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Statistical Mechanics of the Anisotropic Linear Heisenberg Model*
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The anisotropic Hamiltonian,
H=—12(.0f011°+T oo +J.07001%) —mI Zar,

of the linear spin array in the Heisenberg model of magnetism is examined. The eigenstate and the partition
function for the case J,=0 are obtained exactly for a finite system and for an infinite system with the aid
of annihilation and creation operators, and the free energy F of the latter is given by

—F/NET=(1/x) / " In{2 cosh[K 24K >+ 2K K, cos2w—2C(Ks+K,) cosw+C2]}dew,
0

where K,=J,/2kT, K,=J,/2kT, C=m3C/kT. The case J,=J,=J,=J is discussed with the aid of a high-
temperature expansion and of analysis of small systems. Specific heats and susceptibilities in special cases:
() Jo=Jy=J, J:=0, (i) J.= ] Jy=J.=0, (iiif) J.=J,=0, J,=J>0, (i) J.=J,=0, J,=J <0, (ivs)
Jo=Jy=J.,=J>0, (wa) Jo=Ty=J,= J<O are compared and it is shown that (i), (ma), and (iv,) have
the characteristic features of the observed parallel susceptibility of an antiferromagnetic substance, (ii) those
of perpendicular susceptibility, and (iiis) and (iv¢) those of paramagnetic susceptibility, even though they

1.

1962

have no singularities. The distribution of the zeros of the partition function is also discussed.

1. INTRODUCTION

LOCH! presented a spin-wave theory in the Heisen-

berg model of ferromagnetism. He predicted for

the temperature dependence of the spontaneous mag-

netization at low temperatures a 7%/ law in cubic crys-

tals. The spin-wave theory was applied also to the
antiferromagnetic case by several authors.?

For a one-dimensional lattice Bethe® developed a
detailed theory of spin waves, and Hulthén? obtained
the exact ground-state energy of a linear antiferromag-
net. The exact partition function and wavefunction,
however, are not yet known. Kasteleijn® introduced an
anisotropy parameter and obtained the discontinuity
of long-range order vs anisotropy. Objections to his
results were raised by several authors.®—8 The one-
dimensional Heisenberg model remains an interesting
problem.

In this paper Kasteleijn’s anisotropy is generalized
by introducing three Cartesian components of the
exchange integral J., J,, J, and special cases are
examined. The case J,=0, the opposite limiting case
to the Ising interaction, is treated exactly. The ground
state and the partition function are obtained for a
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finite system taking the end effect into consideration
exactly, and the limit NV —oo is taken. This is a gen-
eralization and extension of Nambu’s work.? The parti-
tion function of the finite system is given by (2.30),
and that for the infinite system by (2.32). The latter
is similar to the Onsager integral'®!! in the two-dimen-
sional Ising model. The isotropic case is discussed with
the aid of a high-temperature expansion and of a small
system, N =6.

Thermodynamic properties for special cases of (i)
Jo=J,=J, J,=0, (i) J.=J, J,=J.=0, (iiy) J.
=J>0, J,=J,=0, (iil.) J.=J <0, J.=J,=0, (ivy)) J
=J,=J,=J>0, (iva) J,=J,=J,=J<0 are calcu-
lated and compared. It is shown that (i), (iii.), and
(iva) have the characteristic features of antiferromag-
netic parallel susceptibility, (ii) those of antiferromag-
netic perpendicular susceptibility, and (iiif) and (ivy)
those of paramagnetic susceptibility, even though they
have no singularities.

It is further shown that the ground-state wavefunc-
tion of (i) is rather similar to that of (iv,) than to that
of (iiiy), and that zeros of the partition function in
cases (i), (iiia), and (iva) lie on the negative real axis,
while those in cases (iiig) and (iv) lie on the unit circle
in the complex 2 plane for a system N =6 (C=m3C/kT).
These facts show that J, and J, play as important roles
as negative J, in antiferromagnetism.

Finally, the spontaneous magnetization obtained by
Frank? and Mannari®® for the ferromagnetic case is
discussed.
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2. PARTITION FUNCTION

We consider the linear Heisenberg spin lattice
in which S=%. A Born-von Karmén cyclic.condition
(not the Bethe-Hulthén cyclic condition) is assumed
and the lattice points are labeled /=12 ---N.
N-+I=I. We also assume that N is even. The inter-
action is restricted to nearest-neighbor spins but ani-
sotropy is introduced in the following sense. That is,
denoting the Cartesian component of the Pauli spin
operator of the /th spin by %, 0¥, /%, we introduce the
generalized Heitler-London type Hamiltonian,

N
H=—3%3 (Joolfou"+J ooV +J.0001417)

=1

—m3C % o’ (21)

=1

where J,, J,, J. are the Cartesian components of the
exchange integral, m=gup, g is the g factor, and up is
the Bohr magneton. 3C is the external magnetic field
in the z direction. The direction of our spin array may
be in either direction.

