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The oscillatory component of the transverse magnetoresistance of bismuth hasbeen measuredas a function
of magnetic field orientation at liquid helium temperatures. A derivative technique was employed. In
addition to sets of periods, observed in the de Haas-van Alphen effect by Shoenberg and by Brandt and
attributed by them, respectively, to the electron and light-hole Fermi surfaces, we observe a new set of
isotropic short periods, P=0.72X10"5 G™1. The squares of the electron Fermi momenta mo1:%, #oK2e?
moKss?, mokes? are, respectively, 0.189, 45.4, 0.918 and —4.54 m, milli-electron volts (meV). For the light holes,
moxni? and mokss? are 1.51 and 21.0 m meV. For the new heavy carriers, mop?=3.18 m, meV. These data are
fitted to two possible three-carrier models of the Fermi surface, and to a four-carrier model. Significant
deviations of the oscillations from periodicity in A1 are observed for the electron part of the Fermi surface

for certain magnetic field orientations.

I. INTRODUCTION

HE Fermi surface of the semimetal bismuth has
been extensively investigated by means of the
de Haas-van Alphen effect’=® and other measurements
based upon the same quantization condition,”'® by
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F1c. 1. One possible three-carrier model of the complete Fermi
surface in bismuth. The sphere in the center contains heavy holes,
the half-ellipsoids of revolution at the trigonal faces light holes,
and the six similar ellipsoids electrons.

support a model of the electronic part of the Fermi
surface proposed by Jones® and elaborated by Shoen-
berg? and by Blount and Cohen.® In this model, the
electrons lie in several ellipsoidal or quasiellipsoidal®
surfaces located symmetrically about the trigonal axis
in the Brillouin zone (Fig. 1). The long axes of the
surfaces make a small angle with the trigonal plane;
if they are ellipsoids, they are described by the equation

P2 PF P2 bt
P

m33

= 21%0{6 (1)

mi1 Mae ma3

in the coordinate system of the reciprocal lattice, where
the subscripts 1, 2, 3 and =, y,  refer, respectively, to
the binary, bisectrix, and trigonal axes of the rhombo-
hedral lattice. Experiments are generally in agreement
that the electron Fermi energy is (=20 milli-electron
volts (meV), and that me11: mes: mas: mez=~1:240:5: — 24,
The total electron concentration is of the order of 10'7
cm~3. There is conflicting evidence on the multiplicity
of the electron ellipsoids; there are either three or six,
and the exact value of the electron concentration is
likewise unsettled.

The situation with regard to the hole surfaces is still
less satisfactory. Experiments involving the de Haas-
van Alphen effect in pure Bi?%® and in Bi-Te alloys,*
the cyclotron resonance,® and the galvanomagnetic
effects in pure Bi*” on the one hand, and experiments
involving the specific heat®:3¢ and the galvanomagnetic
effects in Bi-Sb alloys?®®” on the other hand, give
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different pictures of the holes. The former group of
experiments supports a model of the hole Fermi surface
consisting of one or two ellipsoids of revolution lying
on the trigonal axis with m*=~0.16 and {~10 meV.
The latter group is more consistent with a picture of
the Fermi surface of similar geometry, but with m*~1.5
and {=~1 meV. This has led to the conjecture that both
the light and the heavy holes exist.

Also of interest is the fact that the results of meas-
urements at certain magnetic field orientations in some
of the de Haas-van Alphen-type experiments do not
fit well into the generally accepted picture of the
electron Fermi surface. This is notably true of the
measurements of the oscillatory components of the
longitudinal magnetoresistance,® the transverse mag-
netoresistance,” and the Hall effect.?

It is the principal purpose of this paper to present
experimental evidence, from the Shubnikov-de Haas
effect, that there are at least three and very likely four
sets of carriers in bismuth. We have employed a
derivative technique to measure dR/dH as a function
of H, where R is the electrical resistance of the sample.
This method is of especial utility in bismuth, as it
removes the extremely large monotonic magneto-
resistance upon which the Shubnikov-de Haas oscil-
lations are superimposed.

II. EXPERIMENTAL
Sample Preparation

Bismuth of nominal 99.9989, purity*® was cut into
chunks of convenient size, heavily etched in nitric acid,
and then washed in a stream of distilled water to remove
most of the nitrate on the surface. The bismuth was
then placed in a clean fused-silica drip-melting boat,
and the boat inserted in the sample tube of a zone
refiner. The bismuth was melted in a vacuum of 10—5-
10=5 torr. The melt was allowed to remain at a tem-
perature of about 400°C for about one-half hour, during
which the zone-refiner tube was agitated to assist
inclusions of insoluble matter in rising to the surface
of the melt. The bismuth was then allowed to drip into
a clean, HF-etched fused-silica zone-refining boat
through a small hole in the bottom of the drip-melting
boat. No scum was observable upon the surface of the
drip-melted bismuth, and none accumulated during
subsequent operations.

The two boats were then separated, using a vacuum
manipulator.®® After being allowed to freeze, the
bismuth was zone refined for 20 passes at a rate of
2 in./h. The boat length was 20 in.; the zone length

varied from % in. (near the middle of each pass) to

heat data of reference 35. However, this value may be obtained
directly from Jain’s data by means of a more detailed calculation
on the Jain model [L. S. Lerner (unpublished)]. The calculation
is based on the fact that the hole-electron effective mass ratio
determines the height of the hump in Jain’s Fig. 8.

38 Obtained from the Cerro de Pasco Corporation.

¥ D. B. Cowie, Rev. Sci. Instr. 15, 46 (1944).
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TABLE I. Minimum detectable impurity.

ppm Substances
(a) By neutron activation analysis
10 Fe, Mg, Ni, Si, Sn
1 Ag, Ba, Cd, Ce, Cr, Mo, Na, Nd, P, Pt, Sr, Te,
TIL, W, Zr
0.1 As, Cl, Co, Cs, Cu, Ge, Hg, K, Mn, Os, Ru, Sb,
Se, Th, Y, Zn, and all rare earths not specifically
mentioned
0.01 Au, Br, Ga, Pd, Rh, Se, Ta, U
0.001 In, Ir, Re, Sm
(b) By spectrographic analysis
0.1 Fe
0.1 Mg
0.1 Si
10 Ni
20 Sn

about 1 in. (near the ends of each pass). The pressure
in the zone refiner was maintained in the range 10~6-
1077 torr during the entire process.

