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Here, F1(n,k,0) is the initial value of the singlet distri-
bution (untransformed in time).

On substitution of (61) into (70), one obtains an
equation for the perturbed singlet distribution, which
in principle determines the transport properties of the
system. An exact solution appears to be extremely
difficult because of the formidable nature of the ex-
pression for the correlation function. However, it is
hoped that (70) may prove useful in the approximate

RALPH L. GUERNSEY

determination of high-frequency transport properties
of a plasma, as well as the correlation effect on the
damping of plasma oscillations. A more detailed dis-
cussion of these problems is reserved for future work.
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An analysis of some recent experimental and theoretical in-
vestigations of the elementary excitation spectrum of liquid
He II is carried out. The spectrum of density fluctuations, which
is measured in an inelastic neutron scattering experiment, is
shown to consist of two distinct parts: direct excitation of single
quasi-particles from the condensed zero-momentum state; and
excitation of more complex configurations arising from the inter-
action of two, three, or more quasi-particles. With the aid of
general sum-rule arguments it is demonstrated that: (1) in the
Jong-wavelength limit, a single quasi-particle excitation exhausts
the f-sum rule; the resulting excitation spectrum is identical to
the phonon spectrum proposed by Feynman and found experi-
mentally by Henshaw and Woods; (2) this asymptotic behavior
of the density fluctuation spectrum may be used to normalize the
experimental results of Henshaw and Woods; one thereby obtains
a somewhat altered liquid structure-factor curve, detailed infor-
mation on the efficiency of quasi-particle excitation from the con-
densed state of an incident slow neutron, and an estimate of the
depletion of the zero-momentum state as a consequence of particle

L

ONSIDERABLE progress in our understanding of

the elementary excitation spectrum of liquid He*

has been made in recent years. Both neutrons!' and
charged particles? have been used as probes to provide
a direct experimental measurement of the energy vs
momentum curve for the elementary excitations. The
spectrum so obtained is in good agreement with the
theoretical spectrum calculated by Feynman® and

* Work supported in part by the U. S. Army Research Office
(Durham) and the Air Force Office of Scientific Research.

1 H. Palevsky, K. Otnes, and K. E. Larsson, Phys. Rev. 112, 11
(1959); J. L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C. Kerr,
ibip. 113, 1379 (1959); D. G. Henshaw and A. D. B. Woods, zbid.
121, 1266 (1961).

2 G, Careri, Progress in Low-Temperature Physics, edited by J. C.
Gorter (North-Holland Publishing Company, Amsterdam, 1961),
Vol. 3, p. 58.

3 R. P. Feynman, Phys. Rev. 94, 267 (1954).

interaction; (3) the backflow introduced by Feynman and Cohen
corresponds to taking into account the coupling between a
Feynman excitation and higher configurations involving several
elementary excitations.

The physical picture of backflow is clarified by means of a study
of impurity atom motion in an interacting-boson system. It is
shown that in the Bogoliubov approximation the backflow around
the impurity atom corresponds to a cloud of moving virtual-
phonon excitations which act to increase the impurity effective
mass as well as to conserve current in the system. The generaliza-
tion of these results to higher-order approximations, and to the
coupling between quasi-particles in liquid helium, is discussed.

The importance of accounting properly for depletion effects in
a microscopic theory is emphasized; it is shown that such effects
are neglected in the microscopic calculations of the interacting-
boson excitation spectrum which have thus far been carried out,
although they are of decisive importance in the determination of
the density-fluctuation excitation spectrum.

Feynman and Cohen® using a trial wavefunction for the
elementary excitations.

Progress has also been made in the development of a
microscopic (as distinct from variational) theory of the
elementary excitations in a system of Bose particles
interacting via a repulsive potential. Bogoliubov® showed
that a system of weakly interacting bosons will possess
a phonon-like elementary excitation spectrum in the
low-momentum region. Lee, Huang, and Yang® used the
method of pseudopotentials to extend Bogoliubov’s cal-
culation to the case of a hard-sphere gas at low density.

4R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956),
frequently referred to as FC.

5 N. N. Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947).
(1“\'51:7.)D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135

957).
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Beliaev? and Hugenholtz and Pines® have developed a
field-theoretic formulation for the problem of bosons
with an arbitrarily strong repulsive interaction, and
have shown that the phonon-like character of the low-
momentum excitation spectrum may be expected to be a
general feature of such a system. Their method also
permits one to take into account the depletion of the
zero-momentum state as a consequence of the particle
interaction.

The great triumph of the microscopic calculations is
that they provide us with a well-defined model for a
superfluid system: a low-density gas of bosons with
repulsive interactions. Unfortunately, liquid helium is
not a low-density gas, nor are the interactions between
a pair of He atoms purely repulsive, so that one cannot
expect to account for its properties on the basis of the
aforementioned low-density calculations. It is therefore
necessary to consider with some care the general fea-
tures which a microscopic theory must possess in order
that it might hope to account for the experimentally
observed excitation spectrum of liquid He II. The
present study began as an attempt to use the elegant
physical arguments developed by Feynman and Cohen
as a guide in this direction; that is, to understand what
is the analog, in a microscopic theory, of the backflow of
atoms about an excitation moving through the system.
In the course of our investigations we were led to use
certain general sum-rule arguments both to clarify the
physical picture of backflow, and to make precise the
information which is actually contained in the beautiful
neutron scattering experiments of Henshaw and Woods.
We were also led to recognize the importance, in all
microscopic theories of intermediate direct boson sys-
tems, of taking into account the depletion of the zero-
momentum state as a consequence of particle inter-
action. Such depletion effects make particularly difficult
the calculation of the density-fluctuation excitation
spectrum in these systems.

The principle results of the present paper are the
following :

(1) It is shown that the zero-temperature liquid
structure factor quite likely possesses a hitherto un-
suspected hump for wavevectors in the vicinity of
0.6 A

(2) There is derived from the experiments of Henshaw
and Woods detailed information on the absolute effi-
ciency of quasi-particle excitation from the condensed
zero-momentum state ; their experimental results for the
efficiency are found to be in good agreement with the
theory of Cohen and Feynman?® for wavevectors up to
about the roton minimum. There exists a rapid falloff
in the efficiency for large momentum transfers; we are
led to attribute this decrease to the depletion of the
zero-momentum state arising from particle interaction,

7S. T. Beliaev, Soviet Phys.—JETP 7, 289, 299 (1958).
8 N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).
9 M. Cohen and R. P. Feynman, Phys. Rev. 107, 13}(1957).
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and to place a lower limit of some 929, on this de-
pletion.

(3) Backflow is shown to arise from the interaction
between different quasi-particle configurations; the
backflow in the Feynman-Cohen theory corresponds to
taking into account the interaction between the rotons
and phonons obtained using the Feynman variational
wavefunction. Thus, as a Feynman roton moves
through helium it is surrounded by a cloud of virtual
phonons and rotons; the backflow represents a con-
figuration space description of the cloud of wvirtual
excitations.!!

