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The usual conserved quantities of Lorentz-covariant theories are associated with the descriptors of coordi-
nate transformations in Killing directions. By suitably defining the concept of asymptotic-Killing vector
fields, it is possible to extend the definition of the usual conserved quantities to situations in which, properly
speaking there are no Killing vector fields, but in which, nevertheless, it is still meaningful to speak of the
energy, momentum and perhaps angular momentum radiated by the gravitational field. Among the results
obtained in the course of the investigation are: (a) an understanding of the circumstance which singles out
the energy as a positive-definite quantity; (b) a possible global consequence that vanishing energy implies
that the space is flat; (c) an understanding of the position of the Fock harmonic coordinate conditions in
Trautman’s treatment of gravitational radiation; (d) an extension of the validity of the Mgller pseudo-
tensor to the Trautman radiative solutions. Also a brief indication is given of how this work might be
extended to give a proper treatment of energy, momentum, and angular momentum densities for general

metrics.

I. INTRODUCTION AND GENERAL
CONSIDERATIONS

T is well known that the fundamental conservation
theorems in physics are related to the invariance
properties of the physical laws. Thus, in the theory of
gravitation, which has as an invariance group the group
of general curvilinear coordinate transformations, one
can find innumerable conservation laws, no one finite
set of which has any evident invariant distinction. In
particular, if we describe an arbitrary infinitesimal
curvilinear coordinate transformation by means of a
vector field £ as follows (Latin indices run from 1 to 4):

Xi=X4-§, ¢Y)

then it has been shown! that the strong conservation
law associated with this transofrmation may be written

Em(g);mzov (2)
where the generalized energy flux vector Ei(§) is
Eg)=2(&"—£"9);n. ©)

In general, there appears to be no convincing way to
single out a particular £ for the purpose of identifying
an analog of energy, momentum, or angular momentum.
However, for particular highly specialized spaces,
namely, those admitting Killing vector fields, the situa-
tion strikingly resembles that found in ordinary Lorentz
covariant theories. For the generalized energy flux
vector associated with the Killing vector field £ is
found from Eq. (3) to be

Ei(§)=—2¢"Ry, @

where R;* is the Ricci tensor of the manifold. (Use has
been made of the commutation relations for covariant
derivatives.)

* Supported in part by the National Science Foundation.

1 A. Komar, Phys. Rev. 113,934 (1959). (Note the slight change
in notation; E™ of the present paper corresponds to P™ of this
reference.)

We see from Eq. (4) that the generalized energy flux
vector for the Killing vector £ vanishes in regions where
there is no matter. The total generalized energy,

1 1
E()=— / FrdSn=— / B(=gd,  (5)
2K 2K

which, from Eq. (2), we can see is conserved, can be
converted by use of Eq. (3) into a two-surface integral
surrounding the matter

1
—_— MmN n;md e 6
B(H=— f (gmin— grim)dS ©)

We see from Eq. (4) that this two-surface integral is
surface-independent, providing it encloses all the regions
where the Ricci tensor is nonvanishing or singular, that
is, all the regions where there is matter. For the Schwarz-
child solution, if £ is taken to be the time-like Killing
vector field, Eq. (6) provides a covariant, surface-inde-
pendent characterization of the mass of the singularity.
It is the strict analog of the Gauss flux integral for the
total charge in the Maxwell theory.2

The fact that the vanishing of covariant derivatives
of symmetric tensors lead, in the presence of Killing
vectors to true integral conservation theorems, has
already been noted by Trautman.® For, given T'; such
that

Ty=T; O
and
Timimzoy (8)

and given a Killing vector £, then

(EnTﬂm);m:%(sn;’m—l— gm;n)Tnm-i_EnTnm;m:O- (9)

2 In order to see this analogy more sharply, compare Eq. (3) with
the Mazxwell equation: Ji=Fim = (4%m—A4™),, and compare
Eq. (6) with e= FE-dS= £F»dS,,.