The zone-refined ingot appeared upon etching to
contain two large crystals. Care was taken during
etching and subsequent handling not to subject the
ingot to strains.

A sample was cut from near the middle of the ingot
and subjected to neutron activation analysis.® No
impurity was detected down to the limits of sensitivity
listed in Table I(a).

A second sample from the middle of the ingot was
subjected to spectrographic analysis. No impurity was
detected down to the limits of sensitivity. These limits
are given in Table I(b) for Si, I'e, Mg, Ni, and Sn, the
elements for which the neutron activation method is
less sensitive than 1 part per million (ppm). Ni and
Sn were not detected spectrographically either in the
original material, in the zone-refined ingot, or in the
“dirty” ends of the ingot. For these elements, however,
the sensitivity of both methods is relatively poor.
Reference to the phase diagrams of Bi-Ni and* Bi-Sn
suggests that the segregation coefficient is appreciably
different from unity in both cases, so that Ni and Sn,
if present initially, should be removed efficiently by
zone refining.

We may conclude from these considerations that the
concentration of impurity carriers is small compared
with that of intrinsic carriers.

A large single-crystal piece was cut from the ingot
and was x-ray oriented to within 1°. Rectangular
parallelopipedal samples were cut from it.#2 The final
dimensions of the samples are listed in Table II.

4 The analysis was carried out by a group under the direction
of G. W. Leddicotte at the Oak Ridge National Laboratory, to
whom the author’s thanks are due.

4 M. Hansen, Constitution of Binary Alloys (McGraw-Hill Book
Company, Inc., New York, 1958), 2nd ed.

2 A toothless bandsaw with a 0.004-in. steel blade was used.
The cutting agent was a glycerine-water slurry of 600-mesh
carborundum powder. The samples were etched in a 50-50 nitric

acid-water solution, annealed in silicone oil at 210°C for 24 h, and
lightly etched again.
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Ire. 2. Cryogenic apparatus and sample holder.

The electrical resistivily ratio Z=psoox/ps.20x Was
found to be Z3;=120 and Zy=200, respectively, for
crystals Bi Ia (current and trigonal axis in long direc-
tion) and Bi II (current and bisectrix axis in long
direction).® These ratios are considerably smaller than
those expected for large samples of good purity. The
results of Friedman and Koenig,* however, indicate
that our samples are well into the size-effect region at
‘“‘zero” magnetic field, so that low resistivity ratios are
not necessarily indicative of low purity or excessive
cold working. The rather small anisotropy of the ratios
is consistent with Friedman and Koenig’s observations.
It appears from their work that the size effect is only
about 259 when the thin direction is a bisectrix, as is
the case for our Bi Ia. Friedman and Koenig made
measurements only on samples for which the current
and the trigonal axis were in the long direction. It is
nonetheless to be expected that the size effect be larger
in the orientation exemplified by Bi II. In large crystals,
Zs/Zy is much larger than 200/120.27

TaBLE II. Sample dimensions.

Sample x (mm) y (mm) z (mm)
BiIa 2.17 1.42 12

Bi Ib 217 1.86 12

Bi IT 1.97 23 1.46

% We would like to remark on the danger inherent in the wide-
spread practice of using resistivity ratios as a criterion of purity
in bismuth, due to the very large low-temperature magneto-
resistance. We were able to reduce ps.20x for sample Bi Ib by a
factor of two merely by surrounding the Dewar with a sheet of
f6-in. mu metal. The ambient magnetic field was less than 1 G.
For H2>200 G, the magnetoresistance of Bi Ia at 1.2°K, with
H|2, is p=13H uQ-cm/G. For comparison, the ‘“zero-field” re-
sistivity of Bi Ia is 2 uQ-cm. These crude observations are amply
corroborated by the work of Zitter (reference 27).

#4 A N. Friedman and S. H. Koenig, IBM J. Research Develop.
4, 158 (1960).
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Cryostat System and Magnet

Figure 2 is a schematic diagram of the cryostat used
in the experiment. The sample is mounted on the
bakelite holder with rubber cement in such a way that
it is coaxial with the center of rotation of the cryostat
cover and lies at the center of the magnetic field.
Current and potential leads are soldered onto the
sample with Cerroseal 35 low-melting-point solder. The
distance between the potential leads is approximately
one-third the sample length.

The magnet is a 12-in. Varian electromagnet with
pole pieces tapered to 5 in. and a pole gap of 23 in.
The range of magnetic field is 70-15400 G. Two pairs
of modulation coils are mounted on the pole pieces,
one for small modulation fields and the other for large
ones.

Detection System

Tigure 3 is a block diagram of the electronic ap-
paratus. The variable resistor is large enough so that
the current flow through the bismuth sample, set at
20-100 mA, is nearly independent of the resistance of

TasiLE III. Summary of data.

X-Y plane
¥ (deg) Class of data ~ Magnetic field range®
90 (binary) v LH
873 v L
85 v LH
823 v L
80 III LH
75 ITI LH
70 III LH
65 II LH
623 II L
60 (bisectrix) II LH
II L
55 III LH
50 II LH
45 11 LH
40 III1 LH
35 13% LH
32% v L
30 (binary) v LH
6 (deg)
90 (binary) v L
85 IV H
80 v LH
75 ITor IV n
70 II LH
65 II LH
60 II LH
55 1T LH
50 II LH
45 III LH
40 II1 LH
35 II LH
30 111 LH
25 111 L
20 I L
15 I LH
10 I L
5 1 H
0 (trigonal) I LH

a L:70-4500 G; H: 70-15400 G.
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F16. 3 Block diagram of the electronic apparatus.

the sample. The dc magnetic field H is varied smoothly
within the range of the magnet.

An ac signal at 16.7 or 100 cps, applied to the modu-
lation coils, superimposes a small ripple AH (=1-5 G)
upon the field H. An ac signal is thus induced at the
transformer secondary which is proportional to
[Ap/AH ]y, where p is the resistivity of the sample.
The ratio of transformer input impedance to the sample
impedance is never less than 10 at maximum H, and is
greater for smaller magnetic fields, so that little
current is drawn from the sample.