(4) Neither backflow nor depletion of the zero-
momentum state are accounted for in the simple
Bogoliubov-like approximations of most of the current
microscopic theories; it is essential to take both effects
properly into account in order to obtain a microscopic
theory of the elementary excitation spectrum of He II.

In Sec. II, sum-rule arguments are developed and
applied in a discussion of the theoretical and experi-
mental investigations of the elementary excitation spec-
trum of He II. In Sec. ITI, the physical picture of back-
flow as arising from a coupling between different
quasi-particle configurations is clarified with the aid of
a microscopic study, based on the Bogoliubov theory, of
the motion of an impurity atom in an interacting boson
system. In Sec. IV, the generalization of these argu-
ments to the motion and interaction of quasi-particles
in liquid helium is carried out. In Sec. V, effects as-
sociated with the depletion of the zero-momentum state
are considered, while in Sec. VI certain speculations are
presented on the form that a successful field-theoretic
treatment of both backflow and depletion might take.
In the Appendix, a brief resumé of the Bogoliubov
approximation is presented.

IL.

We consider a system of V interacting bosons of mass
M enclosed in a cubic box of volume @ at 7=0. We
follow Hugenholtz and Pines® and take as our Hamil-
tonian H—ulNV, where H is the particle Hamiltonian and
u is the chemical potential. We write

H'=H—uN=H+V,
Ho=3w(ex—p)ar'ax,
V=013 w1 (Vi/2)arrlarfavar

In Eq. (2.1), ex=7%%?*/2M is the kinetic energy of
particles of momentum %k. The operators ai" and ay are

(2.1)

1 A calculation of this interaction was carried out using
Rayleigh-Schrodinger perturbation theory by C. G. Kuper, Proc.
Roy. Soc. (L.ondon) A233, 223 (1955); a calculation based on
Brillouin-Wigner perturbation theory has recently been carried out
by H. W. Jackson and E. Feenberg (to be published).

11 Such a suggestion was first put forth at the International
Conference on Theoretical Physics at Seattle in 1956 by one of us
(D.P.) on the basis of a treatment of the phonon modes by means
of collective coordinates, as in the Bohm-Pines theory of electron
interactions,
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creation and annihilation operators for these particles

and satisfy the commutation relations
Lav,m]=0="[av",ai"]; [ar,ai"]=61r.
Vi is the Fourier transform of the central two-body

interaction V (x):

Vi= /d"’x e~ XY (x).

As shown in reference 8, the introduction of the chemical
potential u permits one to consider non-particle-con-
serving processes, provided the number of particles is
conserved on the average. Thus, one has

A\ZQ—I‘(OI Z akTak ] 0) = A\7,

k%0

(2.2)

where N is the number of particles of zero momentum,
and |0) is the ground-state wavefunction. The remain-
ing equation which determines Ny and u is

u=0Ey/ON=09Ey/IN,, (2.3)
where £, is the ground-state energy, while F, is
the ground-state energy corresponding to the Hamil-
tonian H'.

We first recall some general properties of the exci-
tation spectrum as measured by, say, neutron scattering.
As shown by Van Hove' and Cohen and Feynman,®
what one can measure in an inelastic neutron scattering
experiment is the probability per unit time that a slow
neutron transfer energy w and momentum k to the
boson system in its ground state; this probability is
given by

W (kw)=A4S5 (kw). (2.4)

A is a constant which characterizes the neutron-boson
interaction while S(k,w) is the dynamic structure factor
which describes the elementary excitation spectrum of
the density fluctuations of the system, and is defined as

S (k,w)=2_ (oK) no’d (0 —wn0). (2.5)

In Eq. (2.5), pi' is the density fluctuation of mo-
mentum k,

ka:/d&xp(x)ngm:Zi etikex;

=2 q @gtx'dy,

while the (px").0 and wno are the exact matrix elements
and excitation frequencies corresponding to the state #.

2L. Van Hove, Phys. Rev. 95, 249 (1954).
13 We take ##=1=Q throughout this paper.
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Two moments of .S(k,w) are of interest. We have

N-]

/ deo S (k)= NS(K), (2.6)

/' do> S (k) = Nk 2. 2.7)
0

In Eq. (2.6), S(k) is the liquid structure factor, and is
the Fourier transform of the pair correlation function
$(r). Thus

S0 = N1(0] ool 0) = / Fr pHeikr, (28)

2(r)=N"40]p"(0)p(1)]0).

Equation (2.7) is a statement of the longitudinal f-sum
rule

(2.9)

Zn f()n= (ZM/kQ)Zﬂ w"0| (pkf)"0|2:N7

which appliesif the potential V is velocity independent.!4

Let us consider the dynamic structure factor S (kw) in
more detail. The intermediate states |¢,) coupled to
|¥o) by the operator px belong essentially to two distinct
classes:

(i) |¥n) may correspond to a single elementary exci-
tation, or quasi-particle, of momentum k, excited di-
rectly from the condensed zero-momentum state. Let
w(k) be the energy of this quasi-particle mode. The
single quasi-particle contribution to S(kw) then takes
the form

(2.10)

NZ(k)d[w—w(k)],

where Z (k) is a positive constant. We remark that as
long as there is macroscopic occupation of the state of
momentum zero, we may expect that the single quasi-
particle contribution to .S(kw) will be appreciable.

(il) As a consequence of quasi-particle interaction,
[.,) may also correspond to some higher configuration,
involving two, three, or more quasi-particles, with a
total momentum k. These configurations will have a
finite excitation energy of the order of the roton energy.
They will obviously form a continuum, as the momentum
of any single-component excitation is allowed to vary.

Actually, the above discussion oversimplifies the
problem somewhat. The discrete mode (i) will, in fact,
be immersed in the continuum of possible excitation
modes, and will thus have a finite lifetime. Conse-
quently, the discrete line at w=w(k) will be broadened ;
its width yields an estimate of the lifetime of the excita-
tion. We know from experiment that this damping is

1 7The sum rule, Eq. (2.7), which was employed by Cohen and
Feynman (see reference 9), is identical to that derived for the elec
tron gas: P. Nosieres and D. Pines, Phys. Rev. 109, 741 (1958), fi.,
Egs. (2.3) to (2.6). It can be obtained by computing the expecta-
tion value of the double commutator [[#,px],0—1 ] in the ground
state. If the result obtained by using the explicit form of the
Hamiltonian, Eq. (2.1), is compared to the result in terms of the
energies wno, then Eq. (2.7) is obtained.
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I16. 1. Schematic plot
of S(kw) vs w.

S(kw)/N

small (and perhaps even negligible) in the low-k region,
up to a wavevector of the order of 2.7 A-1, since over
this region it is not possible for a single excitation to
decay into a pair of lower energy excitations with over-
all conservation of momentum and energy.

