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The anisotropic Hamiltonian,

II= —s + (Jgat*o lyl*+ Jse lect~re+ Jget*o ter )—"-n1R Zo't g"-
of the linear spin array in the Heisenberg model of magnetism is examined. The eigenstate and the partition
function for the case J,=O are obtained exactly for a finite system and for an infinite system with the aid
of annihilation and creation operators, and the free energy F of the latter is given by

F/EkT =—(1/v-) in{2 coshLE s+IC s+2E,E„cos2co 2C(E—,+E„)cos~+Cs]')dko,

where E,=J,/2kT, E„=J„/2kT, C =mX/k T. The case J,=J„=J,=J is discussed with the aid of a high-
temperature expansion and of analysis of small systems. Specific heats and susceptibilities in special cases:
(i) J,=J„=J, J.-=O, (ii) J,=J, J„=J,=O, (iiir) J,, =J„=O, J,=J)0, (iii, ) J,=J„=O, J,=J&0, (ivr)
J,=J„=J,=J)0, (iv, ) J,=J„=A=J'&0 are compared and it is shown that (i), (iii, ), and (iv, ) have
the characteristic features of the observed parallel susceptibility of an antiferromagnetic substance, (ii) those
of perpendicular susceptibility, and (iiii) and (ivr) those of paramagnetic susceptibility, even though they
have no singularities. The distribution of the zeros of the partition function is also discussed.

1. INTRODUCTION

LOCH' presented a spin-wave theory in the Heisen-
berg model of ferromagnetism. He predicted for

the temperature dependence of the spontaneous rnag-
netization at low temperatures a T'~2 law in cubic crys-
tals. The spin-wave theory was applied also to the
antiferromagnetic case by several authors. '

For a one-dimensional lattice Bethe' developed a
detailed theory of spin waves, and Hulthen' obtained
the exact ground-state energy of a linear antiferromag-
net. The exact partition function and wavefunction,
however, are not yet known. Kasteleijn' introduced an
anisotropy parameter and obtained the discontinuity
of long-range order vs anisotropy. Objections to his
results were raised by several authors. ' ' The one-
dimensional Heisenberg model remains an interesting
problem.

In this paper Kasteleijn's anisotropy is generalized
by introducing three Cartesian components of the
exchange integral J, J„, J„and special cases are
examined. The case J,=O, the opposite limiting case
to the Ising interaction, is treated exactly. The ground
state and the partition function are obtained for a
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finite system taking the end effect into consideration
exactly, and the limit Ã~~ is taken. This is a gen-
eralization and extension of Nambu's work. ' The parti-
tion function of the finite system is given by (2.30),
and that for the infinite system by (2.32). The latter
is similar to the Onsager integral' " in the two-dimen-

sional Ising model. The isotropic case is discussed with

the aid of a high-temperature expansion and of a small

system, X=6.
Thermodynamic properties for special cases of (i)

J.=J„=J, J,=O, (ii) J,=J, J„=J,=O, (iiiq) J,
=J)0, J,=J„=O, (iii,) J,=J(0, J,= J„=O, (ivy) J,
=J,=J,=J)0, (iv,) J,=J„=J,=J(0 are calcu-
lated and compared. It is shown that (i), (iii,), and

(iv, ) have the characteristic features of antiferromag-
netic parallel susceptibility, (ii) those of antiferromag-
netic perpendicular susceptibility, and (iiir) and (ivr)
those of paramagnetic susceptibility, even though they
have no singularities.

