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Derivation of the Landau Theory of Fermi Liquids. I. Formal Preliminaries*
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The formal relationships necessary to derive the Landau theory of Fermi liquids are given. These include
relationships between scattering functions for small energy and momentum transfers, vertex functions, and
correlation functions. In addition certain identities (of the Ward type in quantum electrodynamics) are
established which enable us to evaluate these quantities. Finally, the form of all these relationships when a
long-ranged Coulomb force is present is given.

I. INTRODUCTION II. SCATTERING FUNCTIONS

BOUT five years ago Landau' proposed a phe-
nomenological theory of strongly interacting

particles obeying Fermi-Dirac statistics. Such systems
were called by him "Fermi liquids. " The theory was
intended for "normal" Fermi liquids, and excluded such
possibilities as superQuidity or superconductivity.
Landau was largely interested in He', and considered
the case of short-ranged forces between the particles.
For electrons in metals, however, the long-ranged
Coulomb force is essential and the theory must be
extended. Silin' has indicated how one must generalize
Landau's results for this case.

In this, and in a subsequent paper, we shall be
concerned with the establishment of these results of
Landau and Silin under certain assumptions. The basic
assumption is that we can use some form of many-body
perturbation theory (to arbitrary order) to treat the
interaction between the particles. In fact, essentially
all that is necessary in order to obtain the Landau
results is to extend a technique' used by Landau
himself to justify his result for "zero-sound. " This
method, supplemented by certain identities (which are
of the same type as those of Ward in quantum electro-
dynamics), enables one to show that the Landau
prescription and the direct microscopic theory lead to
identical results for the quantities one actually observes.

In this first paper we shall limit ourselves to the
definitions of the basic quantities of the theory, and to
the establishment of all the necessary relationships
between them. This will be done both for short-ranged
forces and for the long-ranged Coulomb interaction.
Some of these results are already known (at least for
the absolute zero of temperature), but we have felt it is
of some interest to have them systematically developed
and all together in a uniform notation. In the following
paper they are applied to obtaining the Landau theory.

The form of the many-body perturbation theory
which we shall use is that of Luttinger and Ward. 4 This
enables us to carry out the entire theory at finite
temperatures, and also avoid difhculties connected
with the change in shape of the Fermi surface. In order
to keep the notation as simple as possible, however,
we shall consider spinless fermions and no external
periodic potential. These are not essential simplifi-
cations, but make the entire discussion much easier to
follow.

Following Landau, ' we consider a quantity which
we shall call the "scattering function" J'» (P). This
is the collection of all connected diagrams of the form
indicated in Fig. 1. The index p is the "four-vector"
(k,i &), where k is the momentum carried by the line, '
and 1"

~ @+vari,
——(2l+1)(p (p=1/kT), gives the (complex)
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p'+ p p+p
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p+p
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1'ro. 1. Diagrams for P» (P). (a) gives the general structure
of the diagrams; (b), (c), (d), (e) are some special cases. The
propagators associated with the external lines are not included in
the contribution of the diagram.

* Supported in part by the OfFice of Naval Research.
' L. Landau, Soviet Phys. —JETP 3, 920 (1956); 5, 101 (1957).
s V. P. Silin, Soviet Phys. —JETP 6, 387 (1958).
3 L. Landau, Soviet Phys. —JETP 8, 70 (1959). See also A. A.

Abrikosov and I. M. Khalatnikov, Soviet Phys. —Uspekhi 66, 68
(1958), Appendix 2.

4 J. M. Luttinger and J. Ward, Phys. Rev. 118, 1417 (1960).We
shall refer to the paper as LW and shall follow its notation when-
ever practical.' For simplicity of notation we denote three-vectors k by italic
symbols k. Their character will be evident from the context.
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"energy" carried by the line. The quantity I' is an
arbit. rary "four-vector" of the form ()I,2)rile/p), giving
the momentum and "energy" transferred in the scatter-
ing. It is often very convenient to have a,n expression
for 1"» (P) in t.erms of the exa.ct t.wo-particle Green's
function. Let us define

+ li + 0 4

Gk)k)k)k4(t 1)t'2)t)3)n4)

= (T'Lok, t(»)«.'(»)ok (»)ok (~4)3), (2 1)

where T orders in increasing v from right to left and
provides a plus or minus sign depending on whether or
not this ordering requires an even or an odd permutation
of the operators. The angular bracket is the usual
average in the ground canonical distribution. It 's easy
to see' that (2.1) has an expansion of the form

Gk)ksk) k4(&1&st st 4)

1
exp( iB't+fts s fi)t)s —fi4t)4)G—))r)ra)4 ( )

p t)l)4l4

FIG. 2. Decomposition of I' into irreducible diagrams.