The ac signal is amplified by a narrow-bandpass
train of straightforward design, and fed to the ¥ input
of an X-Y recorder.

The X input of the recorder is furnished by a Hall
magnetometer, the sensitive element of which is an
InAs Halltron.® The Hall magnetometer is calibrated
and checked periodically during the course of each
experimental run by means of a proton-Li’ nuclear
resonance magnetometer, and is linear within 0.1%, in
the field range of interest.

The output of the Hall magnetometer is fed to the
recorder through an integrator, whose purpose is to
introduce into the X-input channel a delay time equal
to the delay time in the YV-input channel. This makes it
possible to sweep the magnetic field rapidly without
introducing delay-time errors. Experimental checks at
various sweep rates showed that at the fastest sweep
rate used, no such errors were observable.

Experimental Details

Preliminary runs at a few orientations were made in
Bi Ia and Bi Ib in order to check reproducibility of data
from sample to sample. The latter sample exhibited
Shubnikov-de Haas oscillations of slightly greater
amplitude. This may have been due to a small drift
in the gain of the amplifier or to a difference in the
state of internal strain between the two samples.

4 Model HR-31,

manufactured by Ohio Semiconductors
Corporation.
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However, there was no observable difference in the
periods. Further measurements were all made upon
Bi Ib and Bi II. These samples were cycled several
times each between room temperature and 1.2°K.
Aside from a small decrease in oscillation amplitude
from the first run to the second the data were com-
pletely reproducible from run to run.

Observations made at several magnetic field orien-
tations distributed all around the X-Y plane (Bi Ib)
and the X-Z plane (Bi II) were in accordance with the
expected trigonal symmetry in the former and binary
symmetry in the latter. The detailed analysis was,
therefore, restricted to magnetic field orientations in
one sextant of the X-Y plane, and in one quadrant of
the X-Z plane.

Observations were made at 4.2 and 1.22°K. As
expected, the amplitude of the oscillations was con-
siderably greater at the lower temperature, and, as we
shall see, certain sets of oscillations visible at the lower
temperature were completely absent at the higher.
The absolute noise level was somewhat lower at 1.22°K,
presumably due to the absence below the \ point of
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agitation of the sample due to bubbling in the liquid
helium.

No differences pertinent to the analysis of the
Shubnikov-de Haas effect were apparent upon changing
the magnetic field modulation frequency from 16.7 to
100 cps.*® As the absolute noise level was slightly lower
at 16.7 cps, most measurements were made at this
frequency.

III. RESULTS AND ANALYSIS

Experimental runs were made at the magnetic field
orientations shown in the first column of Table III.
Two types of sweep were employed ; one over the entire
magnetic field range at a rate of about 35 G/sec, and
the other over the range 70-4500 G at a rate of about
10 G/sec, using an expanded magnetometer scale. This
latter procedure makes possible more accurate meas-
urements of the low-field oscillations. The type of
sweep employed at each orientation is given in the third
column of Table ITI. Four full-range runs are shown in
Figs. 4(a), 5(a), 6(a), and 7(a). The first two are

4 Large single peaks about 35 G wide have been observed at
100 cps, of amplitude comparable to or larger than the oscillations,
and superimposed upon them. These peaks appear to persist to
higher temperatures than the oscillations, and are invariant under
reversal of both H and the current 7. Up to three peaks have been
observed between 0-15 kG, depending upon orientation. The field
H* at which a peak is seen is / dependent; each peak obeys the
empirical relation H*=/ho+cI™!, where 7, is the same constant
for all peaks seen at a given field orientation, and ¢ is a constant
for each peak. This phenomenon has also been observed in zone-
leveled Bi-Sn alloys containing up to 0.1 wt%, Sn.
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typical of runs in magnetic field directions where only
one period is apparent, and beating effects are absent
or negligible. Fig. 5(a) depicts the smallest signal-to-
noise ratio encountered in the experiment. The oscil-
lation amplitude is very small because, as we shall see
below, these oscillations arise from a group of heavy
carriers. Fig. 6(a) is typical of field orientations where
beating occurs, but a reliable sorting-out of periods is
possible in the later analysis. Fig. 7(a) is typical of
field orientations in which beating produces effects so
complicated that the meaningfulness of at least some
of the individual periods extracted in the analysis is
open to considerable doubt. These three sorts of data
are called class I, class II, and class III, respectively.
A fourth class of orientations, class IV, is typified by
Fig. 8(a). The class IV oscillations possess the general
characteristics of either class I or II, but also have
properties associated with the peculiar line shape
evident upon inspection of Fig. 8(a). We will discuss

o 15kG

F16. 6. (a) Differential r
Shubnikov-de Haas os-
cillations for y¥=65°.
(b) Plot of reciprocal
field values of the
maxima and minima of
Fig. 6(a) against suc-
cessive half-integers.

X-Y Plane 65°
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1 1 1 1
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LM xio®
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H—>

(@)
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e x10°

(b)

Tic. 7. (a) Differential Shubnikov-de Haas oscillations for
6=350°. (b) Plot of reciprocal field values of the maxima and
minima of Fig. 7(a) against successive half-integers.

the class IV oscillations in detail later. The assignment
of the various field orientations into the above four
classes is given in the second column of Table III.

For each magnetic field orientation, the H values
and the corresponding H—' values of the oscillation
maxima and minima were computed from the Hall
magnetometer calibration curve. These H™! values
were then plotted against successive half-integers, as
in Figs. 4(b), 5(b), 6(b), 7(b), and 8(b). The oscillations
periodic in various values of H~! were separated, when
possible, by observing the breaks in the lines. The
slopes A(H™) of the straight segments are plotted as a
function of magnetic field orientation in Fig. 9. For
comparison, Shoenberg’s data? are shown as crosses.
That his values lie slightly above ours is presumably
due to a difference in impurity content. As was men-
tioned above, in the class IIT directions the ratio of the
periods of two or more oscillatory components of similar
amplitude is such that very complicated beating results.
The computed periods may, therefore, be greatly in
error or spurious. This is usually true only over part
of the magnetic field range. Such doubtful periods are
plotted as dashed points in Fig. 9. In the case of certain
orientations [e.g., that of Fig. 6(a)], long periods can
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be extracted from the beats. This is an especially
reliable procedure where the long periods are close to
integral multiples of the shorter ones. The long periods
for ¢=>50°, 574°, 60°, 623°, and 65° are of this sort.