It is further shown that the ground-state wavefunc-

tion of (i) is rather similar to that of (iv ) than to that
of (iii,), and that zeros of the partition function in

cases (i), (iii,), and (iv, ) lie on the negative real axis,
while those in cases (iiir) and (ivr) lie on the unit circle
in the complex e'cplanefor a system/=6 (C=snX/kT).
These facts show that J, and J„play as important roles

as negative J, in antiferromagnetism.
Finally, the spontaneous magnetization obtained by

Frank" and Mannari" for the ferromagnetic case is

discussed.
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2. PARTITION FUNCTION

We consider the linear Heisenberg spin lat. t.ice
in which 5= —,. A Born-von Karman cyclic condition
(not the Bethe-Hulthen cyclic condition) is assumed
and the lattice points are labeled l = 1, 2, .V.
X+)—= /. We also assume that X is even. The inter-
action is restricted to nearest-neighbor spins but ani-
sotropy is introduced in the following sense. That is,
denoting the Cartesian component of the Pauli spin
operator of the /th spin by 0-&, o-&", o-&', we introduce the
generalized Heitler-l, ondon type Hamiltonian,

(J)&l &l+1 +Jv&l &l+1 +Js&l &l+1 )
)=1

Here o. ~ and o. are located at the 1th position. 1 is the
two-dimensional unit matrix and X denotes the direct
product of matrices.

It, is well known9 ' that the introduction of the sign
function enables us to express the Heisenberg Hamil-
tonian in terms of sets of anticommuting operators.
However, since the expression where there is anisotropy
and where the end effect is taken into consideration
does not appear elsewhere, we brieQy describe the
derivation.

We introduce sets of anticommuting operators a~~

and a~ with the aid of the sign function p~.

-mSC P ~l*, (2.1)

where J„J„,J, are the Cartesian components of the
exchange integral, m=gp~, g is the g factor, and p~ is
the Bohr magneton. 3C is the external magnetic field
in the s direction. The direction of our spin array may
be in either direction.

The Pauli operator 0.
~ with respect to the /th spin is

expressed as a direct product of 0- and 1.

&l r)'l +&l& Tl"r=1(alt —Ql)) al = 1—2alrr)'l) (2.2)

«~= &X&X Xo'~X X&,
(2.3)«= &X&X Xo'X X&,

0-

0

where

and 'ps'= 0'~~&~.

Let

&l«al y

[&l )a)))5+ f)l))))

[ a,lt.a, 5t+
——0,

zs =a ~a,
[al)a)65+

Hence, (2.1) is transformed to

(2.4)

N—1

H = —
2 {(J~+Jv)[Q (altalpl+al+ltal) —vNaNtal —vNaltaN5+ (J); J)r)[Q (al ah+1 alai+1) vNal aN +vNalaN5

N—1

+J,[p (1—4altal)+4 Q altalal+l&al+l+4aN&aNa&ta&5) —m g X(1 2altal)— (2.6).

a~~ and a~ are the spin deviation operators and the
reference state I0) is the state where all spins point in
the negative s direction. In order to eliminate v~ in the
last end term, we note that"

', (1+vN—)+,'(1 vN)-=1—,
-', (1+vN)-,'(1—vN) =o,

[2(1+vN)5'=k(1+vN)

(2.8)

(1+VN) vN (1+vN) )

(1—vN) vN = —(1—vN).

We can resolve H into two parts by using these
(2 7) projection operators:

~ (1+vN) is a projection on one of the halves of our total
space, and 2(1—vN) is the complementary projection,
that is, where

H =-,'(1+vN)H+-', (1—vN)H

,'(1+vN)H++ ,'(1 -vN)H-—(2.9)

H =
2 {(J)+J)r)[Q (altal+1+al+ltal) aNtal altaN5+ (Jz Jy)[Q (al al+) alai+)) aN a) +a)va)5

-I-J P (1 4al~)al+4—artrrlal
& )

~ ul+))) —m'f'C P (1—2al~rar) (2.10)

"V.Pock, Z. Physik 75, 622 (1932).
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z 1

+J, P (1 4ak—tak+4aitatal~~tal+1)) rkkX—P (1—2alta&), (2.11)

Q~+zt =Qzt) c~+.z= cz.

