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Now (6.7) is exactly the same as (4.32) for proper
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diagrams, and there is no difficulty passing to the infinite
range limit. Thus (4.35) is valid for the proper vertex
part.

Therefore, we conclude that the results (4.40)-(4.43)
are valid for the proper vertex parts on the Fermi
surface and that consequently all the identities of
Sec. V still hold for proper scattering functions on the
Fermi surface.
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Using the results of the preceding paper, it is shown that a large class of the conclusions of the Landau
theory of Fermi liquids may be established within the framework of many-body perturbation theory. Both
equilibrium and transport phenomena are discussed. The theory is also carried out for long-ranged Coulomb
forces. Finally, it is shown that a rather simple general expression for the quasi-particle distribution function

of Landau may be given.

I. INTRODUCTION

N this paper we shall be concerned with the verifi-

cation of the results of the Landau theory of Fermi
liquids for certain equilibrium and nonequilibrium
phenomena. We shall do this first for short-ranged
forces and then generalize to long-ranged Coulomb
forces. The necessary formalism for this purpose has
been given in the preceding paper. In addition, we
shall show that it is possible to give a very simple
general definition of the “quasi-particle distribution
function” which occurs in the Landau theory.

We begin our discussion with a brief summary of
the Landau theory.? Consider first an ideal Fermi gas.
A great many properties (heat capacity, compressi-
bility, conductivity, etc.) of this system are determined
(for temperatures much less than the degeneracy

* Supported in part by the Office of Naval Research.

1 P. Nozieres and J. M. Luttinger, preceding paper [ Phys. Rev.
126, 1423 (1962)7]. We shall refer to this paper as I. The notation
and assumptions used in the present paper will be the same as
those of I.

2See A. A. Abrikosov and I. M. Khalatnikov, Soviet Phys.—
Uspekhi 66, 68 (1958).

temperature) by the nature of the single particle states
which lie in the immediate vicinity of the last occupied
single-particle state. It is these same properties that
the Landau theory tries to calculate for an interacting
system of fermions. We can now state Landau’s
assumptions as follows:

(1) If the interaction is turned on, the single-particle
states in the neighborhood of the last occupied one
remain eigenstates of the system. We call these quasi-
particle states, and say that a quasi-particle & is present
if the state & is occupied. The low-lying excited states
of the system are assumed to be in one-to-one corre-
spondence with those of an ideal Fermi gas, the quasi-
particle states just replacing the particle states. There-
fore, since the number of real particles is conserved,
in these low-lying excitations the number of quasi-
particles must also be conserved. Adding a particle to
the system must therefore also add a quasi-particle.

(2) The state of the Fermi liquid for weak excitation
(equilibrium or nonequilibrium) is entirely described
by the distribution function #(k,x) of quasi-particles in
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momentum and configuration space.® The normalization
of n(k,x) is such that n(k,x)d*kd?x/(27)? is the number
of quasi-particles in @kd*x.®> (This already implies the
semiclassical limit, since both the momentum and
position of the quasi-particles is given.) The distribution
function for quasi-particles for the system in its ground
state (n°) must be

%0"—“ 1, Ek0</1()

1.1
=0, E>uo (1.1

when E;? is the quasi-particle energy for the system in
its ground state. o is the chemical potential at absolute
zero, since the addition of one quasi-particle is the
same as its addition of one real particle. If the system
is excited, the quasi-particle energy will change. (In
the Hartree-Fock approximation this would just be due
to the self-consistent field of the neighboring particles.)
Now by our general assumption the energy of the
system must be some functional of #, i.e., E=E{n}.
If the distribution function changes by an infinitesimal
amount &z, and the total energy correspondingly by
8F, then we define the quasi-particle energy F(k,x) by

dPkdx
6E=/E(k,x)6n(_k,x) . (1.2)
(2r)?
That is,
E(kx)= (20)%E/on(k,x). (1.3)

E(k,x) is still a functional of #. If the distribution »

does not differ very much from #° we may write
n=n"+n' (1.4)

and expand in #»’. That is,

oF
E(kx)= (27r)3<— ) + (27)? / sk dx
01 (kx)/ nen

LD
><<_““—> (k)4 (15)
on(kx)on(k'x")/ aend

If the forces are short-ranged and #»’(#2’) is a very

slightly varying function of x’ over the range of the
forces (both assumed by Landau), then we may write

L

(27)6< = frd(x—2a")  (1.6)

on (x,k)on (x’,k')>n=no

and, therefore,

1
F(k )= FEd4+—— / B fron' (B )+ (1.7)

(2m)

The quantities E;° and fy are the basic quantities
necessary for the phenomenological theory of Landau.