IV. DISCUSSION
General Remarks

The period A(H™) of the de Haas-van Alphen
oscillations is equal to ek/cA, where A is the extremal
cross-sectional area normal to the magnetic field of a
piece of Fermi surface in k space.” For an ellipsoidal
Fermi surface,

Aij=7r7%QK-;K]- (2)

in the principal axis system. Here x; and «; are propor-
tional to the carrier Fermi momenta in the mutually
perpendicular ¢ and j directions normal to H, and

Ki 2= 2m; j5C. 3

The symbols g, m; ;, and { stand, respectively, for the
free electron mass, the carrier effective mass ratio in
the 7 or j direction, and the Fermi energy, measured
from the band edge and taken positive, as usual. If
there are several pieces of Fermi surface, as is the case
in bismuth, the observed oscillations will usually be a
composite of the individual components.

4 A. H. Kahn and H. P. R. Frederikse, in Solid State Plysics

edited by F. Seitz and D. Turnbull (Academic Press Inc., New
York, 1959), Vol. 9, p. 257,
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The theory of the de Haas-van Alphen-like oscil-
lations in other properties (including transverse mag-
netoresistance) has not achieved the same state of
sophistication as that for the susceptibility oscillations.
However, there is ample experimental'®4” and theo-
retical?” evidence that these oscillations also are periodic
in A(Hy)=eh/cAq;. We find this to be the case for all
our experimental data except for the class IV points.

The Electron Fermi Surface

According to the three- or six-ellipsoid model, the
angular dependence of the periods associated with the
electron surfaces of bismuth is given in the coordinate
system of the reciprocal lattice by the expressions

H | trigonal (X-Y plane)
Py, = (eh/vc) (k1® cos’P—+«s? sinf)?,

and two similar expressions differing in phase from Eq.
(4a) by 460°, and

H 1_bisectrix (X-Z plane)

(4a)

Py, = (eli/vc) (ks? cos’0+«,? sin?6)¥,  (4b)
eh K2+ 3ko?
Py, = ~<K32 cos?0 + — sin%@
vC 4

EH
+V3k4? sinf cosO) ,  (4¢)

where

v2=Imek (ks —K4).

(4d)

In the above expressions, ¢ is measured from a binary
axis, and @ from the trigonal axis. We follow the con-
vention of using ki, ks, k3, and k4 as abbreviations for
the momentum tensor components ki1, k22, K33, k23,
respectively.®® The parameter x4 results from the fact
that the electron ellipsoids are slightly tilted out of the
X-Y plane.

T T T T T T T T T T T T

(67)x10°
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PR SR ET ST T R '
30° 60° 90° 60° 30° 0°
binary bisectrix binary trigonal

Magnetic Field Orientation

F16. 9. Shubnikov-de Haas periods as a function of magnetic
field orientation. Solid curves are the best fit of the ellipsoid model
for the electrons. The dashed line traces part of the light-hole
ellipsoid. Circles are electron periods, full triangles light-hole
periods, open triangles heavy-carrier periods. Squares are un-
explained. Crosses are Shoenberg’s data. Dashed points are
uncertain.

48 All other components are zero,
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We may now in principle adjust the &; in order to
obtain the best fit to the circles in Fig. 9. Unfortunately,
even to determine the shape of the electron surfaces
(i.e., the anisotropy of the Fermi momentum) from our
data is an inaccurate process. This is because the periods
associated with the electron surfaces are inaccurate for
the class IV oscillations near the binary axis, since they
are not strictly periodic in H™!, and the oscillations
observed for H near the trigonal axis are not associated
with the electrons. These facts interfere with a deter-
mination of x; and «s, and since the effect of the “tilt
parameter” k4 is largest for H near the trigonal axis, it,
too, cannot be accurately determined from our data.

Since we are unable to derive the «; directly from the
data, we proceed as follows. From Eq. (3) we see that
the «; can be found if we know the m,; and ¢.. Fortu-
nately, cyclotron resonance experiments furnish us with
reliable electron effective mass data. We adopt the
values given by Aubrey'®: m;=0.00495, m.=1.19,
m3=0.024, ms=—0.119. These values are in good
agreement with those of Kao,??# obtained at higher
frequencies. We are still at liberty to adjust the Fermi
energy in order to obtain the best fit to our experimental
data. If we fix . at 19.1 meV we obtain the solid curves
of Fig. 9, with principal periods P,=0.51X10-% G,
P,=7.89X10"% G, P,=1.12X1075 G~'. With a few
exceptions, most of which are class III or class IV
points, the experimental circles fit the curves quite well.
The points in the X-Z plane tend to fall somewhat
below the curves. This may be accounted for by a
misalignment of the crystal of 0.2°. Our best values of
the k2 are listed in Table V. The closeness of our
periods to the curves at all field orientations is indicative
of the agreement of our measurement of the amsotropy
of the Fermi surface with Aubrey’s.

Our value of {, agrees well with that of Shoenberg
and Uddin,! who give {,=17.7 meV. We estimate our
error to be +59%,. Shoenberg and Uddin quote an
internal error of 29. If, however, we include the effect
of impurities, it is reasonable to assume that their
error is also of the order of 5%.

The above argument is based upon the assumption
that the electron Fermi surfaces are ellipsoidal in shape,
and that the bands are parabolic, i.e., that the m, are
independent of energy near the Fermi level. If this is
not the case, {, is not the true Fermi energy. Weiner’s
experiments in Bi-Te alloys,* as well as infrared mag-
netoreflection experiments,®-% indicate that deviation
from parabolicity must be taken into account. Con-
sistency of results with theory is achieved by Weiner’s
employing case A of the Cohen model.** Using the same
model, we can calculate the value of the true Fermi

¥Y. H. Kao (private communication).

% R. J. Keyes, S. Zwerdling, S. Foner, H. H. Kolm, and B. Lax,
Phys. Rev. 104, 1804 (1956).