%le will find the eigenvalues of each of H+ and II separately, and will take into account the effect of the factors
~ (1+ van) and —', (1—kk) by selecting half of the eigenvalues of H+ and half of those of H . The two half sets will
then constitute the full set of eigenvalues of H.

Let
kl 1

Akt ————P alt exp iw ———
g$~~/2 Z=Z QT

(2.12)
1 K —

kI 1
A k=—P a~ exp i7r ————

where
~-I 2N+k =~k ) ~2N+k=~k ~ (2.13)

It is to be noted that the exponent is not 2wik/rV but ~ik/rV. Ak~, Ak make a set of anticommuting operators.
Then we have for JI+ space

(al al+1+al+1 al) a&~al altaÃ Q (E +E )A 2k—1 A2k —1q

N—i N

al al+k aNtal 2 Q k~ A 2k—1 A —2k+1 )
z=l k=1

N—1 X
alai+1 anal= Z Q k A 2k 1A 2kyl)

l=l k=1

(2.14)

X rV N N

al alal+1taE+1 Q Q Q Q ~ (kl k2+kk k4) & A 2k' —1 A 2k9—1A 2k3—1~A 2k' —1)
z=l Q~ k1=1 k2=1 k3=1 k4=1

where 8(k) is the Kronecker 8 function and e= exp(iw/S). Hence,

H+= Ho++Hg+, (2.15)

NI2

»0 Q {L (Jx+Jy) cosR2k 1+2maej(A2k —1 Akk ]+A—2k+1 A —2k+1)

+ (J~ Jy) S1I1M9k k(A 2k—ktA 2k+kt+A 2k~&A kk &)
—2~), (2.16)

J, w —2k

Hk Q 1 4A 2k kA 2k—1+—4 Q Q A 2k' —ltA 2v+1+2kA 2k'' —1tA —2k"+k—2k
2 k=1 Pl k~=~ k«=i

where ~k= 2mk/rV.

In a similar way we have

H—=Ho +Hg —,
iV/2 —1

Ho =(—(J*+J„)cosuo+2mX/AotA„+ g {$—(J,+J~) cosco2k+2mXj(A2ktd, k+A 2k~A 2k)

Jg jv

Hg = ——Q
k 1

+ (J.:=J.„) sin~'k(A 2k~A kt+A. kkA —,.)—2ui3C) +C = ( 1„+.I„) coscoy+2tki3C ]A~-tA~t . (2.17)

rV

1—4A2k'Akk+4 P P A2k tA 2k ~~kA2k'A 2k +2k
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l,et PTk= 3ktA k, then
$7 X

211 Q l~ 2k—1 Q '~' 2ks
j=l k 1 k=1

'+1211' Q Q 3 2k—1-V2k' 1—Q Q 1V2klV2k

Hence

l=l l'=1 k=1 k'=1 k=i k'=&

g (1—2el)=g (1—2.V2k 1)=g (1—2~V2k). (2,.18)

Thus, the projection operator is invariant in the transformation from / space to 0 space.
In the following we treat the case J.=O. When we determine the canonical transformation

s4k NkPk+Vkg ks s4k— QkPk +VkP ks ZE k— l—lks V—k Vks Qk +Vk 1s (2.19)

in such a way that the coeRicient of pktp kt+p kpk vanish, Nk, vk and the Hamiltonian in k subspace are derived
to be

(J,+J„)cos&uk1(~'=-I 1+
2k P '+J„2+2J,J„cos2~k—4mK(J, +J„)coscuk+4m23C2]'"

(J.+J„)coscok1(
21 [1.'+J„'+2J.J„cos2 s —SssSS(J.+1„)sos +4ssSR']'")

K/2
Ho+= E L

—(A+J,) co»2k —1+H2k—17

Hk= [J 2+J„2+2J,J„cos2cuk —4mX(J,+J„)coscok+4m2X2]'"(PktPk+P ktP 1
—1), (k=1, 2 X—1).