Our discussion is summarized in Fig. 1, where S (kw)/N
is shown to consist of a narrow peak centered at w(k),
enclosing an area Z(k), superimposed on a continuum.
(We remark that the continuum starts from a finite
positive energy, of the order of ck.) We shall accord-
ingly write

S (ko) = NZ (K)[w—w (k) T+S® ko),  (2.11)

where S® (kw) refers to the continuum contribution to
S(kw). Equations (2.6) and (2.7) then take the form

/ " o S (k) = N[S (W) — Z(K) ], (2.12)

0

/ do SO (ko) = N[F/2M — Z (K)o (k)] (2.13)

We now consider the relative importance of the quasi-
particle and continuum contributions in the limit of
long wavelengths.

For low values of k we expect S® (kw) to go to zero, as
conjectured by Feynman and Cohen and found ex-
perimentally. To establish the limiting behavior of
SO (kw), we first remark that

wnﬂ(ka)nOZ (k 'ikf)n(}, (214)

where ji' is the kth Fourier component of the current
density

1
iszﬁ ;{pie"k'xt‘ﬁ-eik'”m} (2.15)

Equation (2.14) follows at once provided the particle
interaction is velocity independent (and is indeed an
intermediate step in the establishment of the sum rule).
The sum rule (2.10) may thus be written

>k 3" e/ wno= kN /2M. (2.16)

Let us now consider (2.16) in the limit £=0. ji then
approaches the total current J. Again, we distinguish
two kinds of intermediate states.

(i) The state |#) has a single elementary excitation
with wavevector k: the excitation energy is of order £,
the matrix element (jx) .o depends on subtle correlation
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effects, and turns out to be of order (%)/2. The contribu-
tion to the sum rule is thus of order %* and therefore
important.

(ii) The state |n) is a higher configuration. Becausc
the state represents a superposition of quasi particles of
net momentum k, it is quite likely that there is no
spectal £ dependence of wyo. Hence, wy is finite in the
limit of £ — 0. Furthermore, the matrix element (7)o
tends toward (0| J|#). As a consequence of translational
invariance, J commutes with the Hamiltonian and is
therefore a good quantum number: {(0]J|#) is thus zero.
We may expand (7x).0in a Taylor series; the first term
is of order k. The corresponding contribution to the
sum rule is thus of order k% [Again, it seems plausible
that for these higher configurations correlation effects
do not yield (jx)ao proportional to some fractional
power of &.]

We conclude that in the limit of k=0, the single-
excitation contribution exhausts the sum rule. We then
have

Z(k)=S(k) and w(k)=[r/2MSk)],

for k—0. (2.17)

The continuum contribution, S® (kw), first enters at a
finite value of k, and most likely contributes a term of
order k* to the sum rule.

The above discussion offers a new perspective on the
classic work of Feynman,® and on its improvement by
Feynman and Cohen.* Feynman gave very convincing
physical arguments that the wavefunction in configura-
tion space for low-lying excitations should be of the

form
Yi=2: fi(x:)]0).

He determined fi(x) by a variational calculation and
found it to be e***. Thus the Feynman wavefunction
is given by

(2.18)

Yie=px']0). (2.19)

The excitation spectrum appropriate to (2.11) was
shown by Feynman to be

Er(k)=k/2mS (k). (2.20)

In the light of our previous discussion (2.20) becomes
nearly obvious. Indeed, the choice of the wavefunction
(2.19) implies that py couples the ground state to a
unique excited state, namely that with a single quasi-
particle of momentum k. Within this approximation,
SO (kw)=0: (2.20) thus reduces to (2.17). One may
view the Feynman excitation spectrum as the most
general result one can obtain, consistent with Egs. (2.6)
and (2.7), with the assumption that the density fluctu-
ations possess a unique excitation frequency. To put it
another way, with the Feynman wavefunction, Eq.
(2.19), a single excited state exhausts the f-sum rule.
The Feynman excitation spectrum, Er(k), obtained
from (2.20), yields an energy vs momentum curve
which possesses the same qualitative shape as that de-
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Fic. 2. Comparison of Feynman [Zr(k)] and Feynman and
Cohen [£rc(k)] predicted elementary excitation spectrum with
that measured by Henshaw and Woods (see reference 1)

[Eexps(k)].

termined experimentally by neutron scattering,! as may
be seen from Fig. 2. However, the agreement is not
quantitative everywhere; thus near the roton minimum
one finds E(k)=217°K instead of the observed value
8.6°K. In order to overcome this difficulty, Feynman
and Cohen were led to an improved wavefunction for
the elementary excitations on the basis of physical
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arguments to the effect that current must be conserved
in the motion of an excitation through the liquid, and
hence there must be a backflow of atoms (or elementary
excitations) about an atom as it moves along. The re-
sultant wavefunction (which we consider in some detail
in Sec. IV) yields the excitation curve Erc(k) shown in
Fig. 2, a curve which is in good quantitative agreement
with experiment in the region up to and including the
roton minimum.

The considerations of the present section lead to the
same conclusion. According to (2.11), the disparity be-
tween Ew(k) and experiment arises from the continuum
contribution to the correlation function, S® (kw). We
have seen that S®(kw) originates in the coupling of
pit|¥o) to higher configurations involving several ele-
mentary excitations. If we view pxf|¢o) as a “bare”
quasi-particle, the coupling expresses the physical fact
that the bare quasi-particle is surrounded by a cloud of
virtual elementary excitations. As it moves, the quasi-
particle drags this cloud along with it; the cloud is
equivalent to the backflow proposed by Feynman and
Cohen. In the limit of small 2, S© — 0: the self-energy
cloud gradually disappears, thus restoring the original
result of Feynman. The variational approach of Feyn-
man and Cohen has therefore a simple microscopic
counterpart: the backflow around any given atom is
nothing but the motion of the self-energy cloud arising
from the interaction between the ‘bare” excita-
tions (2.19).

Let us now turn to a more quantitative discussion. In
principle, the three quantities S(k), w(k), Z(k) are di-
rectly measurable. S(k) refers to the total cross section
for a scattering event with momentum transfer k,
irrespective of the energy transfer. It may be obtained
in straightforward fashion from either x-ray scattering
measurements or from slow neutron scattering experi-

LS o e e B s I D B B B B

F1c. 3. Experimental results ob-
tained by Henshaw (see reference 17)
for S(k).

3.0
S= ilrsin (¢/2)
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ments,'%1¢ provided the momentum of the incident x ray
or neutron is sufficiently large that a measurement of
the scattered intensity at a fixed angle is equivalent to a
measurement of the probability per unit time of a given
momentum transfer. In Fig. 3 we reproduce the most
recent measurement of S(k), obtained by Henshaw!?
using slow neutrons as the scattering probe.

