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diagrams, and there is no difhculty passing to the infinite
range limit. Thus (4.35) is valid for the proper vertex
part.

Therefore, we conclude that the results (4.40)—(4.43)
are valid for the proper vertex parts on the Fermi
surface and that consequently all the identities of
Sec. V still hold for proper scattering functions on the
Fermi surface.

This follows from
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Using the results of the preceding paper, it is shown that a large class of the conclusions of the Landau
theory of Fermi liquids may be established within the framework of many-body perturbation theory. Both
equilibrium and transport phenomena are discussed. The theory is also carried out for long-ranged Cou]omb
forces. Finally, it is shown that a rather simple general expression for the quasi-particle distribution function
of Landau may be given.

I. INTRODUCTION

'N this paper we shall be concerned with the verifi-
- - cation of the results of the Landau theory of Fermi
liquids for certain equilibrium and nonequilibrium
phenomena. We shall do this first for short-ranged
forces and then generalize to long-ranged Coulomb
forces. The necessary formalism for this purpose has
been given in the preceding paper. In addition, we

shall show that it is possible to give a very simple
general definition of the "quasi-particle distribution
function" which occurs in the Landau theory.

We begin our discussion with a brief summary of
the Landau theory. ' Consider first an ideal Fermi gas.
A great many properties (heat capacity, compressi-
bility, conductivity, etc.) of this system are determined
(for temperatures much less than the degeneracy

* Supported in part by the OKce of Naval Research.
' P. Nozieres and J. M. Lnttinger, preceding paper [Phys. Rev.

126, 1423 (1962)].We shall refer to this paper as I. The notation
and assumptions used in the present paper will be the same as
those of I.' See A. A. Abrikosov and I. M. Khalatnikov, Soviet Phys. —
Uspekhi 66, 68 (1958}.

temperature) by the nature of the single particle states
which lie in the immediate vicinity of the last occupied
single-particle state. It is these same properties that
the Landau theory tries to calculate for an interacting
system of fermions. We can now state Landau's
assumptions as follows:

(1) If the interaction is turned on, the single-particle
states in the neighborhood of the last occupied one
remain eigenstates of the system. We call these quasi-
particle states, and say that a quasi-particle k is present
if the state k is occupied. The low-lying excited states
of the system are assumed to be in one-to-one corre-
spondence with those of an ideal Fermi gas, the quasi-
particle states just replacing the particle states. There-
fore, since the number of real particles is conserved,
in these low-lying excitations the number of quasi-
particles must also be conserved. Adding a particle to
the system must therefore also add a quasi-particle.

(2) The state of the Fermi liquid for weak excitation
(equilibrium or nonequilibrium) is entirely described
by the distribution function rs(k, x) of quasi-particles in
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That is,

(Pkd s
BE= E(k,x)8zz(k, x)

(2zr)"

E(k,x) = (2zr)'BE/Bzz(k, x)

(1.2)

(1.3)

E(k,x) is still a functional of zz. If the distribution zz

does not diBer very much from e', we may write

zz = zz"+zz'

and expand in e'. That is,

OE
E(k,x) = (2zr)' — + (2zr)' d'k'd'x'

B~(kx) „.
X ~ ~zz'(k', x')+ . (1.5)

Bzz(kx)Bzz (k'x')

If the forces are short-ranged and zz'(k', x') is a very
slightly varying function of x' over the range of the
forces (both assumed by Landau), then we may write

6'E
(2~)'—

hn(~k)51(x'k )I, ,
'

=f.~ ~(x x')—
and, therefore,

1i(k,x) =Ei,'+ d'k' fiz. i zz'(k', x) + . (1..7)
(2zr)' .

The quantities E~i, and fi, z are the basic quantities
necessary for the phenomenological theory of Landau.

momentum and configuration space. ' The normalization
of zz(k, x) is such that zz(k, x)d'kd'x/(2zr)' is the number
of quasi-particles in d'kd'x. ' (This already implies the
semiclassical limit, since both the momentum and
position of the quasi-particles is given. ) The distribution
function for quasi-particles for the system in its ground
state (zz') must be

X~A; (pp
=p, g&p~ pp

when EI,' is the quasi-particle energy for the system in
its ground state. pp is the chemical potential at absolute
zero, since the addition of one quasi-particle is the
same as its addition of one real particle. If the system
is excited, the quasi-particle energy will change. (In
the Hartree-Fock approximation this would just be due
to the self-consistent field of the neighboring particles. )
Now by our general assumption the energy of the
system must be some functional of zz, i.e. , E=E{zz}.
If the distribution function changes by an infinitesimal
amount &s, and the total energy correspondingly by
BJ'z, then we define the quasi-particle energy 1~:(k,x) by

Since f~„l,. is a, second functional derivative, we have

kk' Ic'k,.