The Pauli operator o; with respect to the /th spin is
expressed as a direct product of o and 1.

O'Zz=0£l1'+al, al?/=i(al'f——al), agf= 1—2a1TOLl, (22)

af=1X1X-+-XalX--- X1,
a=1X1X" - XaX X1,

RN

(2.3)
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Here at and a are located at the /th position. 1 is the
two-dimensional unit matrix and X denotes the direct
product of matrices.

It is well known®" that the introduction of the sign
function enables us to express the Heisenberg Hamil-
tonian in terms of sets of anticommuting operators.
However, since the expression where there is anisotropy
and where the end effect is taken into consideration
does not appear elsewhere, we briefly describe the
derivation.

We introduce sets of anticommuting operators a;f
and q; with the aid of the sign function »;.

v=TI (1=2n,)= (—1)*

m=1
where
-1
=3 tm
m=1
and 7, =ay, fan.
Let
VzOllT= dzT
’ (2.4)
Qv =ai,
then
[alT,a/m]+:6lm, Bom= amTa'm, (25)
[alT,me]_*,—: 07 [dz,dm:]+= 0.

Hence, (2.1) is transformed to

N—1

N—-1
H= —%{ (J;;-l_]y) [ Z (aszz+1+dl+1sz) —vyanta,— VN(thN:]“I‘ (Jz— Jy)[ Z (a/lTa'HdT - alal+1) —wyartayt+ VNalaN]
=1 =1

N—-1

N
+7.[X (1—4ata)+4 2
-

=1

a;' and a; are the spin deviation operators and the
reference state |0) is the state where all spins point in
the negative z direction. In order to eliminate vy in the
last end term, we note that!!

(A4vw)vv= (1+ww),
(1—vy)yvy=—(1—wy).

(2.7)

1 (14vy) is a projection on one of the halves of our total
space, and 3(1—vy) is the complementary projection,
that is,

N
a;TalaHlTaH,l+4aNTaNa1Ta1]} —m lgl 5(3(1 —2al’fal). (26)

(4w +5(1—w) =1,
3(14vw)3(1—vn) =0,
[3(1xwvy) P=3(1=%£wy).
We can resolve H into two parts by using these
projection operators:
H=314vy)H+3i(1—vn)H
=5(4+wH+3(1—vn)H",

(2.8)

(2.9)
where

N-1 N-1
H+=—~H{ (AT )L (alaritamita)—avter—atay ]+ (T~ T)[ X (alarqt—aa) —avtfa’+ayai]
=1

N
“I-Jz z

=1

4V, Fock, Z. Physik 75, 622 (1932).

=1

N
(1 - 4(1,[‘&1“{‘4011'(11&“.1"'(1«144) } —m3IC Z (1 - lelll(lz) (2 1 0)
=1
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and
H=—3[(J+7,) Z (alayatanita)+(Ta—T,) Z (atar ' —aa)
=1

7\7‘
+] Z (1 4alfal+4aﬁalal+ﬂal+1):]—mJCZ (1 2(117\(11), (211)
=1

avyi’=alt, avp=a.

We will find the eigenvalues of each of H+ and H~ separately, and will take into account the effect of the factors
3(14vy) and 3(1—wy) by selecting half of the eigenvalues of H+ and half of those of H—. The two half sets will
then constitute the full set of eigenvalues of H.

Let
1 k1
Apt=—-3" a;t exp[ur(——-~>:l,
N2 o N 4
(2.12)
1 w kL1
Ay=——=2 exl)[~zw<~——):|,
N2 =1 N 4
where
AzN+kTEAkT, A2N+kEA/C. (213)

It is to be noted that the exponent is not 2wik/N but wik/N. At Ax make a set of anticommuting operators.
Then we have for H+ space