% R. N. Brown, J. G. Mavroides, M. S. Dresselhaus, and B.
Lax, in The Fermi Surface, edited by W. A. Harrison and M. B.
Webb (John Wiley & Sons, Inc., New York, 1960), pp. 203-209,
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cnergy 1. We have
"I=§'e+ (6/2){[(2§9/€)2+1];—1}7 (5)

where e=46 meV is* a parameter related to a small
energy gap located near the Fermi level. It is identical
to Weiner’s E,/\. Inserting our value of {, into Eq. (5),
we obtain 7=26.0 meV, compared with Weiner’s value
7=22 meV.

We now calculate the number of electrons per
ellipsoid. For the parabolic-ellipsoidal model,

= (8/313)motky (kors2— k4. (6)

Inserting our experimental values, we obtain #z,=1.01
X107 cm~3 ellipsoid—. For the ellipsoidal-nonparabolic
model discussed above, the number of electrons per
ellipsoid is

n=n.{1+1/5)L(/E,)/ (A+n/E,) 1} (7)

Here E, is the only energy gap near the bottom of the
conduction band comparable in magnitude to the Fermi
energy. It is identical to Weiner’s £,.* Wolff*? has esti-
mated that £,=42 meV. Hence, n,/=1.09X 107 cm™-
ellipsoid—t. This is the value which we shall use in what
follows.

The Light-Hole Fermi Surface

According to the theory of the de Haas-van Alphen
effect,® the amplitude of the oscillations is proportional
to exp[ —mkm*c(T+AT)/ehH . Here AT is an effective
temperature related to the collision time. Calculation
shows that it is to be expected that no oscillations
arising from carriers heavier than the electrons were
observed until measurements were made at adiabatic
demagnetization temperatures.®®

No such complete theory exists for the oscillations
in the transport properties. The quantitative behavior
of the amplitude dependence is quite different than that
for the susceptibility, and must depend upon the
magnetoconductivity tensors o(H,j) associated with
the various carriers.

TaBLE IV. Oscillation periods in transport experiments,
H||trigonal axis.

Experiment Period (G™)X105

Longitudinal magnetoresistance?®
Longitudinal magnetoresistance® 1.6

Longitudinal magnetoresistance® 1.5
Longitudinal magnetoresistanced 1.57

Hall effect® 1.5

Hall effect® 1.6
Present work 1.544-0.02

& See reference 8.

b See reference 11.

¢S, Tanuma (private communication).
d See reference 7.

© See reference 9.

32 P. Wolff (unpublished).
58 E. H. Sondheimer and A. H, Wilson, Proc. Roy. Soc. (London)
A210, 173 (1951),
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We now turn to the experimental data. The oscil-
lation periods observed in various transport experiments
with H parallel to the trigonal axis are summarized in
Table IV. These periods are in close mutual agreement
and, moreover, correspond to the de Haas-van Alphen
periods observed by Brandt et al.® and attributed by
them to the light holes. Why the light holes should be
observed near the trigonal axis to the exclusion of the
electrons in the transport effects and not at all in the
susceptibility at 1.22°K, we cannot at present explain.
We also observe periods of 1.53X1075 G at §=35°,
1.52X10-° Gtat 6=10°,and 1.51X10-5 Gt at §=15°.
The experimental uncertainty is only £0.02)X10-° G~
That these periods (the full triangles in Fig. 9) are in-
deed due to the light holes may be argued as follows:

(a) The data are of class I, and hence the A(H™)
are known with high accuracy. The periods are too
large to be the electron periods expected on the basis
of the Shoenberg model (1.2)X10~% G™2).

(b) Three branches of the electron-period curves
converge for H parallel to the trigonal axis. They are
quite close together over the entire 15° range in which
we observe the oscillations in question. If the electron
periods were at all observable, all three branches would
be seen with about equal amplitudes, and very com-
plicated (class IIT) beating would be observed. This
is not the case. We note, however, that the low-field
(high H') points in Fig. 4(b) do show more deviation
from the straight-line behavior than the points at higher
fields. This suggests the possibility that at low fields
the electrons make a sufficient contribution to the
oscillations to produce beating against the light-hole
oscillations and to distort the measured hole periods.

(c) At low magnetic fields,”” Ap« H2. We observe
that at high magnetic fields p= H. We call this the
high-field range. At intermediate fields, p o« H? where
1<p<2. Whatever the detailed conditions for tran-
sition from one range to another may be, they must be
of the form w=¢eH/m*c=x, where m* is an appropriate
effective mass and x is some characteristic parameter.
If we assume that the transition conditions (i.e., the
values of x) are not very different for the different
types of carriers in bismuth, it follows that the tran-
sitions will occur at higher magnetic fields for carriers
of larger effective masses.

We compare Fig. 4(a), which, we argue, depicts
dominant light-hole periods, with Fig. 6(a) (dominant
electron periods). Ignoring the oscillations, we note
that the high-field range begins in the former at higher
magnetic fields (=4200 G) than in the latter (=2000
G). This is to be expected in the light of the argument
we have just made since, as we will see, the light holes
are heavier than the electrons.

We cannot follow these light-hole oscillations beyond
15° from the trigonal axis. Let us assume nevertheless
that the light-hole Fermi surface is an ellipsoid of
revolution with its axis in the trigonal direction and an
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areal ratio 419/ A23=3.74, or an axial ratio k3*/k:*= 14.0.
These values are calculated from the de Haas-van
Alphen results of Brandt ef al.,!® who give m,=m,=0.05,
my=0.7. It is interesting to note that while the effective
masses of Galt et al.® (mi=m:=0.068, m;=0.935)
differ considerably from those of Brandt et al., their
ratios A2/ A23=23.72 and m3/m;=13.8 are in excellent
agreement. Complete agreement of the two sets of
effective masses may be obtained by altering Brandt’s
Fermi energy {3 from 16 meV to 11.8 meV. Brandt
et al. obtain the effective masses, and hence the Fermi
energy, from the temperature dependence of the
oscillation amplitude. At adiabatic demagnetization
temperatures, high accuracy is very difficult to obtain.