Further, it is assumed that if the original particles
have a charge e then the quasi-particles also respond to
external electromagnetic fields as if they had the same
charge. That is, in a,n external field characterized by a
vector potential A and a scalar potential q, the Hamil-
tonian of the quasi-particles (h) will be given by

h(k, x) =E(k—(%)A, x)+e p (1.9)

(3) The distribution function satisfies a Boltzmann-
like transport equation

Bzz(k,x) Bm Bh Be Bh
+ p

Bt ~=&,2,3 Bx Bk Bk Bx

Bzz(k, x)
+(- =O. (1.10)

col 1i 8 i ons

The term (Bzz/Bt)„»;,.;,„, is absent in equilibrium or
when there are no impurities or other scattering
mechanisms present over and above the particle-
particle interaction originally in the theory. We shall
be concerned with a pure Fermi liquid in this paper,
and shall not include this term.

It is easy to see from (1.10) that the total number of
quasi-particles is conserved, and also that the current
density defined by

e
' Bh(k x)

g. (x) =— — d'k zz(k, x)—
(2zr)' Bk.

satisfies the equation of continuity. Therefore, g (x) is
taken as the current density of the system. A similar
expression may also be given for the energy current
density Q„(x):

P.(x) =
(2zr)'

Bh(k, x)
d'k zz(k, x)h(k, x) —. (1.12)

Bk

We shall only be interested in the transport equation
in the linear approximation, i.e., when the deviation
of e from e' is very small. For completeness we shall
also include an external magnetic field. If we write

zz = zz'(k —(e/e) A)+zzi(k —(e/c) A, x) (1.13)
aiid

Bzz'(k)
zzi(k, x) = — g(k, x)

BT~'I„."

= Bkg (k,x),

Bk=&(zzn —E~,"), (1.15)
'Units are such that 4=1 throughout this paper. We denote

three-vectors k and x by italic symbols throughout. then we see at once that (1.10) (without the collision
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term) becomes

~(g+ J-''i)—+ Q Va-
Bt ~=&23 Bx

where

a(g+ J'i)
+-(VaX~&).

8k„

V k.
"=BEp'/re,

eP.
'

Vk" =0 (1.16)

(1.17)

Ii:i(k,x) = — d'k' fkk bk, g k,x ,
(2m)'

(1.18)

d'x g(k, x)6i,

1
X Vk, + — d k

flak

&i kV" . (1.19)
(2n.)'

If the electric 6eld has the form

PA — A 'h(Q X ld t)
go) & (1.20)

ne lect the corresponding magne
'

a netic field, thenand we g
so will g and the current density ave

(k) i(q x—cot) (1.21)g(k, x) =gqm e'

«x i(r7 ~ x—cot (1.22)a-(*)= a,-"""'-",
we obtain finally

i(ag, „(k)+ i—q Vk+-(Vk, XH) kk'k g,„iq k „,k)

and Ji. and H are e ethe external electric and magnetic
fields. Similarly, (1.11) becomes

or for purposes of fut, ure reference.the Landau theory, or p
=1/kT) the quasi-In equilibrium at temperature T

istribution is given byparticle d

e(k) =1 ee(irk k)+k—I) (1 26)

'. is the quasi-particle energy. is e q — ' at tern erature T
a k) j. It asy to see however,

dE' of h
aloft . isea

'
erence between E~ an g, is o

ut with the unpertur e eFermi gas, u w'

A '. If the system has
ariance and 'f the unperturbed single

asi- article energy

er is of the form ~p=P ~ "~ "gy o
h b. "th.n that. there is a re ations iphas shown a ip

pert. urbed v yelocit and the quasi-par ic
Fermi surface. This 's,i for k on e

1
ii =—=Vi +

m (2m)'
d'k' f~i 4 V~"; (1.27)

1 BV V ('ill

V 8 y ¹ Bp yp
(1.28)

In the Landau theory

(1.29)

alld

~ ~

es the Landau effective-mass equation if
h t the Fermi surface isthe interaction

'
is isotropic so t a e

the angle between~ de ends ony on e aspherical, and fbi,
h Fermi surface.' if k and k' are both on t e erm'kandk i an

ibilit (K), as is well known,Finally the compressi i i y
is given by

d'k' fk„k8(, g„(k.') eL~'q Vk =—
I k' lk' rkk&

' ' 0 1 ~ 23)

1
~'k j„,.k, .(k-

(2vr)'

kL '(u))
Bp

(2')' ~

d'k g, (k)6k

X Vk"+-
(2vr)'

d'k' fbi &k, Vi . (1.24)

case this enables us to solve at once for

1se we have to solve t e in egra
i

'
we shall indicate how this(1.30); in the next section we sha in ica

may be done.