3 Units are such that Z=1 throughout this paper. We denote
three-vectors k and x by italic symbols throughout.
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Since fri is a second functional derivative, we have

Sewr= furr (1.8)

Further, it is assumed that if the original particles
have a charge e then the quasi-particles also respond to
external electromagnetic fields as if they had the same
charge. That is, in an external field characterized by a
vector potential 4 and a scalar potential ¢, the Hamil-
tonian of the quasi-particles (%) will be given by

h(kx)=E(k—(e/c)4, x)+ep. (1.9)

(3) The distribution function satisfies a Boltzmann-
like transport equation

In(k,x) on oh on oh
LEEE-ED
ot a=1,23\0%, Oky Ok 0%«
on(k,x)
+<— > =0. (1.10)
at collisions

The term (8n/91)co1isions 1S absent in equilibrium or
when there are no impurities or other scattering
mechanisms present over and above the particle-
particle interaction originally in the theory. We shall
be concerned with a pure Fermi liquid in this paper,
and shall not include this term.

It is easy to see from (1.10) that the total number of
quasi-particles is conserved, and also that the current
density defined by

e h(k,x)

) a
ga(x)=~—~ /ddk n(k,x)~ )
2n)? ok

(1.11)

a

satisfies the equation of continuity. Therefore, q(x) is
taken as the current density of the system. A similar
expression may also be given for the energy current
density Qq(x):

1

Q) =(~27;)—3 /d3k n(kx)h(k,x)

h(k
oA x—) (1.12)
k

a

We shall only be interested in the transport equation
in the linear approximation, i.e., when the deviation
of n from #° is very small. For completeness we shall
also include an external magnetic field. If we write

n=n"(k— (e/c)A)+n1(k— (e/c)A,x)  (1.13)
and
In(k)
n(k;x) = — g (k,x)
e (1.14)
=6kg(k7x)) '

where

8r=08(uo—E1Y), (1.15)

then we see at once that (1.10) (without the collision
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term) becomes
dg (g+£1)
ey 1

a[ a=1,2,3

V ka__'_
Iy

e d(g+£1)
+-(Vlei)a—~‘~*—eEaVk,“} =0, (1.16)
c 0k

where

Vir=0Ey"/ 0k, (1.17)

£y (k) :
U\rRX)=—""
(2m)

/d:&kl fkkakrg(k’,x), (118)

and E* and H* are the external electric and magnetic
fields. Similarly, (1.11) becomes

e

Jao() :aw_)?' /dsx g(k,x)55,

1

X { Viptt—— /dak' Srrbir Vk""} . (1.19)
(2r)

If the electric field has the form

Ea=F g% (00D (1.20)

and we neglect the corresponding magnetic field, then
so will g and the current density have this form. Putting

(1.21)
(1.22)

g(kyx)=gqo®eitrsed,
Jal2) = Ggoe' 70,

we obtain finally

"‘i“’ng(k)"}‘[i‘r Vk+f(Vk><H) ’ Vlc:|[ng(k)
4

1
—{—»-————- /ddk/ fkk'a/;'ng(kl)j]—eEqw' Vk:(), (123)
(2m)?

and

14
a&— 3
3qw (2‘”)3 ) d*k ng(k)sk
1

X { Vka‘f_zz /d‘gkl f}ck'(sk' Vkra’ . (124)

)}
In (1.24), H represents a constant external magnetic
field. In this paper we shall not consider this case, and

therefore (1.24) becomes
1
—iwgqu(k)+ig- Vk<ng(k) +— [d3kl fkk’ng(k’)>
2mr)? .
—eF,, Vi=0. (1.25)

To conclude this section, we list some other results of
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the Landau theory, for purposes of future reference.
In equilibrium at temperature 7' (3=1/kT) the quasi-
particle distribution is given by

n(k)=1/(# P10 41),

where Ej, is the quasi-particle energy at temperature 7°
[itself a functional of #(k)7]. It is easy to see, however,
that the difference between E; and E;° is of the order
of (kRT)?/u and can be dropped. The heat capacity at
constant volume is given by the usual formula for a
Fermi gas, but with the unperturbed energy replaced
by the quasi-particle energy F°. If the system has
translational invariance and if the unperturbed single
particle energy is of the form e,=#k%/2m, then Landau
has shown that there is a relationship between the un-
perturbed velocity and the quasi-particle velocity on the
Fermi surface. This is, for £ on the Fermi surface,

ka 1o
yr=—="V, 24— /dgk' Jiwbe Vs (1.27)
m (2m)?