Then

(2.20)

(2.21)

Ho is given in a similar way except for the end eRect. Since the expression in the parenthesis in (2.20) is

(0 (1 (i (0 1 1
X~ +~ X~ — X,the eigenvalues and the eigenfunctions of (2.20) are given by

= &LJ '+J„2+2J,J„cos2a&k—4m%(J,+J„)cos~k+4m2Ã2]'", (2.22)

0 "'=I0),
yk(3) —yk(4) —0

4'"'=0"I0), 0 "'=0 'I0), -

(2.23)

(2.24)

(2.25)

where ~0) is the reference state in (pk, p 1) representation.
H2 and H&, end terms in H, , are two-dimensional matrices. Since the terms —(J,+J„)cos&uk for —2lV&k

cancel in the sum, the eigenvalues of H+ are given by

+LJ,2+J„2+2J,J„cos2&v2k 1 4m%(J,—+J„)cos~2k 1+4m2X2js

—LJ,2+J„2+2J,J„cos2a&2k 1—4mX(J +J„)cosa&2k +41Xm)2l2
g+=Q c

k=1 0
(2.26)

whe«p( }»cans the sum of ail (4' ~2) possible combinations. The projection operator -', (1+111)makes us select
as the eigenv»ues of , (1+v&)H+ the sign c—ombinations where the diRerence between the number of + signs and.
—signs has the same parity as 1V/2, We write this selection rule as lV(+) —iV( —) =1V(2(mod 2).
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Similarly
~+LJ,,'-'+ J„'+2J,Jv cos2~ii, —4mX(J, +J„)cos~2k+4m'X']l

w2 —i —LJ,'+J„'+2J,J„cos2&u I, . —4m%(J,+J„)cosa&2k+4m'K']''
A' =+P(J,+Jv) cosa)0 —~~]+ 2

+$-,' (J,+J„)cosa&~ —mX]. (2.27)

The projection operator —', (1—vii) makes us select as the eigenvalues of 2(1—v&)II the sign combinations in
which the sum of the di6erence between the number of + signs and —signs in gi i*'~ ' and half of the difference
of + signs and of —signs in the 0th term and the 1Vth term has the opposite parity to that of X/2. We write this
selection rule schematically as IiT (+) 1V ( —)= 2—1V+—1-(mod 2).

Let
I,/2kT=IC„J„/2kT=K„, mK/kT=C. (2.28)

The partition function Z&& &+ in (2k —1)th subspace is obtained by direct summation of P; i' exp( —E,/kT):

Z~i i ——2'cosh't E '+E„'+2K,Kv cos2coik i 2C(K~+—E„) cosa&2i, i+C']*.

Z2i, (k=1, 2, 1V—1) is given by a similar expression.
Taking the allowable sign combinations due to the projection operator —,'(1+v~) or —', (1—v~), and the end effect

into consideration, we obtain the partition function Z of the anisotropic Hamiltonian of the Heisenberg model
J,=O in the following form.

N/2

Z/-', 2~= g cosh'$E, '+E„'+2E,Ev cos2&v2i i—2C(E,+E„)cos~2i, i+C']'"

N/2

+g sinh'LK, '+K„'+2K,K„cos2~, - —2C(K,+K„)cos~ yC']'&'

N/2 —1

+{g cos (K.+E„'+2E,E„cos2 „—2C(K.+K,) cos .„+C]i)cos (E,+E„—C) cosh(E, +K„+C)
k=1

N/2 —1
—{Q sinh'[E, '+E„'+2E,E„cos2~~i,—2C(E,+E„)cos&o2i+C']'")

In the case of J =J„(E,=E„=E), (2.30) is simplified to
&(sinh(C —E,—E,) sinh(C+E, +K„). (2.30)'

N/2 N/2

Z= i22~{P cosh'(C —2K' cos~2i i)+g sinh'(C —2E cosi02i i)