The important thing to notice in this connection is that
there is no unique limit as I' approaches zero, but that
the limit depends just how q and lo approach zero.
This arises from the behavior of R(P), the quantity I(P)
being, for short-ranged forces, perfectly regular as P
approaches zero. Let us consider quantities of the type

1=—P 5„.(~))5k~v'(f i+,o)F (gi). (2.9)

Then one has, on putting

Pi P+P) Ps P ) Ps=P P4=P'+P: (2 3)

G„,„,„,„=P'(5„„5„'5 p' —f)p, oS,'5„')
+PS„'5„+r'F„„(P)5„'5~i'. (2.4)

In (2.5) 5„' is the exa.ct single-particle propaga, tor
Sk'(f'&) defined in LW. It can easily be shown from this
that r„„.(P)=r„.„(P).

The diagrams for F» (P) may be decomposed into
their so-called "irreducible parts. " An irreducible
scattering diagram is one which never has in its internal
propagator lines a pair which differ by I' due to mo-
mentum and t i conservation. For example, in Fig. 1,
(b) and (e) are irreducible, (c) and (d) are reducible
in this sense. Call the contribution of all the irreducible
diagrams I» (P). Then clearly from the diagrams
(see Fig. 2)

1'„„.(P)=I„„(P)+Q„~I„„''5„'5„
XI„„„,(P)+, (2.~)

where

(2 6)

Therefore, in a transparent matrix notation, we have

Now 5'(i' )chas a spectral representation of the form"

Therefore,

Sk'(fi) = p) (5)
d$- (2.10)

Qk(I') =

F(f)

This may be converted into a contour integral (cf.
LW Appendix A) by taking a contour (". which is the
sum of infinitesimal circles proceeding clockwise about
each pole of f(f )= 1/(ee'1 "—'+1).The analytic behavior
of F(i) may be very complicated. We shall only assume
that there is sufficient regularity near f'i ——fk. Therefore,

r (P) = I(P)yI(P) R(P)1 (P)
=I(P)+1'(P)R (P)I(P),

where R(P) is the diagonal matrix with elements

R„„(P)=8„„5„5„pp'.

(2 &)

(2 g)

Imagine the contour C deformed in such a manner that
we surround the poles f'= $, $—2~ils/P and any cuts or
poles of F(f) Call the contr. ibution of the former poles

It will turn out that ajl the quantities of interest in
the theory of Fermi liquids will be expressed in terms
of F(P) for P very small. ' We next consider this case.

' P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959),
Sec. V.

' This means effectively (If(«Fermi momentum, 2)rfo/p~&&f),

s J. M. Luttinger, Phys. Rev. 121, 942 (1961).The proof is only
carried out in detail for T=0 in that paper. However, the identical
argument for T&0 leads to (2.10). p J, (() is, of course, a function
of temperature now. For P near y, Eq. (69l of that paper is no
longer exactly valid, but the 6 function is spread out over a region
of the order of (kT)'/p. All corrections coming from this source
are extremely small and we shall drop them jn what follows,
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A. Then

f ($)F(t)—f ($ —27rslo/P)P($ —2miIo/P)
A= (2.13)

$'+—2mi lo/P

Now in accordance with Luttinger, ' we may write

(2.14)

co limit) is if q approaches 0 and then lo approaches zero.
Clearly, A„(P)=0 in the a& limit and we have

(2.24)

The second limit is when /0=0; then q approaches
zero. We shall call this the q limit. For this case

(2.25)

where pk(p) is a perfectly smooth function.
This may also be written

pk(j) = sA(& —Ek)+pk(t), (2.15)

where

Therefore,
R„'=R„psk'8„—.