(1.26)

(1.27) becomes the Landau effective-mass equation if
the interaction is isotropic so that the Fermi surface is
spherical, and fir» depends only on the angle between
k and %' if k'and %’ are both on the Fermi surface.
Finally the compressibility (K), as is well known,

is given by Lo T
KE_--(h> =?(—) )
v\ap/y N2\ ou/v,

In the Landau theory

N AEL (1)
oulvyp I
and

IEL(w) 1 , AL ()
= /d“k' fk;c/6kr<1-— ) (1.30)
o  (2n) e

(1.29)

In the isotropic case this enables us to solve at once for
(0Ex%/du) on the Fermi surface, and we at once get
Landau’s expression for the compressibility. In the
more general case we have to solve the integral equation
(1.30); in the next section we shall indicate how this
may be done.

II. EQUILIBRIUM PROPERTIES

The equilibrium properties according to the many-
body perturbation theory have been discussed by
Luttinger.* It is clear that the result for the heat
capacity is the same as Landau’s, if we identify the
“‘single-particle excitation energy at absolute zero” of
Luttinger with Landau’s quasi-particle energy E;°. This
provides us therefore with a formula which could in

4. M. Luttinger, Phys. Rev. 119, 1153 (1960). We shall refer
to this paper as L.
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principle be used to calculate E,°, though of course
realistic calculations are difficult if not impossible.
Now we consider the compressibility. From (L. 70)
we see that (1.29) is also a consequence of the micro-
scopic theory. It only remains to verify that the
Landau expression (1.30) for dE,%/du is the same as
that obtained from the microscopic theory. From
(I. 5.1) in the limit of T=0 we see that K%/ du satisfies

ok, 0E,°
=) fkk'wak'<1— )
ou * A
0FE,"°
/d%k' V fo 5k<1— ) (2.1)
(27r)3 I

where fir is now the zero-temperature limit of f©.
Comparison with (1.30) shows that these are the same
if we make the identification

Jeer=V fir

Therefore, we have expressions for both 7% and fi .
From (I. 5.2) we see that the general solution for
9E;/du is actually given by

(2.2)

oL 1%4 .
_Z fkk'qak'*_ a3k fk;c/qé;c:. (23)
n (2m)?
Finally, we consider the “effective-mass” equation

(1.27). From (1. 5.3) we have, under the same conditions
that (1.27) is valid,

10 = V@3 [rw 0 V™
k(

=V*+ /dgk' V firdi Ve,

2m)3
which is the same as (1.27) with the previous identifi-
cation of E® and fr.

III. TRANSPORT EQUATION

We next wish to verify that the current density as
calculated by the Landau prescription [(1.24) and
(1.25)7] agrees exactly with that calculated from the
many-body perturbation theory point of view. To do
this we first give an explicit expression for the Landau
current density.

Let us consider (I. 3.13) and (I. 3.14). If we replace
2wilo/B by w (where w is imagined to have a very small
negative imaginary part), these formulas provide us
with an analytic function f(P) of w in the upper half
w plane, where now P=(qw). Making use of this
function (I. 3.13) and (2.2), we see by direct substitu-
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tion that the solution of (1.25) is

iq- Vi S fue(P) o Vi
g Vime) 7 "L<q

Substituting this in (1.24) and using (1. 3.13) and (2.2),
we obtain

(3.1)

Vi—a)

e’ , BkE,l,)a/ .
5q»a=“_< Z ViV : — — 1w Z V5«
V\&,a i(qg-Vi—w) bkl
0% Spr

X~ Siwr (P) *Vk’a(]"“‘”a)
i(g- Vi—w) t(q Vi—w)

e

=——C V¥ (P) V¥ E °

Viw ke’

— 2 Visu(P) fir ()8 (P)V ™ Eqa®),  (3.2)
kk'a’

where we have used (I. 3.16).
Similarly, the charge density (p,,) may be calculated
directly or obtained from the equation of continuity:

10" Joo—1iwpga=0, (3.3)
yielding
_—“—_{Z 6k(])) Vk qw
Viw ke’
= 2 5(P) frr (P)or (PYV ¥ By}, (3.4)
ko

We notice that §4.% and py. only depend on properties
of the system on the Fermi surface because of the §;
and §; functions.

Now, how can we verify (3.2)? In order to do this
we must have an exact expression for §,.* and then
transform it into the form (3.2). The type of formula
we need has already been given by many authors.®
The particular form which we shall need is developed

in Appendix A. From (A28)
Ve? [ B *
( ); 3.5
VN dw

1w m
where S*'«(P) is defined by (I. 3.3). From (I. 5.22)
we have

62
nga: pu—

A‘V
Sea(P)=8a4(P)=— —§pqr—3 V25, (P) V'
m k

+ X Vi6i(P) frr (P)Si (P)V 1o,

k k!