N—1 N
2 (@lataate) —avtar—artay= 3 (e ) Ay 11 gy,
=1 k=1
N1 N
Z (I,ﬂdl_;.ﬁ—ajvlfdﬁzi Z €2k—1A 2k_1TA—2k+1T,
P k=1
(2.14)
N—1 N
Z QA 1— AN = —1 Z 6_2k+1A2k—1A~2k+1,
=1 B=1
N N
Z afaarqtary 1—— Z > Z Z 8(k1—kotls— k)24 51, 11 Aok, 1A kg1t A2k,
=1 / ,' k1=1 ko=1 k3=l ks=1
where 6(k) is the Kronecker 8 function and e= exp (ir/N). Hence,
=He+H, (2.15)
N/2
Hi =3 {[—.+T) coswar—12mIC] (A or—11 A ok1F+A_orr1T4A _2511)
B=1

+(Jo—J) sinwar1(Aor1T4_oppat+A_or1d 1) —2m3C}, (2.16)
J. N ek N W
Hit=——% [1*41‘1 s Ao +4— 30 30 AT spyiymd 2k”—1TA~2k”+1-2’°:|’
2 k=1 N k=1k"=1
where wi=2mk/N.
In a similar way we have
H—= H0—+H1_,
N/2—1

[ (] +Jy) COSw0+2m7‘C]A TA n+ Z {[ (II—I—])cosw2k+2m56](AngA2k+/l ngA Zk)
(a7 ) sinwar (At Aot A opd o) —2m3CY [ — (J.4-T,) coswy+2m3CJAnT Ay,  (2.17)

J. N 2% N N
o= —‘“Z [1_4A2kTA2k+4_‘ > A2k'fA~2k'+2kA2k"TA_2k~+21c:l,
2 k=1 N w=t1 k=1
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Let Ny=A4,'4;, then

N N N
2 =2, No1=2, Nu,
1=1 k=1 k=1
N N N N N N
2 X mmr=2, 3, NyaNow_1=23, 2, NaNop.
=1 1'=1 k=1 k'=1 T Rt
Hence
N N N
H (1-2%;)2 H (1—2[\"sz_1)= H (1*‘2‘\%}(). (2.18)
=1 k=1 k=1

Thus, the projection operator is invariant in the transformation from / space to k space.
In the following we treat the case J,=0. When we determine the canonical transformation

Ar=uBstviB_it, Art=wiBit+vBr, v r=ur, v=—v wultvi=1, (2.19)

in such a way that the coefficient of 8,'8_i'+B_18: vanish, u;, v, and the Hamiltonian in & subspace are derived
to be

1 (J 4T ) coswy,
uk2=—<1+ )7
2 [J2+T 2427 T, cos2w,—4m3C(J ;4T ,) coswy—+4m232 ] /2
\ 1( (Js+J,) coswy ) (2.20)
2 [Jz2+]y2+2~]z]y COSZLO};"“/-L'WL:}C (]:c+]!/> COka+4m23C2]1/2 ’

H=[J2+J 2427 T, cos2e,—4m3C(J ,+J,) coswr+4m23C2 12 (8, 18 +B-r 18— 1), (k=1,2---N—1).
Then

N2
H0+"—' Z [—“ (]I‘f‘]y) COSwgk_1+H2k_1]. (221)

k=1

Hy is given in a similar way except for the end effect. Since the expression in the parenthesis in (2.20) is

1 1 . .
(0 1))(( 1)-}-( 1))((0 1)—(1 1>X<1 1), the eigenvalues and the eigenfunctions of (2.20) are given by

)
;k o } = £ [T 24T 2427 oJ , cos2wi—4m3C(J ;4T ) coswp4m25e2 12, (2.22)
&
¢k(l)=,3kTB—leo>1 ¢k<2')= |0>> (223)
A =\, O =0, (2.24)
Y@=B:10), Y ®D=80), (2.25)

where |0) is the reference state in (8;,8_;) representation.
H, and Hy, end terms in Hy~, are two-dimensional matrices. Since the terms — (J,4J,) cosws for 3Nk
cancel in the sum, the eigenvalues of H+ are given by

[T 24T 2427 T, cos2war_1—4m3C(J ,+J ) coswer_1+4m23C2 ]

N2 | — [T 24T 2427 T, cos2wer1—4m3C(J ;4T ) cosway_1+4m?3CY ]
Et=3 ’ (2.26)

=1 0
0
where 3 { } means the sum of all (4¥/?) possible combinations. The projection operator ¥ (14-»y) makes us select

as the eigenvalues of §(1+vy)H* the sign combinations where the difference between the number of + signs and
— signs has the same parity as N/2, We write this selection rule as N (4)—N(—)=N/2(mod 2),
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Similarly
[T 24T 2420 T, c052w0m—Am3C (T 34T ,) coswatdm23cy ]t
w1 | = [T 24T 2427 Ty, cos2war—4m3C(J ,+J ) coswar+4m23C
E-=4[3(,+J,) coswo—m3IC]+ X 0
T=1
O [

+[3(,+J,) cosoy—m3C]. (2.27)

The projection operator %(1—vy) makes us select as the eigenvalues of (1 —vy)H~ the sign combinations in
which the sum of the difference between the number of 4 signs and — signs in Y —1#*¥! and half of the difference
of 4 signs and of — signs in the Oth term and the Nth term has the opposite parity to that of N/2. We write this
selection rule schematically as N(+)—N(—)=3N-+1 (mod 2).