(2.26)

(2.27)

where A, is the single-particle excitation energy
given by

One sees easily that the q limit is also what one
obtains if one puts q=O, lo ——0 in the beginning for

(2.16) R, (P), i.e. ,Ek ek Ek(E—k)—=0

s. '= (1—&k(()/~k)t=s:.
g q g I2 (2.28)

(2 17)
Taking the to and q limits of Eq. (2.7), we obtain

at onceTherefore, the contribution to Qk(P) which comes
from A and the singular part of (2.15) is

(2.29)F"=I+IR I'",

F'= I+IR'F'.f—
(Ek+,)P(Ek+o —2orilo/p) —f (Ek)F(Ek)

SOSfg+ q

Ek+o Ek —2n-s—lo/P

(2.30)

It is a straightforward matter to elimina. te I in (2.7)
The leading term of this is, for ~q~ and ~2orilo/p~ small, 'n ms of F" or F' This g'ves'

f (E.+.) f (Ek)—
sksk+o F(Ek) ~

Ek+, E!k 27ri lo/p— —

If we define the "quasi-particle" velocity by

Vk =BEk/Bk
and use

(2.18)

(2 I~) where

F(P) =F-+F-~(P)F(P)
F+F (P)-i1 (P)F"

F(P) =Fo+Foz(P)F(P)
=Fo+F(P)5,(P)F',

(2.31)

(2.32)

VI, q
S|'o —~(l —Ek)F( )

Vk q
—(2~ilo/p)

(2.21)

This is the part, of the result for Qk(P) which depends
on how P approaches zero, the rest being perfectly
regular. ' Let us put, for very small P,

where
R„(P)=A„(P)+R„, (2.22)

~p(P') = psk' .— ~( —Ek)~i, res. (2.23)
Vk q

—(2~ilo/P)

In (2.23) 8i t~s really means that P(i ~) is to be evalu-
ated at f ~

——p. R„ is the P=O limit of the part of R~(P)
which doesn't depend on how P approaches zero.

There are two limits of particular interest. The first
of these (which we shall call, following Landau, the

' It should be mentioned that we have not established the
results necessary for this conclusion with complete rigor. The
analytic properties of the F(I &) which came into our problem are
not known with sufhcient generality for this purpose. However,
it is quite easy to check the results for a few diagrams of lower
order.

—8f (x)/Bx =b(p —x)$1+0((kT)'/p') 7 (2.2o)

(2.18) becomes
(2~slo/p)= —Ps,sg„. (2.33)

Vk q
—(2orilo/P)

The relationships (2.31) and (2.32) (which are due
to Landau) are the basic equations for the scattering
functions necessary to obtain a theory of Fermi liquids.

lf n=O
=Clek/Ilk~ if rr= 1) 2) 3.

The vertex part T„(P) is then defined by

(3 1)

T„(P)=o, +Q ~ F„„(P)R„.(P)o ". (3.2)

"These relationships are also immediately obvious graphically
if one expresses them in terms of diagrams.

III. VERTEX AND CORRELATION FUNCTION
IDENTITIES

In working out the Landau theory certain sums over
scattering functions will be necessary. We now in-

vestigate these. The first set are the so-called "vertex"
functions or vertex parts. Let the unperturbed single-
particle energy be ek. Then (in order to have a compact
notation) define the "four-velocity" n, as
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Similarly the "correlation" function S '(P) is defined

by

S-'(P) =Z. R.(P)~:p"
+Zu, 'R.(P)F- (P)R'(P)» ~i" (33)

where

(2x-ilp/P)
5, (p) =s(&—z)

Vi q
—(2~ilp/P)

(3.16)

and
T:(P)= T +&' F-'~'(P) T.'(P) (3 6)

T„(p)= T„"+P,. F„„, (P)Z„,(P) T„.". (3.y)

Next we write the correlation function as

S-'(P) =Z. R.(p)~: T (P) (3.8)

Making use of (3.5) and (2.22) and some algebra, we
obtain at once

Saa'(p) —S aa'yp T aag (p) T a''a

+Q„„T„"Di,(P)F„„(p)h~ (P) Tr '". (3.9)

Similarly,

Saa'(p) S aa'+p T apg (p) T a'rg

+Q„„T„rEI'„„(P)D (P) T ' . (3.10)

We shall mainly be interested in the different func-
tions of p "on the Fermi surface, " that is for k on the
Fermi surface (F.S.) and f~

——Ii. It is convenient to
introduce the following notation'.