II. EQUILIBRIUM PROPERTIES

—
icing, „(k)+ik7 Vk, g,„, ,,k, + d'k' f k(k)),„'

eF.,„Vk
——0. (1.25)—

e other results ofTo conclude this section, we list some

nstant external magnetic(1.24) H represents a con t
hall not consider this case, anheld. In this paper we s a no

therefore (1.24) becomes

p

v. 119, 1153 (1960). Ke shall refer4 J M Luttinger Phys Rev
to this paper as L.

ro erties according to the many-
b di dbtheor have een iscbody perturbation e y

lt for the heatr.4 It is clear that the resu o
L d 's if we identify thep

"sin le- article excitation energy a a s
'"g

rovi es us therefore with a formula w ic
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principle be used to calculate E/, ', though of course
realistic calculations are difhcult if not impossible.

Now we consider the compressibility. From (L. 70)
we see that (1.29) is also a consequence of the micro-
scopic theory. It only remains to verify that the
Landau expression (1.30) for BEk"/Bp, is the same as
that obtained from the microscopic theory. From
(I. 5.1) in the limit of T=O we see that BEko/&kk satisfies

BZ'/cI

8p

P BE/c~
d'&' Vfki "4 1—,(21)

8p

where fkk is now the zero-temperature limit of fkk
Comparison with (1.30) shows that these are the same
if we make the identification

tion that the solution of (1.25) is

eEq.„Vp

a'(&) =-.—
i((g Vk —co)

iq V/z eA"„„V/z
2 f (P)~' — (3 1)

i(q Vk —(u) k' i(q Uk —co)

e2

V k'. ' z(ti. Vk —a))
i~ Q —Uk

k, /c', cx'

IX— fkk (P—) - —Uk "J'-', .
i(q Uk —(v) i(q V„.—cu)

e2

(Q Vk 6k(P)Vk 'E&,
Vice &~'

Substituting this in (1.24) and using (I. 3.13) and (2.2),
we obtain

fkk =Ufik' (2.2)

V~~I'
=Q fkk'4 =

ap, k (2zr)'
d'&' fkk 'bk' (2.3)

Therefore, we have expressions for both J.k' and fkk
From (I. 5.2) we see that the general solution for

BEk'/Bp is actuaHy given by

—r. Uk &k(P)fkk (P)~k (P) Uk "I-'q,"), (3.2)
/. k'n'

6' 8q~ z~pa~ 0)
yielding

where we have used (I. 3.16).
Similarly, the charge density (p,„) may be calculated

directly or obtained from the equation of continuity:

(3.3)

Finally, we consider the "effective-mass" equation
(1.27). From (I. 5.3) we have, under the same conditions
that (1.27) is valid,

zk =Uk"+2 fkk "&k Vk"

—U n+
(2zr)z

d'&' Ufkk "~k Uk",

which is the same as (1.27) with the previous identifi-
catloll of Ek ailcl fkk~k.

III. TRANSPORT EQUATION

%e next wish to verify that the current density as
calculated by the Landau prescription

C (1.24) and
(1.25) I agrees exactly with that calculated from the
many-body perturbation theory point of view. To do
this we first give an explicit expression for the Landau
current density.

Le«s consider (I. 3.13) and (I. 3.14). If we replace
2zri70/p by id (where ~ is imagined to have a very small

negative imaginary part), these formuhs provide us
with an analytic function f(P) of id in the upper half

plane, where now P= (q,cv). Making use —of this
function (I. 3.13) and (2.2), we see by direct substitu-

e2

p...=—-(2 bk(P) Vk"I',."
Vga /cu'

—2 & (P)f (P)~ (P)U "I'-;."). (3.4)