Using our value of 4, and Brandt’s areal ratio, and
employing the expression

8 . 8 . Ao
np=—— Mo’z = A12?( ), (8)
3n 3rin? Ao

we may now calculate the number of light holes per
ellipsoid. We obtain 7,=3.47X10" cm™ ellipsoid—.
The most reliable value of the light-hole Fermi energy
¢» may be obtained from our x> and the cyclotron
masses of Galt ef al., using the definition of . These
values yield {,=11.1 meV, in good agreement with the
value 11.8 meV obtained above by a comparison of the
cyclotron resonance results with the de Haas-van
Alphen results of Brandt et al.

The Isotropic Fast Oscillations

We now discuss the open triangles of Fig. 9. The
period is in each case (except for two of the three dashed
points) within 109, of 0.72)X10-5 G~ These fast
oscillations are either associated with an as yet un-
observed feature of the electron or the light-hole Fermi
surface, or else are associated with another piece of
Fermi surface which is spherical within £=10%,. If the
former is the case, the distortion of the electron or
light-hole Fermi surface must take the form of a bulge
of approximately spherical shape, since the oscillations
in question have the smallest period which we observe,
and must therefore be associated with a large cross-
sectional area 4. Brandt® observes no such deviation
from ellipsoidal form in the light-hole surface. We have
been unable to devise a Fermi surface geometry con-
sistent both with Brandt’s observations and with our
fast oscillations. There is indeed experimental evidence
for a deviation of the electron surface from ellipsoidal
form, but this deviation takes the form of a slight
constriction of the waist of the surfaces (see Fig. 1)
rather than a bulge. If there were a bulge, it would
result in the absence of the large periods which Shoen-
berg and we observe in the region of the bisectrix axis
(Fig. 9).

We are thus left with the alternative that the fast
oscillations are associated with a separate (and spheri-
cal) piece of Fermi surface. We argue that this piece of



SHUBNIKOV-DE

F16. 10. Log-log plot of Fig. 5
8(b). The integers are the ordi-
nal numbers of the oscillations
starting at small H™'. They
have been chosen so as to make
the maxima and minima fall on
straight-line plots.

Lottt 11

Integers

/'lllll'lll

50 100
/e x10°

Fermi surface contains heavy carriers on the grounds
that:

(a) The fast oscillations are not visible at 4.2°K.
This rapid disappearance of the oscillations with rising
temperature is suggestive of a large effective mass.

(b) The amplitude of the fast oscillations at 1.22°K
is two orders of magnitude smaller than that of the
oscillations associated with electrons or light holes.

(c) At magnetic field orientations where the fast
oscillations dominate (e.g., 6=20° see Fig. 5) the
magnetoresistance enters the high-field range at
approximately 12 000 G, a field very much larger than
is the case for the orientations where the electrons or
light holes dominate.

For a spherical Fermi surface, A.=mmo*=eh/cP.
Using this expression and the value Pp=0.72X10-5
G~ yields a heavy carrier concentration 7y = 2.88X 10"
cm~? ellipsoid~. Here the subscript H refers to the
heavy carriers.

The Class IV Points

We now discuss the class IV oscillations in more
detail. Reference to Table III shows that they occur
within about 123° of the binary axis. Figure 8 is typical
of class IV. Discounting the small jog at approximately
14 000 G, which may be attributable to spin splitting,
we see that the trace possesses two anomalous charac-
teristics. First, the line shape develops a marked asym-
metry at high fields. Second, there is a smooth and
marked deviation from the periodicity in H— charac-
teristic of de Haas-van Alphen oscillations. This
phenomenon has been noted by Babiskin in the longi-
tudinal magnetoresistance® and by Tanuma in the
transverse magnetoresistance.%

By making trial log-log plots of Fig. 8(b), we can
indeed show that the oscillations of Fig. 8(a) constitute
a complete set, i.e., that no more oscillations of this
group would be observed if we could go to higher fields.
Note that the straight line in Fig. 10 is achieved by
assigning to the highest field oscillation the ordinal
number one. This conclusion is borne out by inspection
of Babiskin’s Fig. 5, which traces the longitudinal
magnetoresistance up to 60 kG. The complete theory
of the de Haas-van Alphen effect predicts deviation

5 S. Tanuma (private communication).
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from the simple periodic behavior for the one or two
oscillations nearest the high-field limit, and the previ-
ously observed deviations have been qualitatively
ascribed to this effect. Our data, however, show that
the deviation from simple behavior is observable for at
least seven oscillations from the high-field limit, so
that it is not possible to explain the deviation on the
basis of de Haas-van Alphen theory. The deviation has
not been observed in the de Haas-van Alphen effect,
but detailed observations have not been made near
the binary axis. Also, the peculiar line shape which we
observe would tend to be emphasized by a derivative
technique. A fairly detailed theory of the Shubnikov-
de Haas effect will probably be necessary for an under-
standing of the class IV data. We can see from Fig. 10
that the maxima are periodic in H~'? and the minima
in H'# for H along the binary axis. The exponent
appears to approach —1 as the angle between the field
and the binary axis increases; unfortunately, the
presence of beats for off-binary orientations makes a
more precise statement impossible.

The five points in Fig. 9 marked as squares do not
fit into any model of the Fermi surface so far proposed,
nor do they offer sufficient basis for postulating another
piece of Fermi surface. Nevertheless, we have not been
able to show that they are spurious periods produced
by beating effects. We offer no explanation for them.

The Complete Fermi Surface

We have now determined #» for each of the three
types of carriers. By requiring over-all electrical
neutrality and assuming that there are no other types
of carriers, we may deduce the multiplicities ¢ of the
three partial Fermi surfaces. On the basis of this pro-
cedure, we will deduce two possible three-carrier
models.

The existence of the third set of carriers makes it
possible to account for the large values reported for the
carrier specific heat v.5%3% The light-electron-and-light-
hole models heretofore proposed fail to do so.

From a value of v, we may deduce the heavy carrier
effective mass and Fermi energy for each of the two
three-carrier models. As the two published values of y
are at variance, we shall be obliged to discuss them at
some length.