We can express these functions for arbitrary but
small P in terms of their values in the ~ and q limits.
Multiplying the p, p' matrix element of the erst
equation (2.31), for example, on the right by R„(p)»,
and summing on p' we obtain, after a, little algebra,

T„(P)= Tp +Q„F„„A„(p)T„(p). (3.4)

Similarly, taking the second equation of (2.31) and
multiplying with E~ "v~ yields

T;(P)= T„-+P„.F„„.(P)w, .(P)T„'". (3.5)

The same technique applied to (2.32) yields the
equations

r~ (P)=r:"—P~ fu (P)4 (P)ra",
rp(p)=r~ p —Q~ fgg 3~ (P)rg (P),

r~ (P)=r~"—P~ fs~ (P)~(p)rp",

(3.18)

(3.19)

(3.20)

S '(P) =S ' —P~ rP"6~(p)rA,""
+Z,' -~.(p)f- (P)~. (P)".", (3»)

S '(P)=Sp"—Qp rA: '8 (P)rg"
++~,~ ri,"4(p)fop (P)4 (P)r(. '. (3.22)

These relationships involve only properties of the vertex
parts on the Fermi surface. These, as we shall see in
the next section, may be obtained in some cases in the
cv or q limits, and therefore the above relationships
provide evaluations for general P.

IV. WARD IDENTITIES

We shall call certain identities which relate vertex
parts with suitable derivatives of the proper self-energy
part )the Gq(f~) of LW] "Ward identities. " There are
four such identities which are of interest to us. They
are all straightforward consequences of the definition
of the scattering function F» (P). Let us consider the
diagrams for G„—=G, (P~). Imagine them expressed in

terms of the true propagators. If we remove an internal
line p' in all possible ways from G„we obtain clearly
(see Fig. 3) the irreducible scattering function I» . If
we differentiate G„with respect to p, we therefore
obtain

We now list the form that the relationships of this
section take on the Fermi surface:

r A, (P) = ra Q~—f~~."5~.(P) r~ "(P),
n=0, 1, 2, 3 (3.17)

(P)—=spTp (P) I r~=p, i on F.sq (3.11)
Since

fa~ (P) =s~sp F„(P)
~ r, , r, =, ; a, a ..F.s. (3.12)

~G./~I =En I» (~S''/~I ).

~S. '/~I =S.'D (~G'/—~I )3,

(4 1)

(4.2)

On the Fermi surface, (2.31) takes on the following
form in these quantities

fa'(p) = fsa "—p~"fa'"4" (p) pa '(p)
or, in matrix notation,

we obtain

gG,/g„= P„,J„„.S, 'D (aG„./—a )] (4.3)— .

Using (2.28), we may write this as

1=1—(~G /~I )—2 ~ I R 'L1—(~G /~~)7 (44)

where

f(p) =f f ~(P')f(p)—
=f f(p)~(P)f"—,

(3 13) On the other ha.nd, from (2.30) we ha, ve the ma, trix
identity

1 IR»= (1+FpR p)-', — (4.5)

Similarly,

~~(p) =~( —&.)
Vg, .

q
—(2milp/P)

f(P') = f' f'~(p)f(P)—
f' f(P) ~(P)f', -—

so that (4.4) becomes
3.14

1—(~Gn/~I ) = I+En F»'R~ '. (4.6)
(3.15)

However, by (3.2) the right-hand side of (4.6) is just
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pj,
p I

Ph P

(a) (b)

Now consider the left-hand side of (4.13). Since the

only dependence of G&(f&) on l comes through the a

functions which "conserve" l, changing l by l0 is

equivalent to replacing the l' of any internal line by
'+ ,f, o T. his is the same as replacing 5& '(«) by

Sl„. (g( +s(lp) ) in every internal line. Using the identity.

5,. '(«+s(lp)) —5( 'Q'E ) = —5,.'(p, .+ (t.))5,.'(g, )
FIG. 3. Diagramatic representation of the Ward identity (4.1).

(a) represents a diagram for G~ in which an internal line P' has
been explicitly indicated. (b) represents the result of differentiat-
ing the middle unperturbed propagator of this line with respect
to p. The dot on the end of the p' lines means that those propa-
gators have to be included and p' summed on in taking the con-
tribution of the diagram.