In those experiments in which both the energy and the
angle of the scattered neutrons are measured, analysis
of the results shows a pronounced peak in the number
of neutrons which have been scattered through a certain
angle 6, and suffered an energy loss, w; this peak is
generally superimposed on a continuous background.
The peak may be identified as representing those neu-
trons which have excited a single quasi particle from the
condensed phase. The position of the peak yields w(k),
its strength (i.e., the area enclosed) gives Z (k). Z (k) is
thus equal to the differential cross section for the
production of a single quasi-particle; in Fig. 4 we repro-
duce the experimental results obtained by Henshaw and
Woods! for Z(k). One can thus compute the first two
moments of S®(kw) and estimate the importance of
backflow. In fact, the available experimental data are
incomplete and sometimes not very precise. We shall
now try to analyze the data in the light of the preceding
discussion.

We first consider w(k). We expect the limiting value
for small % to be equal to ck, where ¢ is the sound velocity
(237 m/sec). This limit is indeed observed experi-
mentally. We remark that in Fig. 2 the linear portion of
w(k) extends up to a wave vector k220.6 A1, which is
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F16. 4. Experimental results obtained by Henshaw and Woods
(see reference 1) for Z(k).

15 C. F. A. Beaumont and J. Reekie, Proc. Roy. Soc. (London)
A228, 363 (1955); A. G. Tweet, Phys. Rev. 93, 15 (1954); W. L.
?or(g))n, C. H. Shaw, and J. G. Daunt, J. Phys. Chem. Solids 5, 117

1958).
16 D. G. Hurst and D. G. Henshaw, Phys. Rev. 100, 994 (1955).
17 D. G. Henshaw, Phys. Rev. 119, 9 (1960).
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F16. 5. Extrapolation of experimental results for S(k) and Z(k);
comparison with the Cohen-Feynman calculation, Zrc (k).

rather surprising : one might expect a stronger dispersion
of the phonon frequency. We also note that the slope
dw(k)/dk is always lower than the phonon velocity,
which ensures the stability of the quasi-particle against
the emission of real phonons.

We next consider the experimental results obtained
by Henshaw!7 for S(k) and by Henshaw and Woods! for
Z(k), which are shown in Figs. 3 and 4. We first remark
that the data for S(k) extend down only to 0.8 A-1. It
is tempting to extrapolate the experimental curve
linearly between the origin and £=0.8 A~'; the result so
obtained, however, is incorrect. For by doing so, one
finds that the slope at the origin dS/dk is 0.21 A, a
value which is in contradiction with the result 0.36 A
obtained from (2.17) and the experimental w(k). As we
know that (2.17) must be right in the limit £ — 0, we
are led to draw the curve for S(k) near the origin in
such a way as to yield the correct slope at the origin.
The next question is how far toward £2=0.8 A~ does the
straight line portion of S(%) extend. This question can
best be considered in the light of the behavior of Z (k).

The measurements of Z(k) shown in Fig. 4 extend to
0.2 A—1; however, they are relative, so that it is neces-
sary to determine indirectly a suitable scale. We do this
with the aid of our result, (2.17), which asserts that for
small £, Z (k) should be equal to S(k) and approach the
origin with the same slope as S(k). We therefore ex-
trapolate between 0.2 A~1 and the origin by drawing a
straight line (which also passes through the experimental
value at 0.4 A1); the scale is then fixed by requiring
that the slope be 0.36 A. The extrapolated value of Z (k)
so obtained is shown in Fig. 5, where it is compared
with the theoretical value of Cohen and Feynman.?
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We return to the extrapolation of the curve for S(k)
between the origin and 0.8 A-1. By comparison with the
Z (k) curve, it is clear that the straight line portion of
S(k) must extend at least to 0.4 A~1. Moreover, S(k)
must possess some sort of shoulder between 0.4 and
0.8 A1, Whether that shoulder is marked [as it will be
if one takes S(k) linear to 0.6 A=1] or mild [assuming
S(k)=Z(k) up to 0.6 A1), one cannot say; we have
chosen an extrapolation of S(k) in this region which lies
between these extremes.

We estimate that the errors to be attached to our
extrapolation of S(k) and the scaling of Z(k) do not
exceed 209,. We further remark that the necessary
existence of a shoulder in the S(k) curve leads us to
believe that the experimental points obtained by
Henshaw and Woods, which show a similar shoulder in
the Z(k) curve, are reliable, and do not represent a
systematic experimental error. We also note that given
the form of our extrapolation for S(k) in Fig. 5, the
linearity in the phonon excitation curve observed by
Henshaw and Woods between 0.4 and 0.6 A is to be
attributed to a cancellation of two opposing effects:
backflow, which acts to decrease w(k) and the shoulder
in S(k), which would act to increase w(k).

Another quantity of interest is the ratio Z(k)/S(k)
which we shall call f(k):

J(k)=Z(k)/S (k). (2.21)

J(k) furnishes a relative measure of the efficiency of
quasi-particle excitation from the condensed state by an
incident slow neutron. A plot of f(k), based on the ex-
perimental measurements (and our extrapolations there-
of in Fig. 5), is given in Fig. 6. We first remark that
f(k)=1 for values of % extending from the origin to
0.4 A-1; that is scarcely surprising, since we have
extrapolated S(k) and Z(k) in such a way that this
would be true. We next remark that the behavior of
f(k) between 0.4 A~ and 2.7 A—! can be understood as
a superposition of two effects:

(i) The depletion of the zero-momentum state as a
consequence of particle interaction. We shall see in
Sec. V that for large k, one expects f(k)=2No/N, the
relative number of particles in the condensed state.
This number may be quite small. For example, Onsager
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and Penrose'® estimate No/N=20.08. For small values of
k, coherence effects act to oppose such a substantial re-
duction; for intermediate values of k that opposition
fades away, probably more or less uniformly, as back-
flow effects associated with the continuum part of
S (kw) begin to play a role.

(ii) Coherence effects associated with the probability
of exciting a quasi-particle with its associated ‘back-
flow” cloud of elementary excitations. This mechanism,
suggested to us by Bardeen,'® would tend to favor pro-
duction of rotons, and so lead to a peaking of f(k) in the
region of the roton minimum. We note that the good
agreement between the Cohen-Feynman result for Z (k)
and experiment indicates that their theory properly
accounts for this phenomenon.

Oneway to investigate whether the proposed behavior
of f(k) is reasonable is to compute the quantity

(k)= / o 5% (ko) / / " o 5 (ko)

=[(#/2m)— k) Z &) J/[S (k)= Z (k) ].

w(k) is the average excitation energy of the ‘higher
configurations” entering in the spectral analysis of
S(kw). We expect these configurations to contain
typically two or three rotons. Using the preceding data,
we find that the values of w(k) range between 30 and
60°K, for k varying between 0.8 A~ and 2.8 A1, This
result is not unreasonable and supports our extrapola-
tion procedure.