We notice that g, and p, only depend on propertjes
of the system on the Fermi surface because of the 8/,

and 5™,functions.
Now how can we verify (3.2)? In order to do this)

we must have an exact: expression for g,„and then
transform it into the form (3.2). Thv. type of formula
we need has already been given by many authors. '
The particular form which we shall need is developed
in Appendix A. From (A28)

rx

')z- = ——Z —5'" (P)—
V ' ice

where 5 '
(P) is defined by (I. 3.3). From (I. 5.22)

we have
/pS".(P) =S-'(P) = —~..—P U, -q,.(P—) U,-'
PS

+ 2 U /ik(P') f (P') 8k (P) U, .", (3.6)

' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957); P. Martin anal
J, Schwinger, Phys, Rev. 115, 1342 (1959).
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Therefore,
~f

V 8 (P)V
V ' i(v

V» 4(P)f»»'t')» (P)V»
'

»
" (3 &)

We also have

and
EPq»P ql—=o)

t.J„,p,j= (.)' '-'/m) (q.).
Therefore, (4.3) and (4.4) become

(4 7)

(4.8)

f . h (3.2) shows that they are
d th o doidentical. Therefore, the Lan au e

correct current density.

(4 1)
where

E UATION WITH LONG-RANGEQ
COULOMB F

'
ns A23) andthe exact expressionsLet us consider e

t and charge ensi
'

d ities. Instead of(A29) for the curren
m in terms of the app ie eexpressing them in

h total field Eq„ in eem in terms of t e ous express them
F Poisson's equation,sample. r rom ' on

Zq =Eq iq (Vnq—/e)pq

1

P qco

+qco
di) e

—"'i")(J (i))pq)
ZCO

d~ e '*i"i(p-,(o)p,),
P

49+ pq(a
e2

P
—vz (lo)'U eAq

"=—
~ 0

Zq-xg(J,-'(.)J,-)
O.

'

PVe~ Bq„~

mv ia)

d" "'"'(p-.(~)J. ).dve, 4.10+—
pq~ i& e

e2

uq=4qre'/ Vq'. (4.2) endix A, we havetechnique as in ppen
'

Using the same e
Therefore,

1

V

jv
d~e """'(J- (~)p.)

ZM

e
n'

"""i(J-q"(~)J. )-ve —qn

ZM

eU q pqco
"""i(iq J .(o)p. , -+—. ve

ZM 0

P R„(P)(k.+q./2)
qqq V ~ iqo )

Q (k.+q./2)R, (P)I'„„(P)R„P

—~,p..ZR.(P)+BR.(P)1'-( ) '. P R,.(P)). (4.11)
Ptq

rom . . I. 6.5), (4.11) becomes, with aFrom (I. 3.3) and (I. 6.5,
little algebra,

~ /

dq e """'(iq -J; (q)J, )+
e Zco J 0

E Uqpq

%PS ZCO

cans of the operator identity,

qq ' Jq+»LX)pq =0

tor form of the equation of conti-
nuity), we can simplify certain terms o
We have

dq) e "'iio)(iq J q(q))A)

do-"""i(((~,p-, (~) )A)

~p-q(q)
d e

—vz(tp)=z ve
Bv0

e
—"'i'»(p (q))A)dq)=i (p-q(P)A) —(p—qA)+s(io) e -q

(. ,
P (k.yq. /2)R„(P)r„.( ),.P R, (P)), (412)

(Q R„(P)(k.+q./2)

w ere wee have also used

goo(p)
goo (p)

1—uqSoo(P)
(4.13)

) iE& 9')(» +q. / )
V ' iqq )ml

X(k +q 2/ )+ 2 (k-+q-/2)R. (P)f'» P

XR„(P)(k.+q./2))—
iVe' Eq„

(4.14)!

ectl from the definitions andwhich also follows directly from e

.10) becomes, using (4.12), (I. 3.3, and
'

Similarly, 4. eco
some manipulation,

+o) e "*&'»(p (q))A)dq)=i ((A p q) +o) e
0

(4.6) 4.12 and 414) which are stillThe expressions ( . )
are of the same op~exact for all q„are o
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derive the Landa, u theory in the case of a short-ranged
interaction [(A27) and (A31)j, with the scattering
function F replaced by the proper scattering function
I', and the external electric fief d E,„replaced by the
total field B, . Therefore, since from I (Section VI),
all the Ward identities we need hold for the proper
vertex functions, it follows that the Landau transport
equation will still be valid in the long-ranged Coulomb
case if the electric held is replaced by the total field,
and if we make the identification

fk/c' Vfk/c' II'(Pyn' )y, y' on Fermi surface (4 15)

This result has been anticipated by Silin. ' The
explicit expression (4.15) for the interaction between
quasi-particles in the Coulomb case has not been
given previously.