Let

J2kT=K,, J,/2kT=K,, m3C/kT=C. (2.28)
The partition function Zy_1* in (2k—1)th subspace is obtained by direct summation of 3! exp(—E;/kT):
Zog—1t=22 cosh?[ K 2+ K 242K K, cos2ws,_1—2C (K ,+K,) coswar_1-+C% (2.29)

Zoyw(k=1,2, ---N—1) is given by a similar expression.

Taking the allowable sign combinations due to the projection operator 4 (1+wvy) or 3(1—vy), and the end effect
into consideration, we obtain the partition function Z of the anisotropic Hamiltonian of the Heisenberg model
J.=0 in the following form.

N/2

Z/528=3" cosh’[ K2+ K ,*+2K K, cos2we_1— 2C(K ,+K,;) cosway_1+C¥ ]2
jum}

N/2

+]I1 sinh K 2+ K >+ 2K K, cos2wsr_1—2C (K ,+K,) cosway_1+C* ]2
p}

N/2—1

+{ II coshK2+K,*+2K.K, cos2ws,—2C (K .+ K,) coswar+C*]2}cosh(K ,+K,—C) cosh(K,+K,+C)

k=1

N/2—1

—{ II sinh’[K2+K,>+2K.K, cos2ws—2C (K.+K,) cosws,+CZ]12}

k=1
Xsinh(C—K,—K,) sinh(C+K,+K,). (2.30)
In the case of J,=J, (K,=K,=K), (2.30) is simplified to

N/2 N/2
Z=32%(%" cosh?(C—2K coswa_1)+]] sinh*(C—2K coswsi_1)

k=1 k=1

N/2—-1

+[ IT cosh?(C—2K coswsx)] cosh(C—2K) cosh(CH2K)
o}

N/2-1
—[ II sinh2(C—2K coswss) ] sinh(C—2K) sinh(C+2K)}. (2.31)

k=1
When we take the limit NV — o, we have ws™~ws_1, the second and the fourth term of (2.30) cancel, and the
first term and the third term become equal, and hence we have
1 ™
In(\/2)=limy_,(1/N) In(Z/2¥) =—/ In cosh[ K 24K 2+2K K, cos2w—2C (K ,+K,) cosw+C*¥]\?%dw. (2.32)
0

™

Free energy F is given by —NkT InA.
This expression is similar to the Onsager integral for the two-dimensional Ising model -1t
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The free energy I in the case of no magnetic field is

ANISOTRODPIC LINEAR
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I 1 -
———=ln)\=—/ In{2 cosh[K 2+ K ,2+2K .K, cos2w |'?}dw. (2.33)
NkT /o
The magnetization M is given by
M 1, C—(K,+K,) cosw
Nm =)o [K24+K2+2K.K, cos2w—2C (K ,+K,) cosw+C*]/2
Xtanh[ K 24K 242K K, cos2w—2C (K ,+K,) cosw+C*]\%dw. (2.34)
The susceptibility x in zero magnetic field is
kTx 1 "l: (K. +K,)? cos’w
Nm2_7r/; (K2+K 242K K, cos2w) cosh?(K 2K 242K K, cos2w)
(K ,—K,)? sin?w tanh (K 2+K,*+2K K, cos2w)/?
(K 24K 242K K, cos2w)??
The internal energy E is given by
E kT ™
;= - —/ [K2+K 242K K, cos2o—2C(K ,+K,) cosw+C¥]?
I ™
’ Xtanh[ K 24K ,2+2K K, cos2w—2C (K .+ K,) cosw+C?]?dw. (2.36)
3. SPECIAL CASES tends to (tanhx~w/|x| for large |x|)
' In this se‘ction we list the therm‘odynamic qu.antities M/Nm=1, (m3e> J)
in two special cases of the results in the preceding sec-
tion. k=J/2kT for all cases. z ¢ 2 (me
=—sin} — )=—sin7H — |},
T 2K/ = J (3.5)
i) J.=Jy,=J,J.=0
(=J<mie<)
Free energy:
=—1, (m3c < e).
F 1, ., - . )
———~——=ln)\=—/ In[2 cosh(C— 2K cosw)Jdw. (3.1) Zero-field susceptibility (Fig. 3):
NET o ETX 1 7 de
. . — [ (3.6)
Internal energy in zero field (Fig. 1): Nm? 7 Jo cosh?(2K cosw)
E 2 2 (i) J.=J, J,=J.,=0
]—\;z —; [) tanh(2K cosw) coswde. 3.2) It is evident that the free energy in zero field, and
hence the zero-field internal energy and the specific
. . . . heat are the same as those of the Ising model.!® The
Specific heat in zero field (Fig. 2): magnetization and the susceptibility, however, are not
C AR o . the same as the Ising model, since the external magnetic
o cosw do. (3.3) field is perpendicular to the easy axis.
Nk 7 Jo cosh?(2K cosw) Free energy:
F
Magnetization [Fig. 4(a)]: ———=In\
NET
M 1 & 1 T
== / tanh (C—2K cosw)dw. (34) =— / In{2 cosh[ K2+C?—2KC cosw]'?}dw. (3.7)
Nm = Jo m™Jo