On the basis of his very accurate galvanomagnetic
measurements, Zitter?” has proposed a model of the
Fermi surface which is irreconcilable with either of our
three-carrier models. We shall show how Zitter’s results
and ours may be brought into agreement on the basis
of a four-carrier model, and we shall deduce some
characteristics of that model.

The Three-Carrier Model

If there are only three types of carriers, we may
write the electrical neutrality condition

(IeneI: qhm+ quani, (9)
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TasLE V. Summary of results.

Electrons Light holes Heavy carriers
k2 (meV) 0.189 1.51 3.18
ks? (meV) 454 1.51 3.18
ks® (meV) 0.918 21.0 3.18
k4 (meV) —4.54 0 0
n’ or n (cm3-ellipsoid™1)® 1.09X 1017 3.47X1017 2.88X 1017
nor ¢ (meV)s 26.0 1.1 see below
my 495X10-3 Db 0.068¢ see below
#la 1.19v 0.068¢
Mms 0.024> 0.935¢
e —0.119 0
Electrons Light holes Heavy holes
q 6 1 1
N or N (cm™3)» 6.54X 1017 3.47X10v7 2.88X 107
v (eV-deg~2-cm™3) 0.918X 1012 1.14 1022 16.4X1012d
4.09X 1012
nor ¢ (meV)» 26.0 11.1 0.634
2.42¢
m* see above see above 2.5d
0.66¢
Electrons Light holes Heavy electrons
q 3 2 -1
N’ or N (cm™3)s 3.27 X107 6.94 1017 2.88X 107
v (eV-deg2-cm™¥) 0.459 X 1012 2.28 X 1012 15.81012d
3.41X1012e
nor ¢ (meV)s 26.0 11.1 0.604
2.00¢
m* see above see above 2.64
0.80¢
Electrons Light holes Heavy carriers 1 Heavy carriers 2
q 3 1 > |£2] > |F1
N’"or N (cm™3)» 3.27X1017 3.47 X107 2.88X1017X ¢, N,
— — ! _J
v (eV-deg™2-cm™3) 0.459X 102 1.14X 102 16.9X1012d
4.55X 1012e
nor ¢ (meV)s 26.0 11.1 >1.204.f >0.60d.f
>4.00e.2 >2.00e-2
m* see above see above <1.34 <2.64
<0.4° <0.8¢

a ', N’, and 5 refer to the light electrons, #, N, and ¢ to all other carriers.

b See reference 18.

¢ See reference 19.

dy=18.5 X102 eV deg™2 cm™3,
ey =6.15 X102 eV deg™2 cm3.
f@i(¢1714¢27Y) =1.67 meV™1L,
eqi(f1714¢271) =0.49 meVL

where N;=¢m; and N,/=¢.n, are the total concen-
trations of the various carriers. Now ¢, and ¢, must be
strictly positive integers; ¢z must be a nonzero integer,
and will be positive or negative depending upon whether
the heavy carriers are holes or electrons. Symmetry
properties impose the condition that ¢, be divisible by
3. Inserting our numerical results for #,/, n,, and #y,
we find that Eq. (9) is satisfied within 39, by the
multiplicities ¢.=6, g,=1, and ¢z=-+1. If we use N,
instead of V.' in Eq. (9), the agreement is to within
5%. The experimental error is +129,; we cannot,
therefore, distinguish between the parabolic and non-
parabolic models on the basis of this experiment for
the g.=6 model. The multiplicities g¢.=3, ¢=2,
ga=—1 satisfy Eq. (9) within 139 if we use #.'; n.
fails to satisfy electrical neutrality within experimental
error in this case.

Comparing the two models, it appears somewhat
more likely that the heavy carriers are holes. The N;
are given in Table V for both models. The six-electron-
ellipsoid model is illustrated in Fig. 1. The electron
ellipsoids are disposed in the Brillouin zone in the
manner proposed by Smith.?%® Because g, and gy are
unity, symmetry requirements limit the location of the
light-hole ellipsoid and the heavy-hole sphere to either
the center of the zone or to the regions of intersection
of the trigonal axis with the zone faces. The light-hole
and heavy-hole surfaces may not be superimposed;
there are no overlapping bands in bismuth.5®¢ We are

5 Note that this disposition is one of two possible. The other
possibility consistent with symmetry conditions is to locate the
electron ellipsoids at the reflection planes, i.e., the points ¢ in
Fig. 1 of reference 34.

5 M. H. Cohen (private communication).
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thus left with two possible permutations of the hole
surfaces; in Fig. 1 we have arbitrarily depicted the
heavy holes at the zone center and the light holes at
the zone faces.

If there are three light-electron ellipsoids (¢g.=3),
the heavy carriers are electrons, and may again lie
either at the zone center or at the trigonal faces. The
two light-hole ellipsoids may then lie at two symmetrical
points on the trigonal axis.

The experimental results yield directly a value for «
for the heavy carriers. In the absence of other un-
detected carriers, we may use the specific heat to
calculate their Fermi energy {» and their effective mass
m*. The coefficient of the term in the expression for the
specific heat of a metal which is linear in 7 is due to
the carriers, and is, for three carriers,

N/ Ni Nu

vt =+ (10)
n v $w

where & is Boltzmann’s constant. The value of vy has
been determined experimentally by Kalinkina and
Strelkov®® to be 19.6X102 eV deg™? cm™® and by
Phillips®* to be 6.15X10" eV deg=? cm™. The latter’s
results indicate a nuclear quadrupolar contribution to
the total specific heat which could not be separated
from -y by the former because of the higher temperature
range of their experiment (72> 0.3°K, compared with
Phillips’s 72 0.1°K). Using Phillips’s value for the
nuclear quadrupole contribution, we have recalculated
Kalinkina and Strelkov’s value of +v; we obtain
vy=18.5X10" eV deg~? cm.

The value of + is critically dependent upon the
quantity and nature of the impurities in the bismuth
sample. Owing to the very low intrinsic carrier concen-
tration, a donor or acceptor concentration of approxi-
mately 30 ppm in one of the samples would suffice to
account for the difference between the two experi-
mental results, after the quadrupole contribution has
been accounted for. Phillips gives the impurity content
of his sample as a nominal 10 ppm; it is, unfortunately,
not clear whether the major impurities would act as
donors or acceptors in bismuth.