To summarize this discussion, the available experi-
mental data yield a fair estimate of Z (k) and S(k). The
general variation of their ratio, f(k), with k is consistent
with the observed excitation spectrum. The occurrence
of the bump in S(k), however, still requires a micro-
scopic explanation.

III.

We have seen on the basis of general sum rule con-
siderations that there is a close relationship between the
backflow introduced by Feynman and Cohen and the
coupling between pi'|¥) and higher configurations in-
volving several elementary excitations. We have argued
that this coupling acts to reduce the quasi-particle
energy below the Feynman value and gives rise to a
continuum contribution to S(kw). We now wish to
develop a link between these considerations and the
microscopic calculations of the excitation spectrum of an
interacting boson system. Our aim is both to clarify the
physical picture of backflow and to obtain useful clues
as to the ingredients required for a successful micro-
scopic theory of the elementary excitations in liquid
helium.

We show in the Appendix that in the Bogoliubov
theory® the density-fluctuation excitation spectrum is

18 (). Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
1 J. Bardeen (private communication).
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identical to that of the quasi-particles, and that a single
quasi-particle excitation exhausts the f-sum rule, (2.7).
Hence no backflow effects are contained in this ap-
proximation ; in order to take into account backflow, one
must take into account the terms of Hs, Eq. (A3). Such
terms give rise to a coupling between the Bogoliubov
quasi-particles. The coupling is a microscopic analog of
the coupling between the Feynman quasi-particles we
have considered earlier; we would therefore anticipate
that it gives rise to (a) backflow, (b) a continuum
contribution to .S (kw). The backflow, in the microscopic
theory, would correspond to a self-energy cloud around
each quasi-particle—a cloud of co-moving virtual ex-
citations which would serve to reduce the quasi particle
energy as well as to conserve current. A perturbation-
theoretic treatment of H is not so much difficult as it is
complicated because of the appearance everywhere of
the coherence factors, #x and vk, of Eq. (A6). We can,
moreover, obtain a good physical picture of the role
played by the interaction between the excitations by
considering a closely related problem, that of an im-
purity atom weakly coupled to a gas of weakly inter-
acting bosons.?

We consider an impurity atom, of mass My, intcr-
acting with the boson system via the same law of
interaction as the bosons interact with each other. It
suffices then to add to the basic Hamiltonian, (2.1), the
following terms:

1)2/2M1+Zkapk*e~ik'R, (31)

where P is the impurity atom momentum, and R its
position. We first obtain the wavefunction for the
coupled impurity-boson system.

The unperturbed wavefunction of the impurity-boson
system is

¥(0) =P Repy, (3.2)

where ¢ is the ground-state wavefunction of the boson
system. We write the perturbed wavefunction of the
coupled system as

¥=e"Y(0), (3.3)

where S may be regarded as generating a canonical
transformation which serves to eliminate the impurity-
boson interaction,

HintZZk Vkkae—ik'R-

Since the interaction is assumed to be weak, it suffices to
eliminate H jn¢ to first order; S is then determined by the
equation

i (H«+P¥2M7), S|=—H;w, (3.4)

where H; is the boson Hamiltonian (A2). (It suffices to
keep only H; since we wish to treat the bosons in the
Bogoliubov approximation.)

One way tosolve Eq. (3.4) is to carry out a Bogoliubov

2 Similar methods have been found useful in the electron gas
problem; see P. Nozitres and D. Pines, Phys. Rev. 109, 762
(1958).
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canonical transformation on H; and H in; after a certain
amount of algebra the correct answer emerges. How-
ever, we can avoid the algebra and the transformation
in the following way. We first note that S may be
written as

S=3 Axe kR 3.5)

where 4y is an operator which contains the dependence
on the boson variables; on substitution of (3.5) into
(3.4) we find an equation involving boson variables
only:

{(H A+ (—k-P/M+E/2M )AL} = —Vipit. (3.6)

If we now take the matrix elements of (3.6) between the
ground state and some nth excited state coupled to it
via px, we find
+iVi(ox)no
(A)no= . 3.7)
wno— (k-P/ M)+ (R/2M7)

where wno is the excitation frequency appropriate to that
state. Since (as shown in the Appendix) px possesses a
unique excitation frequency, Qy, then one finds at once
that
S=7 Yk Vipite iR

X[Q+-k/2M— (k-P)/ M. (3.8)

The explicit form of the coupled system wavefunction is
thus

N

V= (epli Z gr—R e (9)
where
g0 =12 Vie® {Qp+ (B2/2M 1) —k-P/M ). (3.10)

Equation (3.9) agrees in form with the wavefunction
proposed by FC to describe the backflow about an im-
purity atom as it moves through a boson gas. Moreover,
for a slowly moving impurity atom, g(r) reduces, at long
distances, to the dipolar form which, as shown by TFC,
brings about current conservation. To show this, we
expand the factor

{4k 2M 1 —k-P/M 1}~
as
{Q+F/2M 1 —k-P/ M}
= QR 2M )4 (k- P/ M 1) (Qu+k2/2M )24 - - .
The leading term is velocity-independent ; the second,
velocity-dependent, term at long wavelengths (k2/2M
;) may be written as
g =12« Vi(k-P/ M) (1/Q)2)eik "
03w Vi(k-P/MD[1/(NEV /M) Jeik
=—(1/4xN)(M/M1)(P-t/7%), (3.11)

provided one makes use of the long-wavelength version
of the Bogoliubov dispersion relation, (A10),

Q=N /M.
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The last equality in Eq. (3.11) displays the desired

dipolar form. The current carried by the impurity atom

18

jimp(r): (1/2MI)Zk{Peik.(r_R)‘l'eik'(r_R)P}. (312)
The current carried by the bosons is
Jp(0)= /M) Vg(r—R)
~— (1/M)Y  k(k-P/E2)eix- R (3.13)

The boson current represents therefore a backflow about
the impurity atom motion, such that far away from the
impurity divjs(r)=%—divjimp(r). The net current, im-
purity plus boson backflow, associated with (3.3), is
divergence free at distances far from the impurity atom.

In the language of quantum field theory, the boson
backflow corresponds to a cloud of virtual phonons
which surround the impurity atom. (As long as the
velocity of the impurity atom is less than C, the boson
sound velocity, no real transitions will occur.) The
phonon cloud acts to increase the effective mass of the
impurity atom; the change in energy of the clothed im-
purity atom is simply calculated using second-order
perturbation theory:

ng (pk—}v) nO2
(wno—k'P/M1+k2/2M[)

AE= —znk[ ] (3.14)

As shown in the Appendix, in the Bogoliubov ap-
proximation

wno=Q(k)=[NEV ./ M+ k*/4 M2 02

(or) n® 2N E2/2MQ (), (3.15)
so that
Vi2Nk*/2MQ(k)
=—3" } (3.16)
[Q(k)— (k-P/Mp)+k/2M 1]

A result similar to (3.16) has been obtained by
Girardeau,” with the aid of the Bogoliubov canonical
transformation.