When the temperature tends to zero, the magnetization

( 15 H) A. Kramers and G. H. Wannier, Phys. Rev. 60, 252, 263
1941).



1514

Magnetization [Fig. 4(b)]:

SHIGETOSIL!

KATSURA

Nm =

When the temperature tends to zero, the magnetization
is expressed by the complete elliptic integrals of the first
kind K(%) and of the second kind E(%).

M Z{C—KKF%%]

K+C 12(KC)\?
+*———E[———( v)—jl ] (3.9)
2C K+C

2C

Nm =

When C <K, this simplifies to

oA )G oo

Zero-field susceptibility (Fig. 3):

Nm? 2

cosh’K K

kTx 1|: 1 tanhK'J

(3.11)

4. GROUND STATE

Now we consider the ground state in the case of no
magnetic field.
In case (i) we have from (2.26) and (2.27)

+2] COSwWok—1

N/2 | —2J coswar_1
Et=3%" , (4.1)
k=1 0
0
and
+27J coswsr
N/2—1| — 2] coswar,
E-=4J coswo+ > +J coswy. (4.2)
k=1 .

0

The lowest energy state in either K+ space or in £~
space is realized by taking the — sign in 0<A<N/4
and + sign in N/4<k<N/2 for the case J>0. Sign
of the term with k=N/4 is optional. Since N(+)
—N(—)=01in E~ for odd N/2 and in E* for even N/2,
and N(+)—N(—=)=1in E- for even N/2 and in E*
for odd N /2, this selection of signs is allowable, and the
lower energy is given by E* or by £~ according as
N/2 is even or odd. The corresponding eigenfunction
is either

N/2
Vo= TI As-1'4_2r4:11]]0)

k>N /4

(4.3)

M 1 7 (C—K cosw) tanh[ K*-C?*—2KC cosw ]!
/0 [K2+C?—2KC cosw]”

dw. (3.8)

for even N/2, or
N/2—1

Vo= J] Autd_sxi]dnt|0)

E>N /4

(4.3")

for odd N /2. The case J <0 can be treated in a similar
way. The ground state is nondegenerate irrespective of
sign of J. In both cases (/>0 and J <0), when N is
sufficiently large, summation is replaced by integration
and we have

Eo/N|J|=—2/m=—0.6366. (4.4)

In case (ii) the lowest energy states (with no mag-
netic field) of £+ and of E~ are the same and the selec-
tion rule of the sign combination shows that the both
states are allowable irrespective of the sign of J and
irrespective of the parity of N/2. We, thus, have the
doubly degenerate ground states which are the same as
the Ising model (E/N|J|=—1).

The ground-state wave function in the case (ivy) is
N+1 fold degenerate and the energy is the same as in
the case (iii), while that in the case (iv.) is nondegener-
ate. These values of the ground states should be com-
pared with that in case (iv,) obtained by Hulthén,

Eo/N|J|=—21n2+1=—0.8863. (4.5)

The ground-state energy in the general J,=0 case
is obtained from (2.38) by taking the limit 7" — 0.

E 1 ™
—_—=—— (]x2+]y2+2.,z]y €082w) ' 2dw
N 2w Jo

=—1/m)(JAT)EQRT )/ (TAT)).