T„'",and therefore we obtain

BG~
lirn

g s- z (lo)—+0, lo&0
gl

—Z„ I„~ SA., '(g( +s(lp))

s(Ip)

G~ (f'( +s(&o)) G—a (fi )
X

s(fp)
(4.14)

T„"=1 aG„/af—, (4 &)

Or we may write

» ——oj, + (aG,/ak. )
—Zu I„u Rn "5»'+(aGu /ak. ')3 (4.9).

Using (4.5) again, we obtain

which is the erst "Ward" identity.
Similarly, differentiating G„with respect to k gives

another identity. Since G„depends on k only through
the matrix elements of the interaction potential, and
these are invariant if all the momenta are increased by
the same amount, differentiating with respect to k is

the same as differentiating with respect to the k ' of

every internal line of the diagram. Therefore, the same
reasoning a,s lead to (4.3) yields

aG„/ak =++„ I„„s~"$~s + (aG„ /ak. ')j (4.8. )

BG„
XS, '(h )(1—

(4.15)

and making use of the matrix identity

1 IR = (1+—I'"R")—',

which follows from (2.29), we obtain

1—(aG„/a«) =1+&„.r,„."R„".

(4»)

(4.18)

The right-hand side of (4.18) is just the definition of
T„'"and therefore we have the third "Ward" identity:

Writing (4.15) as

1=1—(aG,/af. ,)—p„ I„„.R, ."LI (aG„./a$( )—j, (4.16)

~~A,. +(aG„/ak ) =ok +Q„r„„'R„'vg, . (4.10) T.'"= 1—(aG./a«). (4.19)

The right-hand side of (4.10) is by (3.2) just T„', and
therefore we have the second "Ward" identity": To obtain the anal Ward identity, consider the

operator ((P) for the total momentum

T„o=» +( Ga~/ ka). (4») (P"=Py aA "akk~, a= 1, 2, 3. (4.20)

z(lp) =—2orilp/P,

we will consider the quantity

G.(l+ (~o))—G.(«)l (Io)

(4.12)

Next we consider the effect of changing « in G„.
Since ft+t, ——1t+s(lo), where

Q'(o,")=—(T(a.t(p)(p (")as)), (4.21)

which is related to a certain class of vertex diagrams.
Since 5' commutes with the Hamiltonian,

For the last identity we must assume that 6 commutes
with the Hamiltonian of the system. Consider the
quantity

in the limit where s(/p) is small, but not zero. To have
a compact notation we write Therefore, for e&v',

d (n') = d . (4.22)

aGO ~) Gk(«+s (Io) )—R(«)
lim (4.13)

z (Lp)~0, Lo+0

()"(n,")=(T(a"(n) d"a~))
= (T(ag, t(t()a.5"))—k.(T(a~t(n) a„)), (4.23)

on using

"The identity (4.11) may also be proven directly from the
gauge invariance of the theory. In fact, gauge invariance gives us
a more general result relating to the vertex part for q arbitrary,
)p =0. We shall not need this, however, in what follows.

For e&v'
((p,ail. ) = —k„a, .

()'(~,")=(T(&"as((o) a'))

(4.24)

(4.25)
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Assuming v) 0, we therefore may write

Q~' (v,")=((6"«"(v)«)) pi„.
——k'/2m (4.34)

If the unperturbed single-particle energy is of the form

where

—k.(ak ~ (v) ag)B(v —v') (4.26)
then 4.33 takes the form"

B(v—v') =1, v) v'

=0, v &v'. (4.27)

Q), (v,v') =+I, k '(T(apt(v)ag, t(v'+0+)aI, (v')aA))

=+~ k 'Gi I, (, I, (v, v'+0+, v'0)

cree. (&o)~'-

p p' l, l', lp

XGkk'p'p(i lyf L'+lpyf l"fl+lp) (4 28)

On the ot,her hand, Q„(v,v') is a two-particle Green's
function. From (2.1), (2.2), and a little manipulation,
we have

BG„ —
p u $~,cog,ca~,o.

p'

=T G=1 2 3) ) ) (4.35)

which has the same structure as the other Ward
identities.