(3.6)

® R. Kubo, J. Phys. Soc. Japan 12, 570 (1957); P. Martin and
J. Schwinger, Phys. Rev. 115, 1342 (1959)
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Therefore,

2 Eu* . )
Sqw‘”:*l; > {2 Viedr(P) Ve
o’ k

iw

— 2 Vi8k(P) frr- B (P)V '}

k&

3.7

Comparison of (3.7) with (3.2) shows that they are
identical. Therefore, the Landau theory does give the
correct current density.

IV. TRANSPORT EQUATION WITH LONG-RANGE
COULOMB FORCES
Let us consider the exact expressions (A23) and
(A29) for the current and charge densities. Instead of
expressing them in terms of the applied field E,.%, let
us express them in terms of the total field £, in the
sample. From Poisson’s equation, this is

Eo=Eo—iqa(Vity/)p e, (4.1)
where
u,=4me?/ Vg (4.2)
Therefore,
1 B
Pe=""2_ / dv ez (] _,
V «
Uqpoo B .
| dve W (ig- T _(V)pg), (4.3)
e 1w Jo
1 8 B
Jgo*=—2_ / dv e (0(J_ ' (v)J )~
Ve Jo 1w
Ugpgo P
22 dv e (g T ()T )
62 1:(1.) JO U
N Ugpgo
- — (iga). (4.4)
m  iw
Now, by means of the operator identity,
ig-J +1[3C,p,1=0 4.5)

(which is the operator form of the equation of conti-
nuity), we can simplify certain terms of (4.3) and (4.4).
We have

B
/dv =00 (ig- J_, (1) A)
0 8
_ ./ dv—vz(lO)(((:}C,p_q(v))A>

B
/ dv e~w<lo> %- Q(D)A>

=11 (p—q(B)A)—(p—q A>+Z(Zo)/ e 0 {p_ q(v)A>dv}

{
|

B
() e / —vz<m<p-.,,<v>A>dv}. (4.6)
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We also have

[pasp—q]=0, 4.7)

[anip*q]: (;\{eg/,’n) (‘[a)'
Therefore, (4.3) and (4.4) become

and

(4.8)

1 B
P / do (I,
V oa /g
Uyg 8
o / B =W (ps), (4.9)
€ 0

1 B
(ngaz__ / dv =720
Ve .

v

) E,« NeE,~
X (O & = ————
o 1w mV  iw
g A
+_2qu/ dv e= 0 (p_ (1) %) (4.10)
€ 0

Using the same technique as in Appendix A, we have

e\1 E,-
pre= (= ) £ ST R k2
mlV o« 1w »
+ Z] (ka+qa/2)Rp(P)Fpp' (P)R, (P)
_quqw{z Rz)(P)+ Z/RP(P)I‘I)Z)'(P)RI)'(P)}' (4'11)

From (I. 3.3) and (I. 6.5), (4.11) becomes, with a
little algebra,

e\1 E,.°
Pgo= —(_>_" 2 X {Z Rp(P) (ka+Qa/2)
m/V « iw »
+ Z, (ka+qa/2)R:o(P)f‘:op’ (P)Ry(P)}, (4.12)
where we have also used — _
S{l()(l))
SO(P) =—e——— (4.13)
1—u,5"(P)

which also follows directly from the definitions and
(1. 6.5).

Similarly, (4.10) becomes, using (4.12), (I. 3.3), and
some manipulation,

e\2 1 E o
5=—() - T Ry(P) ke +a/2)
m

Ve dw

X (ka+qa/2)+ Z, (ka'+qa’/2>Rp<P)I~‘pp’(P)
nr 7 2 E I3

X Ry (P)(katqa/2)} — —

mV  iw

(4.14)

The expressions (4.12) and (4.14), which are still
exact for all ¢, are of the same form as we used to
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derive the Landau theory in the case of a short-ranged
interaction [(A27) and (A31)], with the scattering
function T' replaced by the proper scattering function
T, and the external electric field E,,* replaced by the
total field £, Therefore, since from I (Section VI),
all the Ward identities we need hold for the proper
vertex functions, it follows that the Landau transport
equation will still be valid in the long-ranged Coulomb
case if the electric field is replaced by the total field,
and if we make the identification

f,ck,= ka/cr“’= V(fm;'m) p,p’ on Fermi surface- (415>

This result has been anticipated by Silin.® The
explicit expression (4.15) for the interaction between
quasi-particles in the Coulomb case has not been
given previously.