Now we consider the ordering property in the ground
state. We define the ferromagnetic and antiferromag-
netic long-range order operator by

(4.6)

1 w2 N/2
tr=—0C ouf+Y. ca1®)
N =1 =1
1 N2
=—2 AgitA o, (4-7)
N k=1
and
1 /2 N/2
Ea=—( oof—2 o241
N =1 =1
1
= Z AngA 2k4N s (4—8)

N k=1

respeétively. The expectation value of 7 in the ground
state is 1 and —1 (doubly degenerate) in case (iiiy),
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and (N—2i)/N (i=0.1, ---N) in case (ivy) [(N41)-
fold degenerate]. The expectation value of £4 in the
ground state is 1 and —1 in the case (ili,) (doubly
degenerate), and zero in cases (i) and (iv,) (nonde-
generate), since up and down orientations are equiv-
alent.
As a short-range order we define

1w~

p="=2_ 0T’
N =1

(4.9)

p is the z component of the Hamiltonian multiplied by
—2/J.N. The expectation value of p in the ground
state in case (i) is

2 3w/2 3/2
p=—— / / CcoSs (wl—wg)dwldwg
7 Ja2 S

= —4/n2=—0.4053 (4.10)

for N —w. The corresponding value for the case
(iva) is —0.59 (read from his Fig. 3 in our unit) by
Orbach® and —0.40 by Davis® (read from his Fig. 2).

5. DISCUSSIONS

The thermodynamic quantities derived in the pre-
ceding sections [case (i) and (ii)], together with the
case of Ising model!s (iiif), (iii.), and the isotropic case
(ive), (iva) (by high-temperature series expansions!®)
have been calculated numerically and are shown in
Figs. 1 to 4.

The specific heat in cases (i), (ii), and (iii) has a
maximum though it is not a singularity. The specific

_EO | 2 3_4 5 6 7 8 9 10
No——2—3 4 5 6 7 8 ¢
(RIAUCHN———

\

2r

S
1

[ .

i(Hulthén)

®

1 1 1 ' ! 1

©

Fi1c. 1. Internal energy vs temperature. The ordinate and
abscissa denote E/N |J| and 2kT/|J |, respectively. (i) is Eq.
(3.2); (ii), (iii), and (iiia) are —%tanh |K |.

16 G. S. Rushbrooke and P. J. Wood, Proc. Phys. Soc. (London)
68, 1161 (1955); see C. Domb, Advances in Physics, edited by
N. F. Mott (Taylor and Francis, Ltd., London, 1960), Vol. 9,
p. 329.
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i, fiig fifqy

o 1 2 3 4 5 6 T 8
F16. 2. Specific heat vs temperature. The ordinate and abscissa

denote C/Nk and 2kT/|J |, respectively. (i) is Eq. (3.3); (ii),
(ilif), and (iil,) are K?/cosh?K; (iv) 3K2—6K3—15K4+60K5- - -.

heat in (iiif) and (iii,) is the same, while that in (ivy)
and that in (iv,) differ slightly and may resemble (iii)
in the low-temperature region. The susceptibility in
cases (iiis) and (ivy) starts from infinity and decreases
monotonically as the temperature increases. This is a
characteristic feature of observed paramagnetic sus-
ceptibility. The susceptibility in (i), (iils), and (iva)
starts from zero and has a maximum. This is a char-

13

12

0 1 2 3 4 5 6 T 8

F1c. 3. Susceptibility vs temperature. The ordinate and ab-
scissa denote |J |x/Nm? and 2kT/|J |, respectively. Solid line
shows the exact curves. (i) is Eq. (3.6), (ii) (3.13), (iii)£2Ke*X,

(iv)£2K[1+2K— (8/3)K3+4 (10/3)K*

+(28/5)K5+4(266/15)KS- - -].
+ and — correspond to f and @ cases, respectively. Dashed line
uniting to each solid line shows that of the system N=6 corre-

sponding to respective cases. Dash-dotted line shows that calcu-
lated by Syozi’s result.
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F1c. 4. Magnetization vs magnetic field. The ordinate and abscissa denote M /Nm and m3¢/ |J |. (a) case (i), Eq. (3.4); (b) case (ii),
Eq. (3.10); (c) and (d) cases (iii) and (iiia), sinhC/[sinh?C+-exp(—4K)]"2. The number associated to each curve shows the following

temperature. Bold line indicates the limit curve at 7'=0.

