'50,0)=1V3 €4y,

€(Tsgy —1)=1(3/2)} (e —1e.),

(8)
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so that there are only four phenomenological coefficients we need to evaluate from experiment. In fact this number
reduces to three, as C(I's,2,m) accidentally does not contribute to the relaxation transitions for Mn** in a cubic

environment.

If we substitute these expressions into (4) and compute the required matrix elements between the admixed
states of Table I, we find the only nonvanishing matrix elements to be

<Ms

i

I

(M, Vor(Ts,) IM
<Ms 2 Vor(Tsy) | M

31 Vor(Tse) | M=3)={—(5/T)\/6(s* )V (T's,2)+ (44/10) (1/21)52 2+ (1/12)2 22 ) V (T5,4) ye(T551) 5
(M=% Vor(Tsy) | M,=5)={[5(+/6)/14](s* 2)V (T'5,2) — (24/10) (1/21)¢> 3+ (1/12)2 32 )V (T'5,4) } (T'5,0) ;
3l =352 202 2V (T34)e(Type) ; :

=3)={— /T W15 2)V(Ts,2)+8((1/21){* 2+ (1/12)i2 22NV (T's4) ye(T5,1) 5

9)

s=%| Vor(Tsy) [ M= —35)={[3(\/30)/141¢* 2° V(T'5,2)— (V2/2) (4/1)i* L+ )V (Ts4) }e(T'5,0) 5
=3 Vor(Ts) | M= —5)=3V2(* X =20 220V (T34 e(Tse) ;

where the transitions are labeled by the dominant part
of the state vector, and the two symbols 3~ and >/ are
defined by
=25 e By /AN
X =20 ey /A
the a, 8, and 4’s being defined as in Table I. For a
reasonable choice of the Racah parameters, B=800
em™, C=3200 cm™, we find for 10Dg=10* cm~,
> =—0.268 X107 cm?;
3 /=6.292X 10" cm?.
Using a value for { of 300 cm™, we, thus, find
(M,=5|Vor(I's)) | M.=3)
={0.422V (T'5,2)+5.00V (I's,4)}
Xe(T5,1)X 1072,

(10)

=5[VoL(lsy) | M,=1%)
= {—O.ZIIV(F502)—2.911V(F5g4)}

X e(T'5,0) X 1075,
M=% Vor(T's,) | M, =3)

— —6.005V (T3, 4)e(T, €)X 10~
(M=3%|Vor(T's,) | M,=%)

—{0.267V (T'5,2)+3.22V (T's,4)}
X e(Ts,1) X 1075

(11)

(M=3|Vor(T's) | Ms=—3%)
— {—0.283V (T's,2)— 3.906V (T's,4)}
Xé(Fng)X10—5,
(M=3|VorTs,) | Ms=—7%
— 87TV (I )e(T'3p6) X 105,

These are the phenomenological expressions for the
matrix elements of Vor, with which we shall work.

IV THE RATE EQUATIONS FOR THE
DIRECT PROCESS

The matrix elements of Vor, have now been computed
in terms of the three phenomenological coefficients
V(['s5,4), V(I's,2), and V(I's,4). It is now a simple
matter to set up the rate equations for the populations
of the sublevels of the ground term of the Mn? ion.

The procedure has recently been outlined by Andrew
and Tunstall,’* and, thus, we shall not go into detail
here. If we define the deviation of the population of a
given level from thermal equilibrium as %, and then
use the differences Noy,—1=4% (ny,+nu,—1) and assume
our system is prepared symmetrically so that
Noyy—1=Ni_an,, we find

N2= “1\‘72[214 5/2-»3/2‘*34 5/2—71/2]
A+ N1[A 010 Asj01/2— As131/2]
. +No[/'1 ::/2-»;1/2],
NIZA\’Y2EAA5/2—»3/2_A5/2—>1/2:| (12)
—‘Nl[ZA 3/2-»1/2“’14 5/2-»1/2],
No=No[245/251/2 4+ N1[24 5700110 A2 ]
—No[ 2427201/,

where the 4 ,.,” are the transition probabilities per
unit time to go between the levels M, and M. It is a
difficult matter to compute these terms for a real crystal,
as the phonon spectrum must be known for an arbitrary
crystal direction. What we shall do in order to estimate
T is to assume the host crystal is isotropic, and neglect
the directional properties of the linear combinations of
the strain tensors appropriate to our dynamic crystal-
line field coefficients V (I';,Z). We do make use, however,
of the orthogonality of the linear combinations of the
strain to eliminate cross terms when we go on to square
our perturbation matrix element.