+$ Q cosh'(C —2E cos~2i)] cosh(C —2E) cosh(C+2IS)

N/2 —1

sinh'(C —2E coscu&q)] sinh(C —2K) sinh(C+2K)). (2.31)

When we take the limit iV —+ ~, we have ~2i~a&2i i, the second and the fourth term of (2.30) cancel, and the
6rst term and the third term become equal, and hence we have

in(X/2) = lim~ „(1/JV) 1n(Z/2~) =— ln cosh LE,'+Kv'+2E jC„cos2&v 2C(E,+E„)cosa&+—C'7'"d~. (2.32)

Free energy S~' is given by —iVkI' in).
This expression is similar to the Onsager integral for the two-dimensional Ising model, '" "
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The free energy F in the case of no magnetic field is

= ln)i =— in{2 coshLE '+E '+2E,K„cos2co]'I'}d&v (2.33)

The magnetization M is given by

C—(E,+E„)cosa&3I 1

17m s o [K,'+K„'+2K K„c os2co —2C(K,+E„)cosa&+C']'t2

X tanhLE, '+E„'+2K,E„cos2~—2C(E,+E„)cos&o+C']'"d~0. (2.34)

The susceptibility y in zero magnetic field is

(E,+E„)'cos'a&

(E E)' sin'&o —tanh(E, '+E '+2K,E„cos2cv)'"
——d(o. (2.35)

(K,'+K„'+2K,K„cos2~)'t2
The internal energy E is given by

E~ kT

kTx 1

1Vm' ~, (K,'+K„'+2K,K„cos2co) cosh'(K, '+K„'+2K,E„cos2&v)

E m p

$K,'+E„'+2E,K„cos2&u—2C(E +E,) cosa&+C']'t2

3. SPECIAL CASES

Xtanh[E, '+E„'+2E,E„cos2co 2C(K,+—K„) cos&u+C']ii'chal. (2.36)

tends to (tanhx x/~x) for large )z~)

In this section we list the thermodynamic quantities
in two special cases of the results in the preceding sec-
tion. k= J/2kT for all cases. =—sin ' =—sin '

(mx~&J)

(3.5)

Free energy:

(i) J.= J„=J, J, =O
(—J~&ma&~J)
(mac &K).

./VkT
kTx

i''Internal energy in zero field (Fig. 1): cosh'(2K cosa&)

= in)i= — lnL2 cosh(C —2E cos&o)]d~ (3 I) Zero-field suscePtibility (Fig. 3):

(3 6)

m/2

tanh (2K cosa&) coscod&u.

Specific heat in zero field (Fig. 2):

cos co

dco.
cosh'(2E costa)

(ii) J,= J, J„=J,=O
(3 2) It is evident that the free energy in zero field, and

hence the zero-field internal energy and the specific
heat are the same as those of the Ising model. " The
magnetization and the susceptibility, however, are not
the same as the Ising model, since the external magnetic

(3 3) field is perpendicular to the easy axis.
Free energy:

Magnetization /Fig. 4(a)]:

M 1
tanh(C —2E cosco)des.

Xm g p

(3 4)

ÃkT

in{2 coshPP+C2 —2EC cosrv]i&2}d~ (3 7)

When the temperature tends to zero, the magnetization
'5 H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252, 263

(1941).



Magnetization LFig. 4(b)$:

'M. 1 (C—E cosa&) tanhLE2+C2 —2EC coscoj'12
—dM.

tV222 2r 2 (E2yC2 2E—C co
(3.8)

N/9 —1

+o=L lI &22t-4-22tj&ivt~0)
k&N/4

When the temperature tends to zero, the magnetization for even 1V/2, or
is expressed by the complete elliptic integrals of the first,

kind K(k) and of the second kind K(k). (4 3')

cV 2 C E2—(EC)'"-
K

JV2N 2r 2C E+C

II+C 2(ItC)'"-
+— E — —. (3.9)