Finally, we evaluate these identities (4.7), (4.11),
(4.19), (4.25) on the Fermi surface. Making use of
(2.16) and (2.17), and differentiating (2.17) with
respect to p, and k we obtain at once, on the Fermi
surface,

(4.36)

Expanding the Green's function in (4.28) in a, manner
similar to that of (2.4), we obtain

1
Q~" (v,v') =—P k„' P e«"e'&"'"' —B R (Pp)

pp k' l, l', lp

BG„1
~Iv ~k )

BGv) 1

(4.37)

(4.38)

+pg, , pS„'S, ' R, (Pp)I'—,„—(Pp)R„(Pp), (4.29)

where
BG„

(4.39)
Pp (O,s(lp)). —— (4.30)

~pPP ——1—BEg/Bp,

P P

e &'"e*&"'"'Q—
I, (v,v') dvdv'

p V

= —k. dve «" (ai„.'(v) a~)e '&'p"'dv'—

gg &=V, o.=1 2 3

(xeo v
0! (I 1 2 3

On the other hand, if we use (4.26) to obtain a similar Therefore, we have

expansion for Q~"(v,v'), we obtain (if it&0) for the
expansion coefficients (4.40)

(4.41)

(4.42)

(4.43)

V. CONSEQUENCES OF WARD IDENTITIES FOR
VERTEX AND CORRELATION FUNCTIONSe

—s(lp) v

dve &"Sp'(v)
s(lp)

1=1—(BEI/BIJ)+Z~ faj "B4 E.)—
X[1—(BE~ /Bp) j, (5 1)

s(lp)

Comparing (4.31) with (4.29), we have, fo«p/0,
(5.2)1—(BE(,/By) =1—Qa f~~"'~( E~)—

From the relationships (3.18) and (3.20) and (4.40)—
(4.43), we obtain the following important results"
[remembering that pj, '=b(IJ. Ey), 4"=—B(p——Ea)$:

(4.31)

= —[k.R„(P,)+P R„(Po)I',.(Po)R. (Po) k-'j,

,„-=I „-+P„,f„, -~(&—E,, .) V, -, (5.3)

Uk v. Pa fp——a'&(p—E'~ )v~'—(5.4)

or for s(lp) smaH,

OG„
+k.(1— =k.+x I'„R„k.'.

(4.32)

(4.33)

'2 The identity (4.35) is not needed for the establishment of the
Landau theory. It is, however, necessary if one wants to establish
the Landau effective mass equation.

"I&or simplicity in this section, we shall always assume e&

=k'/2m. Some of the relationships of this section are changed if.

we do not assume this, but none that we shall need for the Landau
theory.
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Actually (5.2) is equivalent to (5.1) and (5.4) is
equivalent to (5.3). This follows from specializing
(3.13) to the q limit, . Then

faa'= faa Z—a" faa""~(Ia «—.")fa"a (5.5)

Using these results, (3.21) and (3.22) become

Saa (P) — Q v ag (P)v a'

+2 v:~a(P) faa (P)&a (P)va",
From this we see at once that if

IC, A,
"

(n=0, 1, 2, 3) (5.19)

then
&a=»a+Ra faa "~(IJ I"—a )~a,

&a=BI Za —f~a"~(p &a—)~a'

(5.6)
S00(P)—

(5 7)

BEIc
+ Q 1— 4(P)faa (P)

Bp
BEIcl

X8 (P)(1— —, (5.20)
BpS aa' P S ~2v aT a'q

S '=Q R v "T
(5.8)

BEIc
(5.9) S""(P) = —P 1— ba(P) Va"

Bp

t Multiply (5.5) by 6(p—Ea )A a and sum on k'.]
In order to obtain the correlation functions, we first

need 5, ' and 5„', where o., n'=0, 1, 2, 3. Starting
from (3.8) we have

From (4.7) and (4.11)

(5.10)

S„"v, (1 BG„/Bp), n—'=0
S„"va (va"'+BG„/8k. ), n'= 1, 2, 3

va (—BS„'/8p), n'=0
va (BS„'/Bk. ), n'=1, 2, 3

v. (—BNa/Bp), n'=0
va (BNa/Bk. ), n'= 1, 2, 3,

BE),
+ 2 1——~a(P) faa (P)4 (P) Va",

lC, A.
"

(n'=1, 2, 3) (5.21)

5'-'(p) = —p N„QV,.-3,, (p) V—,.-'
1c Bk~Bkrr&

+2 Va 4(P)faa (P)R„'(P)Va",
where XI, is the mean occupation number for rno-
mentum k. Therefore

1c,k'

(n,n'=1, 2, 3). (5.22)

S "=»(~)/~~
S on' +San —0 n n' —1 2 3

Sp '= —Pa (8'aa/Bk, Bk, )Na, n, n'=1, 2, 3

= —(X/m)5. ,
From (4.19) and (4.35), we have

(5 11)

(5.12)

(5.13)

(5.14)

so that
(I/P)Z, R„(I—aG„/af, ) = 0,

5„'=0, o.,o.'= 0,1,2,3.