Kalinkina and Strelkov base their results upon a
sample prepared by several recrystallizations from
spectroscopically pure bismuth. They report a residual
resistivity ratio psooox/ps.20x of 210, which is consistent??
with a purity similar to that of our samples and con-
siderably greater than that of Phillips’s sample. We
will nevertheless carry out the subsequent calculations
for both values of v. Using these ¥’s, 5, {», and the N;
appropriate to each of the two three-carrier models
proposed, we obtain the values of {x given in Table V.
These, with our value of «z?, yield the values of my
given in Table V.

In any case the light electrons and light holes alone

57 Subject to the reservations noted above.
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do not account for the specific heat. If we assume the
larger value of v to be correct and gy to be zero, no
reasonable values of ¢, and ¢, will satisfy Eq. (10). If
we assume the smaller value of v and ¢y=0, even ¢,=6
and ¢;,=2 cannot account for the specific heat.

The Four-Carrier Model

We have observed three groups of oscillations, which
we have ascribed to three kinds of Fermi surface, con-
taining electrons, light holes, and heavy carriers. Upon
the assumption that there are no other carriers, two
sets of choices of the multiplicities ¢ have been shown
to be consistent with the electrical neutrality condition.
Aside from our data and the specific heat results, the
existence of heavy carriers is supported by the high-
field magnetoresistance work of Tanuma® and the
transport measurements of Sybert ef al.58

There is nothing in any of this work, however, which
precludes the existence of still other types of carriers,
provided that we can understand why they have not
been seen. We will now discuss evidence which supports
the existence of a second type of heavy carrier, as yet
undetected.

Zitter's low-field galvanomagnetic measurements?’
detect only two types of carriers, with g.=3, =1, and
N/=2.5X10" cm~3. Such measurements cannot, how-
ever, furnish any information about carriers of mobility
very much less than that of the light electrons and light
holes in the field range H=1 G. As we have seen, some
heavy carriers must be present to account for the
greater part of the specific heat. Now Zitter sees equal
numbers of light electrons and light holes (within 2097,).
Therefore, we may add heavy carriers of one sign to
his model only if we also add an equal number of heavy
carriers of opposite sign. Reconciliation of Zitter’s
results with ours thus requires abandoning a two- or
three-carrier model in favor of a four-carrier model.
From this point of view, the two experiments may be
regarded as complementary. On the one hand, the
galvanomagnetic measurements are quite insensitive
to any carriers which carry less than a few percent of
the current in the low-field range. Such carriers are
likely to be heavy, with small Fermi energies, and
hence to be precisely those carriers which make the
greatest contribution to the specific heat. The
Shubnikov-de Haas measurements, on the other hand,
have revealed the existence of one such group of
carriers, but in no way impose the condition that there
be no other group of heavy carriers. Such a second
group might not have been observed because the
periods associated with its Fermi surface are too small.

In the event that there are four types of carriers, we
must modify Egs. (9) and (10). Equation (9) becomes,
for example,

(1)

%8 J. R. Sybert, C. G. Grenier, and J. M. Reynolds, Bull. Am.
Phys. Soc. 7, 74 (1962).

gens +qenp=quit+quny.
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Here the subscript H is reserved specifically for the
heavy holes, and the subscript £ refers to the heavy
electrons.

If we assume, with Zitter, that ¢.=3 and g,=1, we
find, as does Zitter, that N/~ N;. Hence, as we have
remarked, Ng=~Ng. However, gz and gy may not
both be equal to unity, for this set of ¢’s leads by a
symmetry argument to a superposition of at least two
of the bands H, %, and E.*® We have eliminated this
possibility in the discussion of the three-carrier models.
It follows that ¢+ ¢ > 3. Since the Shubnikov-de Haas
effect does not distinguish between electrons and holes,
we will refer to the observed and the postulated heavy
carriers with the subscripts 1 and 2. Calculation leads
to the parameters for the four-carrier model which are
given in Table V.

If we have seen the heavy-carrier Fermi surface for
which ¢:>2, it follows that ¢.>1. For the sake of
simplicity, we assume that the equality holds. Since
N1=N,, we have ny/n1=2. As P A7, Eq. (8) yields
Py*/P1= (n1/n,)%, where P* is an appropriate average
Shubnikov-de Haas oscillation period. We may con-
clude that Ps*=~0.6P;=0.4X10"° G~% Such a value
of Py* is almost certainly too small to have been seen
in our experiment; note that we were unable to observe
the electron period P,=0.5X10"% G~ in the binary
directions.

V. SUMMARY AND CONCLUSIONS

By employing a sensitive differential technique, we
have been able to observe directly a group of heavy
carriers in bismuth, in addition to the light electrons
and light holes previously observed. These heavy
carriers make it possible to account for the large
observed values of the carrier specific heat. We are

% The only two points in the Brillouin zone (Fig. 1) which may
be occupied by a Fermi surface for which ¢=1 are the center and
the intersection of the trigonal axis with the zone face.
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able to derive the concentration of heavy carriers per
ellipsoid 7y directly from the experimental data; we
may derive ./ and n, from our data by adducing
cyclotron resonance and de Haas-van Alphen results.
Upon the assumption that there are no other carriers
in bismuth, we may determine two possibilities for the
ellipsoid multiplicities ¢ and the total carrier concen-
trations V ; adducing experimental values of the specific
heat leads to values for the heavy carrier effective mass
and Fermi energy.

Both of the three-carrier models thus obtained are
irreconcilable with the values of ¢, and ¢, deduced by
Zitter. We have, however, succeeded in bringing our
results and Zitter’s into agreement on the basis of a
four-carrier model without doing violence to any of
the published experimental results. The situation in
bismuth is thus similar to that in antimony, in which
there appear to be at least three, and very likely four,
types of carriers.®

The observation of anomalies in the oscillations for
magnetic field orientations near the binary axis indicates
that there are likely to be fundamental differences
between the theory of the de Haas-van Alphen effect
and a detailed theory of the Shubnikov-de Haas effect.
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Note added in proof. We are grateful to R. N. Zitter
for pointing out that his results (reference 27) strictly
preclude a three-carrier model of the Fermi surface of
bismuth, regardless of the values assumed for ¢;.
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