V. INTERPRETATION OF THE QUASI-PARTICLE
OCCUPATION NUMBER

We now show that it is possible to give a rather
simple general expression for the "quasi-particle
occupation number" which occurs in the Landau
theory. Consider first the current density operator

cl.( -) = (([p-—( / )A.]lt)V+Ot[p. —(./. )A.]lt )
2m

where

$(kIX) =deci e $k+cr/s /: —v/I s

I'rom (5.5), we sce t.hat: $(k,x) plays exactly the role
of the single particle distribution function at k, x, since
(1/m)[k —(e/c)A (x) ] is just the velocity of a ('clas-
sical) particle with momentum k at the point x. $(k,x)
is of course just the well-known Wigner semiclassical
density matrix.

If the vector potential is finite, we can change the
variables and write

$(k x) = $(o) (k x)+$o) (k,x), (5.8)

$(k+ (e/c)A (x), x) = $ (k,x)

+ (e/c) (A '7k) $("(k x)+$(') (k x). (5 9)

Thus, the first-order single-particle distribution func-
tion fi(k, x) is given by

e k
( cl (x)).„,=-—d'k —$(k+ (e/c)A (x), x). (5.7)

(2)r)' . m

We are interested in the response of the system to
an external oscillating f eld described by A . Then to
the first order in 3 we may write

e
P ()k t(tk"

mV

I+k II

2

fi(k x) (e/c)(A. r)ck)$(o)(k x)+$'i)(k x) (5 10

and the average current density is

—
~A (x) e'(""—"'. (5.1)

ci (ci.( ))-=
(2~)' .,

k
d'k fi (k,x)—

m
(5.11)

If the system is in a state described by the density
matrix p&, then the average current density is given by

e k.'+k,"
J', ~" mV 2

e
(X) ei(k" k') zc$—

C

where
r /I'"O'= I'r(PT(tk' ()k") ~

Now if we put
k'= k —(I/2, k"=k+(t/2,

we have

8=—P (1/m) [ko—(e/C)A n (X)]e'ci '$k+, /si, cI/), .
V I, e

Ke now ask, is it possible to give an expression
analogous to (5.3) from which we can compute the
quasi-particle distribution function? It is clear that in
order to do this we need quasi-particle creation and
destruction operators to take the place of the particle
creation and destruction operators of (5.3). Now, in
general, this is not possible since the quasi-particle
states have a finite lifetime (i.e., they are not eigenstates

(5.3) of the system). This lifetime, however, goes to infinity
as the momentum of the quasi-particle state approaches

(5 4) the Fermi surface, for the system in its ground state.
Therefore, we would expect the quasi-particle states to
be well def ned on the Fermi surface, and any properties
which just involve contributions from the Fermi
surface to be rigorously calculated in terms of them.

Let us consider the following operator:

=—Q[k.—(e/c)A. (x)j$(k,x) exp(iXt)ak exp( iXt)e'""kse ""'d—t (5.12).

(2')'
d k(1/m)[k. —(e/c)A. (x)]$(k,x),

' V. P. Silin, Soviet Phys. —JETP 6, 387 (1958l.

(5.5)
In (5.12), Jc.k is the energy of a quasi-particle of mo-
mentum k, sk is defined by (I. 2.17), and rtk is an energy
much less than the chemical potential but much greater
than the reciprocal lifetime of the quasi-particle state k.
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As k approaches the Fermi surface, we may let gk

approach zero. This quantity plays the role of the
quasi-particle destruction operator, when k approaches
the Fermi surface. ' That is, as k approaches the Fermi
surface, the state A~go (where It 0 is the ground state of
the system) behaves for a longer and longer time like
an exact normalized eigenstate of the system which has
one less quasi-particle in the state k. Apart from
normalization, the reason for this choice is fairly clear
intuitively: exp(+iSCt)ak exp( —iXt) acting on fo gives
a distribution of single-particle states of momentum k.
If the excitation energy of some such state is 8k then
the integrand oscillates with frequency b~, —Lk. Aver-

aging over long times means we only get the contri-
bution from the excitation of energy 8~, ——E&',k, if the
time of averaging is not as long (much less than the
lifetime) that the quasi-particle state with energy E&

decays away. That the normalization is correct will

appear from what follows. We shall take (5.12) to be
our definition of the quasi-particle destruction operator,
and shall show it has all the properties which we need.