Equation (3.16) simplifies when the impurity velocity
is small compared to the boson sound velocity ; we may
then expand the denominator in powers of (k-P/M;)/
(Qx+%2/2M7). The leading term is independent of im-
purity momentum ; the first momentum-dependent term
may be written as

P p M NEV i\2
TR e
2M; 2M;| 3NM; %\ M
. ,
><~————}. (3.17)
Qu(Quk2/2M ;)3

Thus, the effective mass of the impurity atom is in-

2 M, Girardeau, Phys. Fluids 4, 279 (1960).
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creased to
M*=M;/(1—a) (3.18)

as a result of the backflow described by (3.9) and (3.10).

An interesting feature of the result, (3.17), is the
following. Let us consider only the long-wavelength
contribution to «, arising from values of k<%, such
that > k,2/2M 1. We then find

M (Nszk)2 1 N M

M 3N M,

~

st km SNM

Q!

, (3.19)

where N’ is the number of phonon modes which satisfy
this criterion. The result (3.10) is independent of the
specific parameters of the problem. We therefore specu-
late that it is a model-independent result; i.e., it is as
valid for a He® atom moving in He* as it is for an im-
purity weakly coupled to a weakly interacting boson
gas. For example, if we take M ;= (3/4)M, and N'=N
(corresponding to k,=1.1X A1), we find a=4/9, and
M*=1.8M7, a result which agrees well with that ob-
tained by Feynman and Cohen with the wavefunction
(3.9), in which

g()=AP v/r=— (1/4xN)P-v/#.

As another example, consider N'=N, and Mr=M ; one
finds then M*=(3/2)M, a result which agrees with the
classical hydrodynamic calculation of the effective mass
of a sphere moving through a liquid.

We remark that where o becomes large, perturbation
theory breaks down. The problem considered here is
directly analogous to that of a slow electron moving in
a polar crystal, the so-called polaron problem. For large
a, an intermediate coupling calculation®? of the im-
purity mass can be performed. The result is

M*=M(14a).

1v.

Feynman and Cohen proceed from a study of im-
purity atom motion to a variational calculation of the
elementary excitation spectrum of liquid helium. They
consider as a trial wavefunction a symmetrized version
of (3.9), viz.

Y={2 e’ exp[i 2 gl—r) ]} 10), (41)
T 171
where g(r) is assumed to take the dipolar form,
g(r)=Ak-r/7, (4.2)

which one expects it to have at long distances. FC then
simplify (4.1) by expanding the backflow term to obtain

k- (r;—1,)
) D —
)3

i#i (r—1,)*

\I’F()EZ ek rid 1444 [0).  (4.3)

2T. D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953).
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Tt is for this latter form that their variational calculation
is carried out.

The FC wavefunction, (4.3), lends further support to
our picture of backflow in liquid helium as arising from
an interaction between the Feynman quasi-particles,
pxt|0). To see this, we Fourier analyze the backflow
term, (4.3), and so obtain

Tro=(pd+E T 4rAL(k-0)/¢]

Xeiq.rfei(k-‘q)J‘i} I0>’ (44)

which may also be written as

k-q
Ve ip'+ 2 drd——pyipi_q [ [0).  (4.5)
Fk q2

Equation (4.5) shows that the backflow term approxi-
mately corresponds to including a term which allows for
a superposition of single quasi-particle and double
quasi-particle excitations in the system wavefunction.
In other words, it corresponds to an approximate treat-
ment of the interaction between Feynman quasi-par-
ticles. [ The term with q=k is omitted in the above sum
because otherwise the double excitation function would
have a substantial single excitation component (of order
47 AN) mixed in.]

In fact, independent of the work of FC, Kuper!®
carried out a perturbation-theoretic treatment of the
interaction between the virtual Feynman quasi-particle
excitations. We now derive the wavefunction used by
Kuper, and compare it to (4.4). We begin by defining a
Hamiltonian, H', which directly yields the Feynman
excitation spectrum, when acting on the ground state:

H'pit0)= (Ex(k)+ Eo)pit|0), (4.6)

where Eg is the ground-state energy, and Er(k) is the
Feynman quasi-particle excitation energy. Then, in
Rayleigh-Schrodinger perturbation theory, the modified
quasi-particle excitation takes the form?

(I/NSwpe"Woti 32 Axgpr—g'pa ¥o/N(SiSo)"2, (4.7)

q#0,k
where
(Wo| pr—gpg (H— H")pi | Wo)
kq™ . (4.8)
Ev(k)—Er(k—q)— Ex(q)
The numerator of 4 may be written as follows:
(Wol pr—qpof{ [H 01! ]— Ex(K)pi'} | o)
=(¥o| pr—qp{k-jx— Er(k)pi'} [ ¥o). (4.9)

We remark that in the limit of 2 — 0 this numerator
vanishes, since, as we have seen in the preceding section,
the single Feynman excitation exhausts the sum rule.
This is as it should be; i.e., the perturbation, H—H!,

2 We are neglecting the overlap integrals, (\Ilo,pkpk_quqf\llo),
which if included, would alter (4.7) by a small normalization
constant.
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should vanish in the limit 2 — 0, since in this limit the
excitation is properly described by py i

Another way of saying this is that the strength
of the perturbation H—H! is directly determined by
the amount of backflow required in order to bring
about longitudinal current conservation. Thus, when
(n]k-3,t0)=wno(pk!) nosZ Er(Kk) (pkf)no, we get a contri-
bution to the double excitation mode. We expect that
Axqis O(k?) in the limit of small % although we have not
yet constructed a proof of this conjecture.

The wavefunction (4.9) is that considered by Kuper.
Using it, he performed an approximate calculation for
k in the roton region, and found E,=211.5°K, a value in
quite good agreement with that obtained by Feynman
and Cohen. Quite recently, Jackson and Feenberg? have
carried out calculations analogous to Kuper’s, with the
only difference residing in their use of Brillouin-Wigner
perturbation theory, in which the energy denominators
in (4.7) are to be replaced by the observed excitation
energies. They obtain results which compare favorably
with those of FC and with experiment. Such agreement
is perhaps not surprising, in view of the close relation-
ship between (4.7) and (4.5). Indeed, since backflow
corrections are small for low-£ excitation, it should be
possible to show that (4.7) reduces to (4.5) in this limit,
for in these circumstances the amount of the double
excitation wavefunction required is small and should be
accurately treated by means of perturbation theory. We
have attempted to establish such an identity, but have
not yet been able to do so; the principal stumbling block
would appear to reside in approximations required to
estimate the contribution to 4y, from the three-particle
distribution function.