V. INTERPRETATION OF THE QUASI-PARTICLE
OCCUPATION NUMBER

We now show that it is possible to give a rather
simple general expression for the “quasi-particle
occupation number” which occurs in the Landau
theory. Consider first the current density operator

o) =-2—e—{ (Cbam (/DAY YV T ba (/) AT}
m

e |:ka'+ka”

=—— 3 aptap
e .
—<~>Aa(x)jle’(k"_’°')'”. (5.1)
2

mV &k
If the system is in a state described by the density
matrix A7, then the average current density is given by
e kal_f"ka”
(g =Trlorgo ()= 5, | =

& ml

it <E>Aa(x):|ci(’”"""") "Lﬁ)/y'/y, (52)
c
where
Oprw=Tr(prar ar). (5.3)
Now if we put
k/=k~Q/27 k/’:k+Q/2) (54)
we have
(ga(x»av
e
= 2 (U/m)[ka— (e/c) A a() Je' *Drtar2,—qr2
k,q
e
=—3 [ka—(¢/c) A o(x) ] (k)x)
V &
RO )k () Au() D), (5.5)
(2m)?

8 V. P. Silin, Soviet Phys.—JETP 6, 387 (1958).
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where

Okw)=2q € Dpyg/a,kqr2. (5.6)

Trom (5.5), we sce that D(k,x) plays exactly the role
of the single particle distribution function at &, x, since
(1/m)[koa— (e/c)Aalx)] is just the velocity of a (clas-
sical) particle with momentum £ at the point x. D(k,x)
is of course just the well-known Wigner semiclassical
density matrix.

If the vector potential is finite, we can change the
variables and write

ktx
<5“(x)>w=zi—); | / d*k ;n-fD(k-l—(e/c)A (x), ). (5.7)

We are interested in the response of the system to
an external oscillating field described by 4. Then to
the first order in 4 we may write

D(kx)=DO (k) +DW (kx), (5.8)
and
Dk (¢/c) A (x), x) =D (k,x)

+(e/¢)(A- Vi) DO (k)4 DD (k,x).  (5.9)

Thus, the first-order single-particle distribution func-
tion fi(k,x) is given by

Jilkx)= (e/c)(A-Vi) DO (k,x)+ DD (k,x),

and the average current density is

(5.10)

[4

a( ) av— T
(g()) vy

. ka
/d3k —f1(k,x). (5.11)
J m

We now ask, is it possible to give an expression
analogous to (5.3) from which we can compute the
quasi-particle distribution function? It is clear that in
order to do this we need quasi-particle creation and
destruction operators to take the place of the particle
creation and destruction operators of (5.3). Now, in
general, this is not possible since the quasi-particle
states have a finite lifetime (i.e., they are not eigenstates
of the system). This lifetime, however, goes to infinity
as the momentum of the quasi-particle state approaches
the Fermi surface, for the system in its ground state.
Therefore, we would expect the quasi-particle states to
be well defined on the Fermi surface, and any properties
which just involve contributions from the Fermi
surface to be rigorously calculated in terms of them.

Let us consider the following operator:

Nk *
Ap=— f exp (23Ct) ay, exp (—idCt)eiLrtg—rtds,  (5.12)
\/ 2k Jo

In (5.12), E; is the energy of a quasi-particle of mo-
mentum &, 2, is defined by (I. 2.17), and #; is an energy
much less than the chemical potential but much greater
than the reciprocal lifetime of the quasi-particle state 4.
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As k approaches the Fermi surface, we may let
approach zero. This quantity plays the role of the
quasi-particle destruction operator, when % approaches
the Fermi surface.” That is, as k approaches the Fermi
surface, the state Ao (where ¥, is the ground state of
the system) behaves for a longer and longer time like
an exact normalized eigenstate of the system which has
one less quasi-particle in the state k. Apart from
normalization, the reason for this choice is fairly clear
intuitively: exp(+173C/)ax exp(—3Cs) acting on ¥, gives
a distribution of single-particle states of momentum #.
If the excitation energy of some such state is & then
the integrand oscillates with frequency &;— E;. Aver-
aging over long times means we only get the contri-
bution from the excitation of energy &.=1I, if the
time of averaging is not as long (much less than the
lifetime) that the quasi-particle state with energy £
decays away. That the normalization is correct will
appear from what follows. We shall take (5.12) to be
our definition of the quasi-particle destruction operator,
and shall show it has all the properties which we need.