If we go into the representation in which 3C is
diagonal t see Appendix A, (A15)] then we can do the
integral in (5.12) a, t. once, and we obtain

For k very near the Fermi surface, we have (I. 2.15)

p«(k) =s-~(k ~-'~)+ p~((), (5 18)

where pi($) is a perfectly smooth function. Therefore

(Ai "Ai)=f (I''a)

gk
+— dr "(~)f (~)

-— (5»)
~k —oo (E~—5)'+n~'

The last term of (5.19) vanishes for k near the Fermi
surface since pi, ($) is smooth, f ($) bounded, and
re~/(E~~„$)'+iIk2 .—approaches rli5($ —E1,) as gi, ap-
proaches zero. Therefore for k near the Fermi surface

(A~»a)=f (Ek)=
es(&la y)+ 1— (5.20)

where pi, (x) is the spectral distribution function of the
propagator (see I. 2.10). (This is easily seen by just
writing down the definition of the propagator in terms
of exact eigenfunctions. ) Therefore, (5.15) takes the
form

1 'gk

(A«'A~= — dkck($)f (5) -, — (5»)
(E~—2)'+nP

&gk
(Ak)„„=-

ps~ K+irla+E- E-—
Similarly, the creation operator 3k~ becomes

(«')-~gk
(A.I)- =

Qsi Eg iqI,+E„F—„—
(5.13) which just checks the quasi-particle distribution func-

tion (1.26) of Landau. From the result, we see the reason
for the normalization factor 1/gsi, in the original
definition of the quasi-particle destruction operator.

We next want to calculate the quasi-particle distri-

(5 14) bution function when the system is excited by an
external oscillating electromagnetic 6eld.

Analogously to (5.3), we define
I.et us 6rst consider the quasi-particle distribution

function for equilibrium. By definition this is (AitAi):

gk
(A i tA i)= P p„

Di" Ic' Tr(PTAS-'tAtc") ~

Following Appendix A, we have

(5.21)

(5.22)
n, n'

with(«t)..(«). ~

X
(A~g irlg+E E.) (—EI,+iraqi, +E—„En)—Di ~ '"'=(AI;'Ai:")=-.~; ~ "(Ak Aa). .

= &i'~"f (Ei ), (5.2—3).
2 1

d$
s1, (Ei—5—iraqi) (Ea—5+iiI i)

CX

dn e "'~"~(J
~ (v)Aq tAq ), (5.24)

Now

X g p.~(~+E. —E.)( t)..(,).. (5 15)
where s(lo) is to be replaced by cu in the final results.
Using (2.4) we get

2 I J'(~+E- E-)(~~')- («)-—-=~.(~)f (*),
n n'

e (E 0!

D~ ~, , i ~'i= —P(k.+qn/2)~~ k, n ZCO

f (x)= , (5—.16)
&P (~ v&+1— P

X dpi ~
—"~'oi(~,„+„I(~)ai(i)A, tA „,.„). (5.25)

'One of us (P.N. ) has used this quantity extensively in a
course given on the many-body problem during the past several
years, Similar operators have also been introduced by N. M.
Hugenholtz, Physica 23, 481 (1957) /see Eq. (12.9) of that paper j
from a somewhat different point of view.

Now

(«p, t(i)«(s)Aa»~+, )
= —(T(up+ qt (v+) A i:.I (0+)«(v) A i.~, (0))). (5.26)
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The expression (5.26) would be exactly a conventional
two-particle Green s function if the quasi-particle
creation and destruction operators A L, t, A I, were
replaced by ordinary creation and destruction operators
ai t, ak. . Therefore, the expansion of (5.26) in diagrams
has just the usual form, except that whenever the
expressions (ai tu), ), (T(a), ta), (u))), (T(a), +,t(u)u), ~,))
occur, they are to be replaced by (A i t,A (, ),
(T(A),.ta&. (u))), (T(a),.+,t(n)A), +,)), respectively. Now
define

where

(5.34)

The sum over l in the first term of (5.33) is done a,t
once (by the technique of I, Sec. 2, for example):

-2 ~.~n+u= —~i(P), (5.35)

Q,.(u, ,u, ) = (T(A „.t (ui) u). (n.))),
Q'(», ») = (T(~~t(») A ~(u2)))

using the notation of (I. 3.14).
The second term contributes nothing to (5.25). For

(& 27) the t.hird term we have a sum of the form

Consider first Qk(ui, u~) for ui)u2. This is

Qi(ui u~) = Q p e( i—1) ( "n—&e ) (A t), (g~)

—2 ~u~~+uF(«)= I— (5.36)

npn

n, n'
e(nl Yl2) (E—n En )

~

~

ink ((ii')..((i.)..
X

Qzg„. Ei iit), +F.„. —Ji„—
e'"' "I-"'pi(~)f (~)

dx (5.28)

Qi(u], u2) = —(hei)e("' "" 'f+(Ei), (uq)ui)

f+(E) ) =1 f (K)— (5.30)

by (5 16).
If k is near the Fermi surface, we make use of (5.18).