From a microscopic point of view, we conclude that
the success of the FC theory is a consequence of perhaps
two different factors:

(i) Allowing the virtual excitation of pairs of Feyn-
man quasi-particles goes a long way toward including
the many effects of the interaction between different
quasi-particle configurations.

(if) The Feynman quasi-particles for values of £ lying
between ~1 A~' and 2 A~! behave rather like slow
moving impurity atoms in their coupling to the long
wavelength excitations. Thus, the dipolar form of the
backflow will be justified in treating, for example, the
roton-phonon interaction (the coupling between a
Feynman roton and Feynman phonons, which gives
rise to the lowered roton energy).

We can also obtain at least a qualitative under-
standing of two aspects of the F'C calculation. First, FC

% We remark that the apparent vanishing of the denominator
in (4.8), which is nearly possible if k and g are both phonon wave-
vectors, therefore, leads to no difficulties; the numerator vanishes
sufficiently rapidly for small £ that 4xq — O in this limit.

25 H. W. Jackson and E. Feenberg (to be published). We should
like to thank Professor Feenberg for sending us a copy of their
paper in advance of publication.
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find that Epc(k)=2%Ew(k) in the vicinity of the roton
minimum. That the result should be of this order of
magnitude follows from our estimates at the close of the
preceding section. Where coherence effects are not im-
portant, we could initially regard each He atom as
surrounded by a phonon cloud, which acts to increase its
mass to roughly M*=3M ; if we now superimpose the
dressed-particle states, we would find

R k2

E(k)=2 (4.10)

2M*S(k) 3MS(k)

a result which agrees rather well with FC for the region
between 1 A~ and 2 A-1. A similar argument could o/
be used for the long-wavelength excitations, because
here coherence effects dominate in determining the
effective interaction between quasi-particles.

Second, we remark that it is easy to-understand why
FC, and all other theories, fail for the excitation spec-
trum between k=22 A~! and 2.8 A-1. Here the long-
wavelength approximation, which is at the heart of
Egs. (4.1) to (4.3), has begun to break down. The notion
of a dipolar backflow is not particularly appropriate
when one is considering distances of the order of an
interparticle spacing.

v

Most of the microscopic calculations which have thus
far been carried out on the excitation spectrum of an
interacting boson system are equivalent to using a
modified Bogoliubov theory in which an effective po-
tential 7, is introduced into the Bogoliubov excitation
spectrum (3.15). The excitation spectrum in the low-
density limit is obtained if one replaces V' and V¢ by an
effective potential,

V0=V, ®=72fy/M, (5.1)

where fo is the low-energy pair scattering amplitude.
This form of the excitation spectrum is valid when the
scattering length is small compared to the average
particle spacing, that is, when

N 1. (5.2)

For a system of hard spheres for which Eq. (5.2) is not
satisfied, Brueckner and Sawada?® have proposed taking
into account a selected further class of interactions
beyond the multiple-scattering terms summed by means
of the pseudopotential fo. Their approximate summation
is equivalent to replacing V' by the effective potential

Vi@ =X sin(ka)/ka, (5.3)

where a is the hard-sphere radius and X is determined in
self-consistent fashion.

In all of the microscopic calculations, Bogoliubov,
low-density, Brueckner and Sawada, the effect of the
depletion of the zero-momentum state as a consequence

26 K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957).
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of particle interaction is neglected. Such neglect is
justified for the weak-interaction and low-density limits;
it is not justified in the intermediate-density calculation
of Brueckner and Sawada. Recently, Parry and ter
Haar?” have shown that if one takes the Brueckner-
Sawada form for the excitation spectrum, the depletion
of the zero-momentum state amounts to some 2709.
This is, of course, a clear indication of the need for
carrying out a consistent calculation in which the
effects of depletion are taken into account. When this is
done, the depletion is reduced to some 509, (i.e.,
N =24 N) ; unfortunately the good qualitative agreement
between the Brueckner-Sawada excitation spectrum and
the experimentally measured one also disappears.

An estimate of the depletion of the zero-momentum
state in liquid He has been made by Onsager and
Penrose.'® They find a depletion of some 929,. The
likely quite considerable depletion of the zero-mo-
mentum state poses a particular problem in the calcula-
tion of S(kw). In the framework of Bogoliubov ap-
proximation, one has

pkfzdo’l(l_k—"'dkT(Lo. (54)

Consequently, pix couples the ground state to a single
excited state, namely, that with one quasi-particle of
momentum k and energy wy. The corresponding matrix
element is

(ka) 0n= (I\Tok2/2MQ k)x/z'

The factor (No)!/2 originates in the operators a,f and aq.
Hence

S (kw)= (N ok2/2MQ )6 (w—Q4). (5.5)
Whatever the choice of Q, this will yield
0 . k2
/ S (kw)wdw= Ny—. (5.6)
0 2M

We thus see that the Bogoliubov approximation fails to
satisfy (2.7), the sum rule, by an amount of order
(N—Ny)/N, because in this approximation, the strength
of the quasi-particle contribution to S(k,w) contains a
factor Ny, instead of the expected N. This is a basic
shortcoming of the Bogoliubov method, independent of
the neglect of backflow effects. In order to see what are
the terms which are neglected in the Bogoliubov ap-
proximation, it is convenient to turn to the field-
theoretic formulation of the interacting boson prob-
lem.”8 S(kw) is most readily obtained by calculating
F(k,w), the Fourier transform of the density-fluctuation
propagator, F(k,r). The latter is defined by

F(k,r)=—1i0| T{px(r)p1(0)}|0),

where |0) is the exact ground-state wavefunction, T is
the Dyson chronological operator, which orders earlier
times to the right, and the operators px(7) are given in

(5.7)

*»W. A. Parry and D. ter Haar (to be published).
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the Heisenberg representation. One has

0

Pln)= - / do F (keo)eo7;

™

(5.8)

it is straightforward to show from the definition of
F(k,r), (5.7), and of S(kw), (2.5), that

S(kw)=— (1/7) ImF (ko).

As shown by Hugenholtz and Pines,® when one re-
places the condensed state operators, ao and aof, by
A/No, one finds three distinct contributions to F(k,7)
corresponding to diagrams with two, three, and four
external lines. Thus

(5.9)

F(k,7)=F+(k,7)+F"k,7)+Fe(k,7), (5.10)
where
Fe(k,r)=—iNo0| T{[a—«'(r)+ax(r)]
X[ax'(0)+a_(0)1}[0), (3.11a)
Fr(k,r)=—iN¢"X0| T{[a—«'(r)+ax(r)]
X[224 agx!(0)aq (0) J} [0), (5.11b)
re(k,r)= — 0] T{[X ¢ a1 (T)aq(r)]
X[ aq161(0)aq(0)1}0), (5.11c)

and the primes on the summations denote the fact that
creation and annihilation operators for zero momentum
bosons no longer appear.