2C E+C

for odd 1V/2. The case J&0 can be treated in a similar
way. The ground state is nondegenerate irrespective of
sign of j. In both cases (j&0 and j&0), when cV is
suAiciently large, summation is replaced by integration
and we have

When C &E, this simplifies to E,/1V~ j~ = —2/ = —0.6366. (4 4)

=——2(—)
—

(
——

~K(
—

) . (3.10)

7ero-field susceptibility (Fig. 3):

he 1 1 tanhE-

Enz' 2 cosh'E E
(3.11)

+2J coscu2k i

4. GROUND STATE

Now we consider the ground state in the case of no
magnetic field.

In case (i) we have from (2.26) and (2.27)

In case (ii) the lowest energy states (with no mag-
netic field) of E+ and of E are the same and the selec-
tion rule of the sign combination shows that the both
states are allowable irrespective of the sign of J and
irrespective of the parity of 1V/2. We, thus, have the
doubly degenerate ground states which are the same as
the Ising model (E/1V

~
j

~

= ——',).
The ground-state wave function in the case (ivy) is

1V +1 fold degenerate and the energy is the same as in
the case (iii), while that in the case (iv, ) is nondegener-
ate. These values of the ground states should be com-
pared with that in case (iv„) obtained by Hulthen,

Eo/1V
I
j

I

= 2 ln2+ —= —0.8863. (4.5)

The ground-state energy in the general J,=O case
is obtained from (2.38) by taking the limit T —+0.

—2J costs~/, l
E+—Q ~

k=1 0
(4 1) Ep 1

(J '+J '+2JJ'„cos2cu)'"du
Ã 2m.

and
+2J cos&u22

~/~ —l —2J cosu21,
E =&j cosco2+ p

k=1 0

= —(1/2r) (J.+J„)E(2(j,j„)'~2/(j,+J„)). (4 6)

Now we consider the ordering property in the ground
state. %e de6ne the ferromagnetic and antiferromag-

«&J cosco~. (4.2) netic long-range order operator by

N/2 X/2

8P (P &2l +P &2l+1 )
iV t-l l=l

The lowest energy state in either X&,
'+ space or in L&"

space is realized by taking the —sign in 0~&0& V/4
and + sign in 1V/4&k~&1V/2 for the case j)0. Sign
of the term with k=iV/4 is optional. Since 1V(+)—1V(—) =0 in E for odd N/2 and in E+ for even 1V/2,
and 1V(+)—1V(—) =1 in E for even 1V/2 and in E+
for odd 1V/2, this selection of signs is allowable, and the
lower energy is given by 2&+ or by E—according as
1V/2 is even or odd. The corresponding eigenfunction
iy either

N/2

2 ~22 ~22)
PT I=i

N/2 X/2

fA = (Q &2L' P 0 2l+1')
l=l

1
~ 22 ~22+%)

(4.7)

(4.8)

+O=L Q &22 it& 22+it]~0)
I &N/4

(4.3) respectively. The expectation value of $2 in the ground
state is 1 and —1 (doubly degenerate) in case (iii2),
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I i I I
Il ' ' X=0.1, ' ' A) 1I1 case (ivI) L(X+ )-nd (I'V —2i)/iY i=0.1, . X in cas 1

fold d g t ].T p

generate), since up and down orie
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of an antiferromagnetic substance. On the ot er an,
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This is a characteristic feature of the observed per-
pendicular susceptibility of an antiferromagnetic su-
stance. The susceptibility for the isotropic case obtained
b Syozi" which can be rewritten as

kTg dc@

)
JVm' ir s cosh'$2IC(1+ cos'oi)'~'j

has been also calculated numerically and shown in
Fig. 3.

It is interesting to note that the suscep i i i ytibilit in
case (i) looks like a parallel susceptibility, since in
both cases (i) and (ii) the spins lie in the xy plane in
the classical picture.