Since g~ approaches zero, the regular part of pL, gives
no contribution, and we get

Q), (u„u&) = (Qzk)e("' "')"f (E—)t) (n))ui) (5.2.9)

Similarly, for u2) ug, we find

I= —&' (P)F( ). (5.37)

This can be treated by exactly the same method used
for the sum in (I. 2.11), this giving for the contribution
from the poles of 5„5„+„—()i (P)F(u). The other
term, arising from any singularities of FQi), can be
dropped. This is not very easy to see directly from the
sum (5.36), though it, is not di%cult to verify for som
classes of lower order diagrams for r» (P). However,
from the original definition of D . i, +,

"i' (5.25), the
fact that the quasi-particle operators A~ tel, +, stand
to the right. means that we only get something when k'

and k'+q are on opposite sides of the Fermi surface

(q assumed very small, but not. zero). Therefore, the
result is proportional to f (E'(;+,) f (E'), ). No—w for
the terms from the poles we get another factor of
1) [Ek ~,—E), —z(lo)], so the pole term is of order unity.
The term arising from the singularities of F(f'() has
however no singular behavior for small (7 or s(l,), and
therefore this term is of lower order in P. Therefore,
we may take

Therefore, Q(, is a conventional unperturbed propa- We finally obtain, for small P, on putting this all

gator with the unperturbed energy replaced by A&, i.e. , together,

Similarly,

egL(u1 —u, )

Q~(ui, u~) = (Qsi)- P
P i f( E(—(5.31)

I;,„
D, , a+,(')=es, P LS, (P)v„..

+2 &~ ~.(P)r» (P) jr( =:.

et l (th)—ted)

Q(, (ui, u~) =V's~- 2—
)3 ' |(—Ea

(5.32)

(a)+ t(t))(J(, (t))A),.tA), + )

Therefore, just: as in Appendix A (A26), we may
write

+(Lc()

~'(P)LT' (P)J =-' (5. )
ZM

using the notation of (I. 3.2). Since ()), (P) forces k' to
be of the Fermi surface, we may write this as

e~QG)

Dg . ) +,"'——g — ()i ..(P)ri: "(P),
ZGO

(5.39)

—0'4, 05'~'(0') f (F') from (I. 3.11).
From (I. 3.20) and (I. 4.31), we have

L, l' (P) = Vi —p( f( ) «(P) 0k" (P)V) ~ (5.40).
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Comparison with (5.6) and (5.10) shows that we
would expect the qth Fourier component of the fjrst
order quasi-particle distribution function zz&(k, q) to be
given by

where

J n —. Q(p nei&1 .I&. +e&». l. &p. &K)

2' (Ag)

zzi(k, q) = (e/c) (A»„V'i)Dpi. t'&+Di+»(z, i, »(z&". (5.41)

Substituting (5.20), (5.39), and (5.40) into (5.41), we
obtain

The current density operator at the point x is given by

e [p.; —(e/c)A, ]
&.( )=-2— S(x,—x)

2 m

eE,„UI,
n, (k,q) =bi,

z(q Vi —co)

iq Vp

i(q Vi, —(u)

LP' —(e/c) A'"]
+b(x,—x)- — . (A9)

If we Fourier-analyze this,
6i, (eL~» Vi, )

XQ f~~ (I') —. (5.42)
z(q. Vk —id) we gef.

ga(g) —P ei» x
g

n (A10)

Direct comparison with (1.14) and (3.1) shows that
this is identical with the quasi-particle distribution
function obtained by solving the Landau transport
equation. Therefore the quasi-particle distribution
function is just given by exactly the same expression as
the distribution function obtained from the usual
single-particle density matrix, except that particle
creation and destruction operators must be replaced by
quasi-particle creation and destruction operators.