(5.16)

(5.17)

To see (5.16), consider

(I/O)& LS.'(r )—S.'(t, .)] "=0.
This is the same as

G.(fi+io) —G. (CE)-ZS.-'(r)S'0 ..) 1—
s(lo)

=0, (5.18)

if to/0. Now let lo be small, but not zero. Then the first
factor in (5.18) just goes over to R„and the second to
(1—BG„/Bf ~), so that (5.16) is proved.

S„~'=Z„R„va (1 BG„/B—f(), n'=0
)=Z„Rvva va '(1 BG„/Bf(—), n'= 1,2,3.

However,

Of these only (5.22) will be of direct interest to us for
the Landau theory. %e also mention that by specializ-
ing these last relationships to the q or co limits we get
some interesting identities, but we shall not elaborate
on these here.

VI. LONG-RANGE FORCES

Until now we have assumed that the forces bet;ween
the particles are short-ranged. This has enabled us to
go to the small-q limit without any difficulty. If, how-
ever, a Coulomb force is present and we have a diagram
with a matrix element that has momentum transfer q,
there will be a factor proportional to 1/q' present. This
diverges as q approaches zero. Such diagrams must
clearly be given special treatment before the limit of
small q is considered. Let us consider the diagrams for
I'»'(P). We shall call a diagram proper if the mo-
mentum transfer q never appears in an internal inter-
action line, '4 and improper if it does. Fig. 4 gives a few
examples.

Let us call the sum of all proper"scattering diagrams,
I'»'(P). This is perfectly regular as q approaches zero,
since we are just not taking diagrams which lead to
small q difficulties. Ke next express an arbitrary dia, -

'4 Equivalently, a proper diagram is one which cannot be cut
in two by cutting a single interaction line.
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p+p

I+p

p+P

{o) p+p p

(b)

p+P p

p+p

(c) p+P

I'io. 4. Proper and improper scattering diagrams. (a) ond
(b) are improper; (c) and (d) are proper.

(a)

(b)

gram in terms of the proper ones. The general structure
of I'»'(P) diagrams is indicated in Fig. 5. Clearly

r,„(P)=r,„(P)+T„'(P)V(P) T,"(P), (6.1)
where

U(P) =fz,+zz,S"(P)u„+u,S' (P)u,S'
X(P)u,Soo(P)+ "

I

Herc, we have used the notation 5, T to mean the proper
correlation and vertex functions. In (6.2), u, is just the
matrix element of the Coulomb potential for momentum
transfer II, i.e.,

u, = 4zre'/Otf',

where 0 is the volume of the system.
The expression for V(P) is just a, geometric series, so

that we have

V(P) =uo/1 —u„S"(P)

E zG. 6. Examples of
proper self-energy dia-
grams v hich give
trouble in long-range
case.

(o)

E'ig. 6 never occur. However, it is just such terms which
when differentiated with respect to p give rise to im-

proper 1 diagrams. Therefore we have at once

BG~/Bzz = Z„ I'» 'S„"s. — (6.6)

Similarly, (4.10) holds for I'»' and is replaced by
I'»'", since the type of insertion LFig. 6(a)jwhich gives
rise to difficulties has its l dependence completely in-
dependent of the incoming I. Therefore, changing 1

doesn't affect the contribution of such a line, and it does
not contribute to c)G,/8| t.

Lastly, we come to the identity (4.35). This must be
dealt with by another method (which incidently also
works for other Ward identities). We consider first an
interaction between the particles which is finite ranged,
and at the end we let the range go to infinity. Then
(4.32) still makes sense. Using (6.5), we obtain

n, (8S„'/c)t',.) = —R„(Po)T„(Po)
=~.(Po)T:(Po)—2 T'(Po) T.'(Po)

~/

I'~~'(P) = I'»'(P)+1'~" (P)T~'(P)
XLuo/1 u Soo(P)j (6 5

The quantities I', T, 5 now have well-defined q and co

limits, I", I'", etc. The same analysis that led to (2.31)
and (2.32) can now be repeated for proper diagrams.
This tells us at once that these equations now hold
with F replaced by I".