It is now a simple matter to compute the 4 i,
We find, for g8H<kT,

3gBH%T

Mg>Mg =
whipv®

X Z l ZL: <Ms/’ C(F'mlm) l M3>V(F1al) | 2' (13)

Tt is now obvious that A s,a,’7%0 only for | M,—M /|
<2, as Vo1 can only connect states differing in M, by
<2. This follows because we have used the spin-orbit

2 E. R. Andrew and D. P. Tunstall, Proc. Phys. Soc. (London)
78, 1 (1961).
18R, Orbach, Proc. Roy. Soc. (London) A264, 458 (1961).
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coupling only once in determining the admixed eigen-
functions [M,). We now return to our rate equations
and solve them for some special cases. Consider the
case when the same spin temperature exists for all levels
and No=N;=N, This is the usual condition for
nonresonant relaxation time measurements, and gives
rise to the relaxation time

1/T1= (4/35) (Asp23/2F4A 5725172

+44 505 10 Aspa12).  (14)

In the case of more general initial conditions, and the

A— (24525372 Asp25172)
Aspzsz2— Aspaony2
24579172

The three eigenvalues represent the three values for
the relaxation time, and the eigenvector for a given
eigenvalue represents the linear combination of popu-
lation differences which decay according to the single
exponential with a relaxation time equal to the inverse
of the eigenvalue. It is a simple matter to use a linear
combination of the three eigenvectors which satisfies
t=0 conditions and to note how a given population will
decay in time.

V. ESTIMATION OF THE COUPLING COEFFICIENTS
ON A POINT-CHARGE MODEL

In his original work on this subject, Van Vleck
expressed the orbit-lattice interaction in the form
VorL=2Y.: V.:Qs, i=2, ---, 6, where the (; are the even
modes of vibration for the surrounding octahedron of
ligands. By expanding the Q; in terms of the normal
modes of vibration of the entire crystal (phonons),
Van Vleck obtained an expression for Vor which is
equivalent to our Eq. (3). This decomposition in effect
expresses the Q; in terms of Re, where R is the anion-
cation distance (=2.10A=3.97a, for MgO) and ¢ is one
of the strain components.

The V;in Van Vleck’s expression for Vor, were given
by him in terms of the Cartesian coordinates of the
electrons rather than in a spherical-harmonic expansion
as in Eq. (13). He gives:

Va=2_ {4 (x’—y)+ B(xe*— 30"},
V=% {4 (x+y0—220%)
+ (B/V3) (xo*+yo*— 220"},
V=2 {Cxoyot E(xo*yotx0y®) },
V= Z {Cxozo+E(xo3zo+ xoz(f‘)},
Ve= Z {Cyozo‘i—E(yano-{“Zoayo)},
where xo, vo, 2o are the Cartesian coordinates of the
electrons of the paramagnetic ion relative to the position

of their nucleus and A4, B, C, E are constants. These
constants are related to our V(I'yl) in (3); V(I'3,2)

(16)

AszppsrotAsjos1o— Asjos1s2
A—(243/9512+4 5/21/2) 0
245125179+ 24 5795172— 2 A 3125172
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application of microwave pulse techniques, the situation
is more complex. In general, all adjacent levels do not
have the same relative population and a spin tempera-
ture does not necessarily exist for the system as a whole.
In such cases we must return to the rate equations and
include the initial conditions explicitly. There will be
three relaxation times and any given population
difference, N, Ny, or Ny, will not decay in a simple
exponential fashion, but as a linear combination of
three exponentials. We can compute these times
by assuming Nay,1 « ¢, Thus, we have from (12),
the secular equation,

Asjom1s2

=0. (15)
)\_2A3/2—>41/2

and V(I';,4) are linear combinations of 4 and B, and
V(T's,2) and V(T'5,4) are linear combinations of C and
E. In order to make a crude estimate of the V(T';,0),
we adopt Van Vleck’s point-charge model for the
crystalline field, representing the surrounding O~ ions
by point charges ee.;. Van Vleck finds, on this model,

A=%eett(18R*—T5R5r2);
B=(175/8)ee.s:RS;
C=¢eosi(—OR™*+15Rrs2);
E=(—35/2)eeq;:R.

(17)

;Comparing (16) and (17) with (3), and taking account

of all normalization factors, we find
V (T'3,2) = 6ee.si{r2)/ R®,
V(D34)=—(5/3)(15)%eecs:{r*)/ R,
V(I'5,2) =4eecsi(r?)/ R?,
V(Ts4)= —2(15)%eecs:(rt)/ R,

Noting that eecst <0, we have V(I'3,2) and V (T'5,2) <0
and V(I';,4) and V(I's,4) >0.