=—Z([p (e/c)A ']e ""'
2mU '

+e—' *[p, —(e/c)A, '])
1 J n

V

Se' Eq„"

mV ice
(A11)

To find the average current densit. y i)» we must
have the density matrix p~ of the system. This satisfies

APPENDIX A. RESPONSE TO AN ARBITRARY FIELD Bpr/rII =i [pr IXr] (A12)
WritingConsider a system in an arbitrary external electro-

magnetic field. Let this field be given by a vector
potential A (we choose for simplicity a gauge with
vanishing scalar potential). We shall be interested in the
lAzear response of the system and shall therefore study
only one Fourier component of A, i.e. , put

(A13)p
—p+Fe i«i—

where p is the equilibrium density matrix for a system
with Hamiltonian X, and evaluating (A12) to the first
order in the field, we obt.ain

A o. —A nei(q ~ x—co t)
qG0 7

18A

(X,F) i»l'=
(, p 5—). (A14)

A1
Let us label the representation which makes X diagonal
as follows:

II n —p hei(q x—a)t)
qQ7 )

c Bt

F.,„=(c/zid) A,„

XP,=F.„P„.

Then the solution of (A14) is

(A15)

In these expressions imagine that u has a small positive
imaginary part, corresponding to the field being turned
on at t= —~.

If the Hamiltonian of the system in the absence of
the field is

X=Q„.(p,)+U, (A4)

Xr=X+Se '"'

(1/z&)F-» ' J»—(A6)

(A7)

where U is the potential energy of interaction, then
when the field is present the total Hamiltonian is

Xr——P, »(P;—(e/c)A;)+ U.

For simplicity we shall take»(p) = p'/2»»z. This is not
at all necessary here, but it simplifies the writing
considerably.

Then to the first order in the field,

(pn pm) 5nm
p

E„—E —co

(A16)

Clearly
(pn pm) @nm8mn

The question is, how can we calcula, te (A18) from the
many-body perturbation theory of the Luttinger-Ward
type, which involves only temperature and no time
variables? This is particularly simple for the expression

(A16) is regular because of the small positive imaginary
part of (v.

Now suppose we want the expectation value of any
quantity P. This will be given by

(8)r—=Tr(pr8) =Tr(pS)+Tr(FS)e—"'
=—(8)+Se-'-'. (A17)
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(A18). Consicler

p

0(=(~p)) ===-- — ~ "'"'(&(v)&)~v
0

(A19)

5(v) =—exp(vX) 8 exp( —vBC), s(7p) = 27rz7p/P. (A20)

Expressing this in terms of the exact eigenfunctions of
,jr', we obtain

Using (A26) and (A25) in (A23) and the fact that, no
current Rows in equilibrium, we obtain

e ' 1 I",„'—(P R„(P)(k.+q. /2)
m V ' ice s

X (k.+q./2)+ Q (k. +q../2)R„(P)I'„„.(P)
P pP

p~ —
pm

Q(S(&p)) = P — 8nm8mn
,-r„—1."„—s(fp)

(A21) te Ewg~

XR„.(P) (k.+q./2) ) — —.(A27)
mU iu)

Therefore if we calculate (A19) (which just involves
temperature variables) by the usual rules and in the
Pzzal resmlt replace s(lp) by zp, we get exactly (A18).
We may express this symbolically as

~=e(-)
Let us apply this to the calculation of the average

current density zip . This gives

For small q we can drop the terms coming from q /2,
q /2. Then (A27) becomes, in the notation of (I. 3.3),

e2 P a' +~2 g 0,

5 '
(P) ———. (A28)

V mV ice

Similarly, the charge density is given by

a —=P
V n'

+/CO

zzzvz,
—"'Z"'(J "(v)J )——

$Q)

Se' 5:,
(A23)

nsV

p„"=—P dv e-"'zzPz(J, (v)p, )
o ZM

(A29)

(A30)pq e ~A: ~zz' +A-+qwith s(lp) replaced by zp in the final result.
In second-quantized notation, we have

e
J, = P a„,taz, (2k. q.). —

2%i (r. R.(P)(k-+q-/2)
mV ~ iceTherefore, the first: term of (A23) is just a t.wo-particle

Green's function, + Q (k +q /2)R (P)I'„„(P)R (P)), (A31)
2

(J-."(v)J. )= — 2 (k- +q- /2) (k-'+q-/2)
m k, k' by the same reasoning that led to (A27).
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1
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pp zp
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(A26)

is the charge density operator times the volume. Tnis
gives

(A24)