No. tanhK 2kT/T=1/K No. tanhK 20T/ T
1 0.1 9.96655 6 0. 1.44270
2 0.2 4.93261 7 0.7 1.15300
3 0.3 3.23081 8 0.8 0.91024
4 0.4 2.36045 9 0.9 0.67925
5 0.5 1.82048 10 0.9866 0.40000 [only (d)]

acteristic feature of the observed parallel susceptibility
of an antiferromagnetic substance. On the other hand,
the susceptibility in case (ii), perpendicular suscepti-
bility of the anisotropic Heisenberg model with Ising
interaction, starts from finite value and has a maximum.
This is a characteristic feature of the observed per-
pendicular susceptibility of an antiferromagnetic sub-
stance. The susceptibility for the isotropic case obtained
by Syozi,'” which can be rewritten as

ETx 1 pr dos
N2 T/o cosh?[ 2K (1+4cos’w)2]

has been also calculated numerically and shown in
Fig. 3.

It is interesting to note that the susceptibility in
case (i) looks like a parallel susceptibility, since in
both cases (i) and (ii) the spins lie in the xy plane in
the classical picture.

Since the exact solution of the isotropic case is not

17]. Syozi, Busseiron Kenkyu No. 39, 55 (1951).

yet known, the susceptibilities of the finite system
N=6in cases (i), (iiis), (i), (ivs), and (iv.) have been
calculated (dashed line in Fig. 3) and compared.'
Susceptibilities of the finite system N =6 in cases (i),
(ilif), and (iii) are surprisingly close to those of infinite
system. It is, hence, expected that susceptibilities of
the system N=6 in cases of (iv¢) and (iv,) in Fig. 3
are good approximations for NV —co.

The magnetization vs magnetic field in several cases
are also compared. It is well known that the magnetiza-
tion of the Ising model with ferromagnetic interaction,
case (iilf), tends to a step function when the tempera-
ture tends to zero [Fig. 4(d)]. On the other hand, the
magnetization of the Ising model with antiferromagnetic
interaction (iii.) tends to another kind of step function
which has a critical field when the temperature is zero.
That is, all spins orient to the direction of the field,
M/Nm==1, when |m3C|>2|J|, while antiferromag-

18 The partition function for the system N =6 can be calculated
from (2.31) in case (i), and from the eigenvalues obtained by
R. Serber [J. Chem. Phys. 2, 697 (1934)] in case (iv).
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netic short-range order exists, and M/Nm=0 when
|m3c| <2|J| (magnetization is zero). The case (i) is
somewhat similar to the above case (iiiy). Below the
critical field, however, magnetization decreases gradu-
ally (3.5). The magnetization in case (ii) is also similar,
but is a smooth function (3.9) of the magnetic field
even when the temperature is zero. It is expected that
such cooperative properties, which can be seen only at
T=0 in one-dimensional lattice, will be seen up to the
critical temperature and the maximum of specific heat
and the susceptibility will become the singularity in
two- or three-dimensional lattices.

In the above discussion, we have seen that J, and
J, play important roles in antiferromagnetism, as well
as negative J,. Indeed, in the system N =6, the ground-
state wave function of case (iv,) resembles more
closely that of (i) than that of (iii,) (see Appendix).
Moreover, the zeros of the partition function of the
system N=06 in the complex ¢2¢ plane are found to lie
on the unit circle in the cases (iiif) and (ivy), while
they lie on the negative real axis in the cases (i),
(ilia), and (iva). It is highly probable that this is valid
for any N. This is a generalization of Yang-Lee’s
theorem! to the Heisenberg model.

In the spin-wave theory of Bloch, the fact that the
spontaneous magnetization does not exist in a one-
dimensional system is indicated by the fact that the
integral expressing the magnetization diverges as the
magnetic field tends to zero. A similar divergence
appears in the one-dimensional case also in Dyson’s
theory.?® The nonexistence of the magnetization, how-
ever, should be accompanied by the vanishing of the
integral expressing the magnetization as shown in our
cases (i) and (ii). The divergence results from use of
Bose statistics.

On the other hand, Frank'? and Mannari®® obtained
the spontaneous magnetization of a one-dimensional
Heisenberg model of a ferromagnet by using Fermi
statistics. The reason for this will now be considered.
We write the Hamiltonian (2.1) or (2.6) as

H=H,+H,+H,O+H,®+Hs,

where H, and H, are the o,- and o,-dependent part,
Hze is the 3C-dependent part, H,® is the constant part
and quadratic part of the annihilation and the creation
operators, and H,® is the quartic part of them. In the
preceding section H.,4+H,+Hswx was diagonalized.
Frank and Mannari’s unperturbed Hamiltonian is
H,+H,+H." and the unperturbed partition function
can be derived from the results of the preceding section
at once, and their magnetization M prank-Mannari 1S Te-
lated to (3.5) by

Mem(C,K)=Mg,— &,k x~0(C+2K, K).