We are now left with the task of estimating the
several parameters in these expressions. Taking the
observed value of R for MgO, we need only two other
quantities, which we take to be eeq:(r?) and the ratio
(r*)/{r*). The first quantity can be estimated by using
Penney and Schlapp’s point-charge expression* for
10Dyg, the static cubic field splitting:

10Dg= — (5/3)eeqt:{r* )R,

(18)

(19)

Setting this equal to the probable experimental values
of 10 000 cm™, we find

eeei(r*) = —26.96a". (20)

An approximate value for (#2)/{r*) can be obtained by
using values for these quantities obtained from free-ion
Hartree-Fock wavefunctions. Unpublished calculations

MW, G. Penney and R. Schlapp, Phys. Rev. 41, 194 (1932);
R. Schlapp and W. G. Penney, ibid. 42, 666 (1932).
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of Freeman and Watson give

Mnz+ Mn'
) 1.5484, 2.026a,?
) 5.513aq 10.872ay! @1)
(/") 0.280a,™2 0.1864,2

The Mn* values are shown since use of these may
partially compensate for the expansion of the wave-
functions upon going from the free ion to the solid.'®
Using (r2)/{r*)=~0.2a,72, we find
V(T‘;;gZ) = — 113)( 104 Cmﬁl,
V(T'3,4)=3.85X10* cm™,
V(I'5,2)=—35.32X10* cm™,
V(Is5,4)=1.08X10* cm™.

(22)

This procedure is, of course, extremely rough and we
expect only an order of magnitude estimate from it.
The V(T';,,l) depend sensitively on the lattice parameter
R, and we have assumed that this quantity remains
unchanged on substitution of Mn for Mg. The un-
certainty in this procedure is at least as great as that
used in estimating the ratio (#2)/(r*). Covalency effects
are expected to play an important role in the determi-
nation of these coefficients, and since even the static
parameter 10Dg has not been calculated accurately,'®
we cannot hope for more than order-of-magnitude
agreement with experiment for the V(I';,/), which are
associated with distortions of the octahedral complex.

With the values of V(I';)l) given by (22), we can
proceed to compute 7 as given by (14). Using p=3.7
g/cmd, v=5X10% cm/sec, we find

1/T1=0.134I1°T sec™, (23)

where H is measured in kilogauss and 7 in degrees
Kelvin. At X band, this implies a 717" product of 1.8
sec deg, which is of the same order of magnitude as the
value 1.6 sec deg recently found by Castle and
Feldman '

VI. COMPARISON OF THE ORBIT-LATTICE
COEFFICIENTS WITH RECENT DIRECT
EXPERIMENTAL MEASUREMENTS

Recently, Watkins and Feher* and Shiren® have
succeeded in measuring the amplitude and sign and
the amplitude and relative sign, respectively, of the
orbit-lattice interaction coefficients for the iron-group
ions in MgO. In particular, they have measured these
coefficients for Mn?t in this host crystal. Our three
parameters V(I'34), V(T'5,2), and V(I's;4) can be
combined into only two independent coefficients, as a
glance at Eq. (9) will show, since certain linear com-
binations of them always occur together. These coeffi-

15 Suggestion by Dr. A. J. Freeman.

16 A. Freeman and R. Watson, Phys. Rev., 120, 1254 (1960);
R. G. Shulman and S. Sugano, Phys. Rev. Letters, 7, 157 (1961).

17 J. G. Castle and D. W. Feldman (to be published).
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cients are designated by the above authors as Gi; and
Gus. They describe the orbit-lattice interaction in a
spin-Hamiltonian notation as S-D-S. The D tensor
is related to the strain by D=Ge, or in the Voigt
notation D;=3_; Guer (4,k=1,2,---,6). In a cubic
material, only two coefficients are independent,
G11(= —2G12) and Gsa. The measured values are:

Watkins and Feher* Shiren®

Gu +1.3 cm™/unit strain +1.4 cm™/unit strain
Gu —0.27 cm™/unit strain F0.28 cm™1/unit strain

(24

It is straightforward to re-express our coefficients in
terms of the G’s. We find '

V6
Guz‘()—{f2 22 Z/} V(F3g4)§

3v/10 )
G44=—( — z)v<r5,,2> (25)
Ve e
+7[2_1 Z“f'a 2 :'V(Psﬂ)»

Using the point-charge results for the V(I';,,[) and our
previous estimates of ¢, >, and >/, we find

Gi11=—1.21 cm™"/unit strain;

. . (26)
G41=0.0782 cm™/unit strain.

The point-charge model appears to give the wrong
sign for these coefficients, and somewhat smaller
magnitudes as well. There is a cancellation in the
expression for G which is sensitive to the (rt)/{s2)
ratio, but not in the expression for Gii. The agreement
of our computed 7'y with experiment occurs because the
relaxation time depends only on the magnitude and
not on the sign of these coefficients.

VII. CONCLUSIONS

The orbit-lattice interaction appears to account
adequately for the relaxation times of S-state ions, in
spite of the relatively long times found experimentally
for these substances. The point-charge model gives
values of the same order of magnitude but of opposite
sign to the experimental orbit-lattice parameters,
indicating that it cannot be taken too seriously in this
type of theory.
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