In addition, all the results of Sec. III, which are
purely algebraic consequences of (2.31) and (2.32), now
hold for the proper vertex and correlation functions. In
particular (3.17)—(3.22) hold if a tilde is placed on every

f, r, andS.
Finally, we must consider the Ward identities of

Sec. IV. Clearly (4.6) (because of the q limit) makes no
sense for the long-range force case. This is also reflected
in the fact that 6„itself diverges in this case because it
contains the term (from the direct interaction) 1Vu(0).
Now in the Coulomb case, if we have a uniform back-
ground charge opposite to that. of the interacting par-
ticles such terms are exactly canceled, and G~ is actually
perfectly regular. That means terms like (a) and (b) of

FIG. 5. The general structure of scattering diagrams: (a) gives
the diagrams for I'» (P). In (b) the oval-shaped parts are proper,
i.e., they cannot be cut in two by cutting an interaction line.

X&„(Po)n~
1—uoS"o (Po)

=Z, (Po)T„(Po). (6.7)
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diagrams, and there is no difhculty passing to the infinite
range limit. Thus (4.35) is valid for the proper vertex
part.

Therefore, we conclude that the results (4.40)—(4.43)
are valid for the proper vertex parts on the Fermi
surface and that consequently all the identities of
Sec. V still hold for proper scattering functions on the
Fermi surface.

This follows from

P 2, '(&s)R, (&o)t,"
Gs (pi +s(&o)) G—~ (pi)1— &, (&o)vk

p / s(Io)

1
2 ta"- Q (Ss i

—Se, i+i, l
z(I„) r.
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Using the results of the preceding paper, it is shown that a large class of the conclusions of the Landau
theory of Fermi liquids may be established within the framework of many-body perturbation theory. Both
equilibrium and transport phenomena are discussed. The theory is also carried out for long-ranged Cou]omb
forces. Finally, it is shown that a rather simple general expression for the quasi-particle distribution function
of Landau may be given.

I. INTRODUCTION

'N this paper we shall be concerned with the verifi-
- - cation of the results of the Landau theory of Fermi
liquids for certain equilibrium and nonequilibrium
phenomena. We shall do this first for short-ranged
forces and then generalize to long-ranged Coulomb
forces. The necessary formalism for this purpose has
been given in the preceding paper. In addition, we

shall show that it is possible to give a very simple
general definition of the "quasi-particle distribution
function" which occurs in the Landau theory.

We begin our discussion with a brief summary of
the Landau theory. ' Consider first an ideal Fermi gas.
A great many properties (heat capacity, compressi-
bility, conductivity, etc.) of this system are determined
(for temperatures much less than the degeneracy

* Supported in part by the OKce of Naval Research.
' P. Nozieres and J. M. Lnttinger, preceding paper [Phys. Rev.

126, 1423 (1962)].We shall refer to this paper as I. The notation
and assumptions used in the present paper will be the same as
those of I.' See A. A. Abrikosov and I. M. Khalatnikov, Soviet Phys. —
Uspekhi 66, 68 (1958}.

temperature) by the nature of the single particle states
which lie in the immediate vicinity of the last occupied
single-particle state. It is these same properties that
the Landau theory tries to calculate for an interacting
system of fermions. We can now state Landau's
assumptions as follows:

(1) If the interaction is turned on, the single-particle
states in the neighborhood of the last occupied one
remain eigenstates of the system. We call these quasi-
particle states, and say that a quasi-particle k is present
if the state k is occupied. The low-lying excited states
of the system are assumed to be in one-to-one corre-
spondence with those of an ideal Fermi gas, the quasi-
particle states just replacing the particle states. There-
fore, since the number of real particles is conserved,
in these low-lying excitations the number of quasi-
particles must also be conserved. Adding a particle to
the system must therefore also add a quasi-particle.

(2) The state of the Fermi liquid for weak excitation
(equilibrium or nonequilibrium) is entirely described
by the distribution function rs(k, x) of quasi-particles in