Since the exact solution of the isotropic case is not
'r I. Syozi, Busseiron Kenkyu No. 39, 55 (1951).

et known, the susceptibilities of the 6nite system
/=6 in cases (i), (iiiq), (iii,), (ivy), and (iv, ) have been

Susceptibilities of the finite system %=6 in cases (i),
iiir), and (iii,) are surprisingly close to those of infinite

. It '
hence expected that susceptibilities o

iv ln 1 . 3the system %=6 in cases of (ivy) and (iv„) in ig.
are good approximations for lY —+~.

The magnetization vs magnetic 6eld in several cases
are also compare . il d. It is well known that the magnetiza-

~ ~ ~

tion o t e sing mo ei h I '
del with ferromagnetic interaction,

case llif ) en s 0t d to a step function when the tempera-

magnetization of the Ising model with antiferromagnetic
interaction iii, en sq"'

g t ds to another kind of step function
ic as ach' h h critical field when the temperature is zero.

That is, all spins orient to the direction of e e
3II/Elm=&1, when (mBC( )2~ j'~, while antiferromag-

"The partition function for the system %=6 can be calculated
from (2.31) in case (i), and from the eigenvalues obtaine y
R. Serber fJ. Chem. Phys. 2, 697 (1934)j in case (iv).
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netic short-range order exists, and M/1Vmz=O when

)zzzX) (2)JI (magnetization is zero). The case (i) is
somewhat similar to the above case (iii,). Below the
critical field, however, magnetization decreases gradu-
ally (3.5). The magnetization in case (ii) is also similar,
but is a smooth function (3.9) of the magnetic field
even when the temperature is zero. It is expected that
such cooperative properties, which can be seen only at
T=o in one-dimensional lattice, will be seen up to the
critical temperature and the maximum of specific heat
and the susceptibility will become the singularity in
two- or three-dimensional lattices.

In the above discussion, we have seen that J, and
J„play important roles in antiferromagnetism, as well
as negative J,. Indeed, in the system %=6, the ground-
state wave function of case (iv, ) resembles more
closely that of ('i) than that, of (iii,) (see Appendix).
Moreover, the zeros of the partition function of the
system %=6 in the complex e'~ plane are found to lie
on the unit circle in the cases (iiiz) and (ivz), while
they lie on the negative real axis in the cases (i),
(iii,), and (iv,,). It is highly probable that this is valid
for any )V. This is a generalization of Yang-Lee' s
theorem' to the Heisenberg model.

In the spin-wave theory of Bloch, the fact that the
spontaneous magnetization does not exist in a one-
dimensional system is indicated by the fact that the
integral expressing the magnetization diverges as the
magnetic field tends to zero. A similar divergence
appears in the one-dimensional case also in Dyson's
theory. "The nonexistence of the magnetization, how-
ever, should be accompanied by the vanishing of the
integral expressing the magnetization as shown in our
cases (i) and (ii). The divergence results from use of
Bose statistics.

On the other hand, Frank" and Mannari" obtained
the spontaneous magnetization of a one-dimensional
Heisenberg model of a ferromagnet by using Fermi
statistics. The reason for this will now be considered.
We write the Hamiltonian (2.1) or (2.6) a,s

H =H,+H„+H, "&+H."'+Hx,

where H and H„are the o- — and o.„-dependent part. ,
Hx is the X-dependent part, H, "' is the constant part
and quadratic part of the annihilation and the creation
operators, and II,"& is the quartic part of them. In the
preceding section H,+H„+Hx was diagonalized.
Frank and Mannari's unperturbed Hamiltonian is
H,+H„+H, o& and the unperturbed partition function
can be derived from the results of the preceding section
at once, and their magnetization Mpranr, -Mannari » re
lated to (3.5) by

MpM(C, K) =MK =x„=x,s,=s(C+2K, K. ).