19C. N. Yang and T. D. Lee, Phys. Rev. 87, 404, 410 (1952).
See also S. Katsura, Progr. Theoret. Phys. (Kyoto) 13, 571 (1955);
16, 589 (1956).

* F. J. Dyson, Phys, Rev, 102, 1217, 1230 (1956),
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tanh K = 0.0

— ]

S/Nk

0.6+

0.5

]
0.5 1.0 1.5
CASE (i)

2.0
m#/J

tanh K = 0.0

—

U 1 T
0.5 1.0 1.5
CASE (ii )

2.0

F16. 5. The entropy as functions of the magnetic
field and the temperature.

Their spontaneous magnetization Mpm(0,K) is nothing
but Mk,—x,—x,x,~0(2K,K) in (3.4). Mem(C,K) has no
symmetric property : M ym(C,K) 5 — M ym(—C,K) while
(3.4) has. Even when H,® is treated by the perturba-
tion method, this asymmetry cannot be removed. In
the perturbation method, H,™ and H,® should be re-
garded as a perturbation as a whole in order to discuss
the spontaneous magnetization.

Note added in proof. In the course of publication the
author found that the free energy of infinite system
without magnetic field agrees with the results of E. Lieb,
T. Schultz, and D. Mattis [Ann. Phys. (New York) 16,
407 (1961)] and that the perpendicular susceptibility
agrees with the results of M. E. Fisher [Physica 26,
618 (1960)]. The author acknowledges helpful corre-
spondences with Dr. D. Mattis and with Dr. M. E.
Fisher.

Note added in proof. The author also proved that in
the cases (i) and (ii) [see Fig. 5] at the temperature
absolute zero there is neither such an anomalous en-
tropy as shown in the Ising antiferromagnetic case (iii,)
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[J. E. Brooks and C. Domb, Proc. Roy. Soc. (London)
A207, 343 (1951), J. C. Bonner and M. E. Fisher (pri-
vate communication)] nor that as shown in the super
exchange antiferromagnet [M. E. Fisher, Proc. Roy.
Soc. (London) A256, 502 (1960)7]. That is, S=0 at
T=0 irrespective of below, at, and above the critical
magnetic field, though § has a maximum nearly at
miC=J in (i) or at m3C=J/2 in (ii), respectively, at
sufficiently low temperature.
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APPENDIX

The ground state for the system N =6 in case (i) is
obtained from (4.3’), and that in case (iv,) is obtained
by solving (2.6). Here the ground-state wavefunctions
are listed to show the similarity between (i) and (iva).

= \/_Z[% (01 faztast—astastas T) +% ((11704 fagt—astastart+astastast—asfartast4-astastast—asfastast

—astas T(laf‘*‘aa fastagt—aq fdﬂdl f4as Taﬁ tayt—astarfast+artazay T)

+%(‘—dlfdzfll:ﬁ“r‘dzfdsj’dﬂ_dsfaﬂdsf“}‘dﬂdsfdef"(laTdsTaLT’f‘asmﬁd?T)] ‘ O>~

1—34/13
A2TA GTA 10T+“"—~—__‘“
4

7—2\/13
‘I/()(],J,])=COnStX|:A4TAGTAgT+—‘——
2

1
= 6[0676766 (d] ng T(l:, f— (12 Ta4 1'(Zﬁ T)

(A1)

(As'fAmT/loT—!-AoTAﬂAﬂ):] |0)

+0.293892 (a1 tastast—astastart+astastast— astar tasTastastast — agtastast

—astastasttastastast—astastarttastastast— agtarfast+astasfast)

~+0.088983 (— a1 tastast+astastast— astastast+astastast— astasiar t+astastast)]] 0),

(J<0). (A2)

The ground-state energies in cases (i) and (iv,) of the system N=6 are —2/3=—0.6667 and — (2++/13)/6
= —0.9343, which agree with (4.4) and (4.5), respectively, fairly well. The short-range order in cases (i) and (iv,)
of the system N =6 are —0.4444 and —0.6228, which agree with (4.10) and with the value of Orbach,® respectively,

fairly well.