If we go into the representation in which JC is
diagonal [see Appendix A, (A15)] then we can do the
integral in (5.12) at once, and we obtain

7/771c (ak)nn' _
(Ak)nn’z— . . . (313)
\/Zk Eytingt+E.—En
Similarly, the creation operator A, becomes
- ink (akT)nn'
(A kt)nn’= (514)

\/Zk Ek_ink+En’ - En.
Let us first consider the quasi-particle distribution
function for equilibrium. By definition this is (4xt4):

2

A1) ="=% .
- (ar)un (@i)wn
(B inutFon— En) (Bytimit B — Fn)
" 1

G ) (B E—ing) (Eam t+ime)

2k —c0
X lena(g_'_En"‘_‘En) (a'lcT)nn’ (ak)n’n- (515)
Now
Z, p,,é (x‘l‘En' - 'An) (akf) nn’ (a/k)n'n= Pk (x)f_ (x)y
f_(/U)E (516)

Bl 11’

70ne of us (P.N.) has used this quantity extensively in a
course given on the many-body problem during the past several
years. Similar operators have also been introduced by N. M.
Hugenholtz, Physica 23, 481 (1957) [see Eq. (12.9) of that paper]]
from a somewhat different point of view.
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where pi(x) is the spectral distribution function of the

propagator (see I. 2.10). (This is easily seen by just

writing down the definition of the propagator in terms

of exact cigenfunctions.) Therefore, (5.15) takes the
form

1 = N2
(AtAy=— dtpip(8) f~(§)—.
]" )2+ 2

(5.17)
2 J e (Ep— &)+

For k very near the Fermi surface, we have (I. 2.15)

pi(8) =2.0(E— L)+ pi(£), (5.18)

where p;(£) is a perfectly smooth function. Therefore

(At Ayy= f~(Ex)
L asero—" (5.19)
— 51 (8) f~(§)————. (5.1
2k J—w g (Ek-f)2+7}k2

The last term of (5.19) vanishes for & near the Fermi
surface since §i(£) is smooth, f~(¥) bounded, and
m?/ (Er—£)*+mn:* approaches mid((¢—Ex) as me ap-
proaches zero. Therefore for & near the Fermi surface

<AkTAk>=f_(E]c)= (5.20)

B 1’

which just checks the quasi-particle distribution func-
tion (1.26) of Landau. From the result, we see the reason
for the normalization factor 1/4/z; in the original
definition of the quasi-particle destruction operator.

We next want to calculate the quasi-particle distri-
bution function when the system is excited by an
external oscillating electromagnetic field.

Analogously to (5.3), we define

Dy =Tr(prApAs). (5.21)
Following Appendix A, we have
D/c”k/zD/;"k' (0)‘|—D/,:H;.-'(‘), (5.22)
with
Dy O = (At A )y =81 (At A1)
=0p [~ (L), (5.23)
8 E,.°
Dy O=%" / dv e=2 W (J_ @(v) At Ag) , (5.24)
« 0 iw

where z(ly) is to be replaced by w in the final results.
Using (2.4) we get

[ Eqwa
Dk'+q,k'(”=—2(ka+qa/2)< ; >
m ke 1w
B
X/ dv eIy, F(0)ar () A tA ). (5.25)
0
Now

(arqt (@ ar () ArtApryq)

=—(T (k1o () A1 (0)ar(v) Aw14(0))).  (5.26)
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The expression (5.26) would be exactly a conventional
two-particle Green’s function if the quasi-particle
creation and destruction operators A f, 4 were
replaced by ordinary creation and destruction operators
awt, ar. Therefore, the expansion of (5.26) in diagrams
has just the usual form, except that whenever the
expressions (@i far), (T(awrtar (1)), (T(ar 14! (#)ar 1))
occur, they are to be replaced by (Awf,A4x),
(T(Aptar )), {T(arsq' () Awyy)), respectively. Now
define .
Qu(s1,u2) = (T (A (1) ar(us))),
Qi (sr,12) = (T (@i (ur) A 1 (2))).

Consider first Qy(#1,u42) for 21>us. This is

Qr (1) = 3 pue72 En=End (A1) s (@) wrn
n,n’

(5.27)

= Z pne(m—uz)(ﬁn—En/)

n,n’

><< ink \ (a/lj) nn’(ak> n'n
/2 B it Eo —

n i\ (2) ()
- / dx <—k\ ' . (5.28)
—0 \/ZA-/ Ek—-x—ink

by (5.16).