The first class of contributions, F¢(k,7), are the only
terms one would keep in a modified Bogoliubov calcula-
tion. These represent the direct quasi-particle contribu-
tion to F(k,r), since their calculation requires only a
knowledge of the single-particle Green’s function,

G(p,r)=—1(0] T{ap(r)a,?(0)}[0),  (5.12)
and the closely related quantity,
G(p,7)=—1(0] T{ay(r)a—p(0)}[0).  (5.13)

In the modified Bogoliubov approximation we have been
considering, one has®

G(k,w) = M;c2/ (w—Qk+16) —"Dkz/ (w+9k—i5), (514)
G (p,e) = — i {1/ (0—Qu+16) — 1/ (w+Qx—18)}, (5.15)

where G(kw) and G(kw) are the Fourier transforms of
G(k,7) and G(k,r). Hence,

Nok2/M
F(k;w) = )
(w—Qk+i5) (0+Qx—10)

which leads at once to (5.5). In order to reach the con-
clusion (5.16), we had first to neglect F(® and F(®, then
to use the approximate results (5.14) and (5.15).

To summarize, the modified Bogoliubov theory is a
one-parameter theory. If one choses that parameter (Qy,
say) so as to yield agreement with experiment on the
quasi-particle excitation spectrum, then one finds that
the quasi-particle contribution to F(kw) and S(kw) is

(5.16)
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far too weak to exhaust the sum rule, a difficulty which
may be directly attributed to the depletion of the zero-
momentum state as a consequence of particleinteraction.

We know from the arguments of Sec. IT that higher
order terms, either from F(® and F(, or from an im-
proved calculation of G(pe), will act to increase the
quasi-particle contribution to the sum rule for low
momentum transfers in such a way that it exhausts the
sum rule. We can think of such terms as arising from
various kinds of coherence effects; a simple model for
the role played by such effects has been discussed else-
where by one of us.?® Here we wish to point out that as
one goes to large momentum transfers, such coherence
effects will fade away—essentially because for suffi-
ciently large momentum transfers, the interactions are
unimportant, and the behavior of the system will re-
semble that of a gas of noninteracting particles. In other
words, the quasi-particle contribution to .S (kw) becomes

Ned(wo—k/2m); k>1 A (5.17)
so that in this limit
fe—= No/N, (B>1 A7), (5.18)

The experimental results of Henshaw and Woods,
which we have plotted in Tig. 6, tend to offer support to
this argument. We remark that already at k=2.7 A—,
frhas reduced to 0.08. Indeed, it would seem likely that
fx is somewhat smaller than this. We further remark
that if one accepts (5.18), then the experimental results
for fi are in good agreement with the value of 0.08
proposed by Penrose and Onsager.!8
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APPENDIX

We present here a brief resumé of the Bogoliubov
approximation.® To begin, we replace the operators a,
and aof in (2.1) by the “c”-number, (No)1/2, where N, is
the average number of particles in the zero momentum
state. For weak interactions, or with a sufficiently dilute
system, Ny may be taken equal to NV ; more generally,
it should be regarded as a parameter, along with g, to be
determined by Egs. (2.2) and (2.3). The resulting
Hamiltonian may be written as

H'=H,+H,, (A1)
with
Hi=% [&aa+(NoV1/2) (axta_rt4axa_i)]. (A2)
k
Hy=Ng23" Vy (alﬁkfa-kal"“(ll-dedel)
k1
+ 22 iViaalaritavan. (A3)

k1,1

#D. Pines, Proceedings of the Summer School on Liquid
Helium, Varenna, 1961 (to be published).
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The primes denote the fact that creation and annihila-
tion operators for zero-momentum bosons no longer

appear; we have omitted constant terms, and
€k=€k+[\70[vk+ VO]—M- (A4)

The Bogoliubov approximation consists in neglecting
the terms H,, (A3). The Hamiltonian, Eq. (A2), may
then be diagonalized by the transformation

(AS)

A =URCxg — vka_k’f,
where
w? =3[ 1+ &/ 7],

‘ZJkZI%E—" 1+Ek/h9k]

The transformed Hamiltonian is (aside from a constant)

(A6)

Hy =3 1Qailo. (A7)
k
The energy of the elementary excitations is
Q= (&2—N@V )12 (A8)
The chemical potential u is given by?
u=NoV, (A9)

so that one finds the well-known excitation spectrum,
Qu=[Nok2V ./ M+k*/4M ]2, (A10)

which displays phonon-like behavior for small .
The relation between N and N is given by

ZV—N()=<O[ Z dkfdkl()): Z Y)kz

k#0 k#0
ék"‘NoVk
. [~————%]g0<vk>. (AL1)
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The Bogoliubov approximation is a weak-coupling
theory, which is valid only to lowest order in V; there-
fore, according to (Al1), N¢=:N; the depletion of the
zero-momentum state arising from particle interaction
is to be neglected.

The calculation of .S(kw) is straightforward. We have

P =2 agrilaq= N (a"+a_)+22" agr Wag, (Al12)
q q

where the prime denotes the fact that terms with q= —k

AND NOZIERES

or q=0 are to be omitted. In the Bogoliubov approxima-
tion, only the first term on the right-hand side of (A12),
which is of order N2 is kept. On applying the trans-
formation (AS), we find

PkT= N01/2 (%k—‘vk) (Olkf-f‘d—k)

= (NokQ/ZMQ;C)W(ak’f—l-aLk). (A13)

The density-fluctuation excitation spectrum is identical
to the quasi-particle spectrum; the excited state =
coupled by py to the ground state |0) possesses a unique
excitation frequency, Q, and the matrix element,

(pr) o= (N ok?/2M Q)1 P2 (NkE?/2M Q)12 (A14)
Hence
Sp(kw) = (Nok?/2MQ )6 (w—Qy)
(NE/2M Q)8 (w—Qx), (A15)
Sp(k)= (No/N)(R/2MQ)==2(k?/2MQ;). (Al6)

Moreover, the sum rule (2.7) reads

0

/ do 0S5 (ke) = Nok?/2M=NE/2M.  (A17)
0

From (A16) and (A17) it follows directly that the
Bogoliubov approximation is a weak-coupling version of
the Feynman assumption that a single quasi-particle
excitation exhausts the f-sum rule, (2.7).

Finally, we will verify (within the Bogoliubov theory)
the statement made in Sec. IT that the matrix elements
of (JxMao vary as k2 for small £ when the state |7n)
represents a single elementary excitation with wave-
vector k. To do this, we write the current operator jy!
given by Eq. (2.15) for configuration space in second
quantized form:

1
it = o % (2q—k)a 'aq . (A18)

Using the Bogoliubov approximation, the terms with
q=0 and q=k are the most important so that
(1) n0= (N o2/ 2M)(n | axt—a_x|0)

= (No2k/2M) (ux+vi). (A19)

Since ux+vi~k12 for small k, we see that (Ji) .o~ k%