"C.N. Yang and T. D. I.ee, Phys. Rev. 87, 404, 410 (1952).
See also S. Katsura, Progr. Theoret. Phys. (Kyoto) 13, 571 (1955);
16, 589 {1956).

z~ 1'. J. Dyson, Phys, Rev, 102, 1217, 1230 (1956),
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Pro. 5. The entropy as functions of the magnetic
field and the temperature.

Their spontaneous magnetization MpM(O, K) is nothing
but M», x„=Jr,rr, s(2K,K) in (3.4). MpM(C, K) has no
symmetric property: MpM(C, K)N —MpM( —C,K) while
(3.4) has. Even when H, &'& is treated by the perturba-
tion method, this asymmetry cannot be removed. In
the perturbation method, H, o) and H, &'& should be re-
garded as a perturbation as a whole in order to discuss
the spontaneous magnetization.

Vote added irz proof. In the course of publication the
author found that the free energy of infinite system
without magnetic field agrees with the results of E.Lieb,
T. Schultz, and D. Mattis [Ann. Phys. (New York) 16,
407 (1961)g and that the perpendicular susceptibility
agrees with the results of M. E. Fisher LPhysica 26,
618 (1960)j. The author acknowledges helpful corre-
spondences with Dr. D. Mattis and with Dr. M. E.
Fisher.

Pote added izz proof The author a.lso proved that in
the cases (i) and (ii) |see Fig. 5j at the temperature
absolute zero there is neither such an anomalous en-
tropy as shown in the Ising antiferromagnetic case (iii,)
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LJ. E. Brooks and C. Domb, Proc. Roy. Soc. (London)
A207, 343 (1951), J. C. Bonner and M. E. Fisher (pri-
vate communication)$ nor that as shown in the super
exchange antiferromagnet t'M. E. Fisher, Proc. Roy.
Soc. (London) A256, 502 (1960)). That is, S=O at
T=O irrespective of below, at, and above the critical
magnetic field, though S has a maximum nearly at
m3C= J in (i) or at n33C= J)2 in (ii), respectively, at
su%ciently low temperature.
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APPENDIX

The ground state for the system xV=6 in case (i) is
obtained from (4.3 ), and that in case (iv, ) is obtained
by solving (2.6). Here the ground-state wavefunctions
are listed to show the similarity between (i) and (iv.).

4 p (JJ 0) = coll s tA 4 tA 6 "A 3 t
~
0)

1
[3 (al a3 ap a2 a4 a6 )+3 (Ql a4 a6 a2~aptal +aptap~a2 a4 al a3 +a5 a2 a4 a6 a3 a5

V2

aptaptapt+apta4tapt a4taptalt+aptaptapt ap "altapt+a]tapta4 )

+6( alla2tapt+a2tapta4t apta4ta5&+a4&a5&ap& —a5'«'al "+ap'al'ap')jlo) (A1)

7 —2+13
4'p(J, J,J)=const&& A4tAptApt+ AptAptAlpt+

2
1=—(0.676766(altaptapt —ap~a4 tap t)

v2

11—3/13
(A, &A„&A,&+A, tA, tA, t) ~0)

+0.293892 (al ta4 tap t—a3 ta5tal t+ a3 tap tap t a4~al ~apt+ a5 tap ta4 t ap ta3 ~a5~

a2 a3 a5 +a3 a4 a6 a4taptalt+apta6ta2t a6 al a3 +al a2 a4 )

+0 088983(—altaptapt+a2tapta4t apta4tapt+a4taptapt aptaptal &+ap'al'ap'))
l 0)) (J&0). (A2)

The ground-state energies in cases (i) and (iv, ) of the system )V=6 are —2/3= —0.6667 and —(2++13)/6
= —0.9343, which agree with (4.4) and (4.5), respectively, fairly well. The short-range order in cases (i) and (iv, )
of the system /=6 are —0.4444 and —0.6228, which agree with (4.10) and with the value of Orbach, ' respectively,
fairly well.