If % is near the Fermi surface, we make use of (5.18).
Since 7, approaches zero, the regular part of p, gives
no contribution, and we get

Or(mi,u2) = (\/z1)e DB f=([,) 0 (ui>us).  (5.29)
Similarly, for #e>u4, we find
Qr(uryuz) = — (V/21)e D EfH(Ey),  (ua>m)

JH(E) =1~ f~(Ex). (5.30)

Therefore, Qy is a conventional unperturbed propa-
gator with the unperturbed energy replaced by £y, i.e.,

1 el (ui—usg)
Qi (wr,u2) = (V/70) = 22 ———— (5.31)
Bt Gi—E
Similarly,
1 efitui—uy)
(5.32)

Qlc(ul,%z) :\/Zk‘ Z - .
Bt Li—Ey

Therefore, just as in Appendix A (A26), we may
write

(@rrot (@ ar () Ak Ay o)

IOk

g % #0618 Zz: Spsp—l—p

—B%,,08K (0F) f~(Ew)
+Z R:n(P)Fpp’(P)gp’Sp’er}

i,

(5.33)

AND P. NOZIERES

where

SﬂE 1/(§Z_E/C)-

The sum over / in the first term of (5.33) is done at
once (by the technique of I, Sec. 2, for example):

(5.34)

1.
BZ SpSptp=—08(P),
1

using the notation of (I. 3.14).
The second term contributes nothing to (5.25). For
the third term we have a sum of the form

(5.33)

1
EZ SpSpol (1) =1 (5.36)
G

This can be treated by exactly the same method used
for the sum in (I. 2.11), this giving for the contribution
from the poles of 5,5, —0u(P)F(x). The other
term, arising from any singularities of F({;), can be
dropped. This is not very easy to see directly from the
sum (5.36), though it is not difficult to verify for some
classes of lower order diagrams for T',, (P). However,
from the original definition of Dyryq ' (5.25), the
fact that the quasi-particle operators 4,14, stand
to the right means that we only get something when £’
and %'+-q are on opposite sides of the Fermi surface
(¢ assumed very small, but not zero). Therefore, the
result is proportional to f~(Eryq)—f~(Ew). Now for
the terms from the poles we get another factor of
1/ Ewyq— Er—32(lo)], so the pole term is of order unity.
The term arising from the singularities of F({;) has
however no singular behavior for small ¢ or z(ly), and
therefore this term is of lower order in P. Therefore,
we may take

I=—=0bi(P)F (u). (5.37)

We finally obtain, for small P, on putting this all
together,

Dk',kq_q(l) =e% Z
a

;' a
qw

[Skr(P)vk/“

W

+22 2Ry (P)T ppr (P) J=a

E -
o5 2~ (DT (P)Jriw (5.38)

w

using the notation of (I. 3.2). Since &y (P) forces %’ to
be of the Fermi surface, we may write this as

el g,
Dy g V=2 : —ou (P)ri(P), (5.39)
¢ W
from (I. 3.11).
From (I. 3.20) and (I. 4.31), we have
‘l'kf“(P): Vk’a—Z/c’ f/cfk/r(P)Sk”(P)Vku"‘. (54(3)
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Comparison with (5.6) and (5.10) shows that we
would expect the gth Fourier component of the first
order quasi-particle distribution function 7:(%,q) to be
given by

nl(k)q) = (6/6) (A qw® Vk)Dkk(O)_i_Dk+q/2,k#q/2‘1). (541)

Substituting (5.20), (5.39), and (5.40) into (5.41), we
obtain

eEqw . Vk tq . Vk
ﬂl(k;Q) =0y N -
i(g-Vi—w) i(g Vi—w)
Op (eB g Vir®)
XY fer (P)— . (5.42)
i’ (@ Vi—w

Direct comparison with (1.14) and (3.1) shows that
this is identical with the quasi-particle distribution
function obtained by solving the Landau transport
equation. Therefore the quasi-particle distribution
function is just given by exactly the same expression as
the distribution function obtained from the usual
single-particle density matrix, except that particle
creation and destruction operators must be replaced by
quasi-particle creation and destruction operators.

APPENDIX A. RESPONSE TO AN ARBITRARY FIELD

Consider a system in an arbitrary external electro-
magnetic field. Let this field be given by a vector
potential A (we choose for simplicity a gauge with
vanishing scalar potential). We shall be interested in the
linear response of the system and shall therefore study
only one Fourier component of 4, i.e., put

Ae=4 ,2eilaz—et), (A1)
194

Et=— — —=F,%iceot) (A2)
¢ ot

Ego®= (c/iw) A4 0™, (A3)

In these expressions imagine that w has a small positive
imaginary part, corresponding to the field being turned
on at f=—o0,
If the Hamiltonian of the system in the absence of
the field is
=3 (p)+U,

where U is the potential energy of interaction, then
when the field is present the total Hamiltonian is

Hr=3, e(pi—(e/c)4)+U. (AS)
For simplicity we shall take e(p) = p?/2m. This is not
at all necessary here, but it simplifies the writing
considerably.
Then to the first order in the field,
SCT=3C+%I67i‘”t,

A= — (1/iw) Ega-J—q

(A4)

(A6)
(AT)

LANDAU THEORY OF FERMI
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where

e
qua:_‘_ Z (j)iaeiq"r'.‘i’“e[q "”Pi“)-

2m i

(A8)

The current density operator at the point x is given by

¢ o [pr=aae],

go(x)=- —%)
T e
ia__ e/c im
—I—B(xi——x)j) — . (A9)
m
If we Fourier-analyze this,
JH@)=2q 7Yy, (A10)
we get
e .
Ji=—— TALp— (¢/) A e
2mV i '
ea = (/)4 T)
1 Ne* B2
=—J = . : (A11)
4 mV  iw

To find the average current density Jq.% we must
have the density matrix pr of the system. This satisfies

3PT/af=i[:PT,JCT:|. (A12)
Writing

pr=p—+Feiet, (A13)

where p is the equilibrium density matrix for a system
with Hamiltonian 3¢, and evaluating (A12) to the first
order in the field, we obtain

(‘:‘CyF) —wlf= (p,%{). (A14)

Let us label the representation which makes 3¢ diagonal
as follows:

3C¢H=E1:‘pno (AIS)
Then the solution of (A14) is
(Pn_Pm) ?/Inm
E.—E,—ow

(A16) is regular because of the small positive imaginary
part of w.

Now suppose we want the expectation value of any
quantity B. This will be given by

(B)r="Tr(prB)=Tr(pB)+Tr(FB)e "

=(B)+Beiet.  (A17)
Clearly
EB-— Z (Pn_Pm)%nm%mn (A18)
o Eu—FEp—w

The question is, how can we calculate (A18) from the
many-body perturbation theory of the Luttinger-Ward
type, which involves only temperature and no time
variables? This is particularly simple for the expression
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(A18). Consider
8

QG =~ [ UV,

JO

(A19)

A (v)=exp(v3C) A exp(—23C), z(lo)=2mily/B. (A20)

Expressing this in terms of the exact eigenfunctions of
JC, we obtain

)=
Q(z(lo)) gLEn_Em-——Z(ZO)

Pn~ Pm

WmBmn.  (A21)

Therefore if we calculate (A19) (which just involves
temperature variables) by the usual rules and in the
final result replace z(ly) by w, we get exactly (A18).
We may express this symbolically as

B=0(w).

Let us apply this to the calculation of the average
current density Jq.% This gives

(A22)

1 B E g
(qua:h Z / v 6_7)2(10)<J*ﬂa’('L’)]qa>"““
Vo /o 1w

with z(Jo) replaced by w in the final result.
In second-quantized notation, we have

e
qa:____ Z ak‘quk(Zka_Qa)-
2m &

(A24)

Therefore, the first term of (A23) is just a two-particle
Green’s function,

U @19=(2) & bt/ D400/
X{@rtot (v)ar(v)artar q).  (A25)

From (I. 2.1), (1. 2.2), and (I. 2.3), we have

(@it War(@)artap ) =— — 2 e
B 1

X{0xB 22 Ryp(P)—3%,,05 (07)Sw'(01)
l
+3 R,(P)T,p (P)Ry (P)}.  (A26)
L

AND P. NOZIERES

Using (A26) and (A25) in (A23) and the fact that no
current flows in equilibrium, we obtain

(4 2 1 Eqwa’
o=~ <_> -2 ___{Z R:v(P) (k“'—i_qa'/z)
m/ Voo

ww p

X (katgu/2)+ & (kar -0t/ DRy (P)T s (P)

Ne? Eq®

X Ry (P) b/ D)= — =

m W

(A27)

For small ¢ we can drop the terms coming from g¢./2,
@a/2. Then (A27) becomes, in the notation of (I. 3.3),

—e  E.* , Né® I ,°
Joo*=——2 ——8¥(P)— — ——. (A28)
V « dw mV  iw
Similarly, the charge density is given by
1 8 Ego®
mb“Z/”WMW$@m , (A29)
Va Jo iw
where
pe=e 2k arlarq (A30)

is the charge density operator times the volume. This
gives

62 1 Eqwa
prw== = =2 (T Ry (P) (katge/2)
mV o« 1w »

+ Z/ (ka"'_qa/z)Rp(P)Fpp’(P)R:o’(P)}) (A31)

by the same reasoning that led to (A27).
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