3A. Trautman, ‘“Lectures on Relativity,” Kings College,
London, 1958 (unpublished).
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The conserved quantity thus obtained is

f
T:j ngmndSn=/Sme‘l(-‘g)%d;gx. (10)

From the above discussion, it would thus appear that
the preferred conservation laws of Lorentz-covariant
theories (energy, momentum, and angular momentum)
stem from the fact that flat Minkowski space admits 10
independent Killing vector fields. These vector fields
are the descriptors of the rigid translations and rotations
of the flat Minkowski coordinate surfaces. Each family
of flat coordinate surfaces in Minkowski space may be
characterized in the following fashion: The equations
for the coordinate surfaces may be written

¢=const; ¢ .p"#=0, (11)

where
£i=(¢.nd'™) 9., (12a)
&t £5=0. (12b)

When we go to more general Riemannian manifolds,
it would seem that when there are Killing vectors avail-
able they are the appropriate choice to take in Eq. (3)
in order to have conservation laws which correspond
naturally with those of Lorentz-covariant theories. The
generalized energy-flux vector so obtained is everywhere
locally defined, in view of the fact that Killing vectors
are locally definable (that is, no reference to boundary
conditions at infinity are usually required to specify
a solution of Killing’s equation).

For the most general and typical Riemannian mani-
folds it is no longer possible to find Killing vector fields.
In this event it is no longer clear whether there is any
meaningful, relevant choice of a preferred descriptor,
£, which when used in Eq. (3) would give a corre-
spondence with Lorentz-covariant energy or mo-
mentum. One thing we may insist upon is that any
criteria or conditions placed upon a particular £ in order
to single it out should not exclude the hypersurface-
orthogonal Killing vector field [i.e., £ such that Egs.
(12) are satisfied ] should one exist. If we further require
that the descriptor £ be locally defined, we are led rather
immediately to the eigenvectors determined by the
Weyl tensor.* Although this scheme does provide a
formal generalization of the concept of energy and
momentum, (in fact we have, in general, four such
mutually orthogonal descriptors at each point in space-
time), the expressions for “energy’” and ‘“momentum”
so obtained do not seem at present to have any special
properties which indicate their utility.

For Riemannian manifolds which are asymptotically
flat at spatial infinity, several authors have suggested
approaches for determining preferred descriptors which

4 F. Pirani, Phys. Rev. 105, 1089 (1957). Note particularly the
proof that hypersurface-orthogonal Killing vectors are eigen-
vectors of the Weyl tensor.
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discard the requirements of locality. Fock® has observed
that the flat coordinate surfaces of Minkowski space
may be characterized by the property that they are
harmonic, that is, they satisfy

d;m™=0. (13)

Furthermore, if Eq. (13) is imposed together with an
outgoing radiation condition, the solutions so obtained
are unique up to a Lorentz transformation. One then
determines the descriptor as in Eq. (12a) and the energy
and momentum flux vectors according to Eq. (13). Fock
then conjectures that a similar uniqueness theorem can
be proven for general, asymptotically flat monifolds and
proposes to carry through the program of determining
the energy and momentum (presumed unique up to a
Lorentz transformation) in the identical fashion.
Although some doubt has recently been cast upon the
uniqueness conjecture of Fock,® it is worth noting that
the harmonic condition Eq. (13) is in complete accord
with our requirement of not excluding hypersurface-
orthogonal Killing vector fields Eqgs. (12). For, differ-
entiating Eq. (12a) and substituting the result into
Eq. (12b), we find

d’;m¢';m(¢’; ij+¢;h') = 2(¢: @;m@ ™ b, 1, md mi)- (14)
If we multiply Eq. (14) by ¢i‘¢i?, we obtain
20", md PP P, pg=0. (15)

Thus, if we contract Eq. (14) on ¢ and j and use Eq. (15)
and the second condition of Eq. (11), we readily deduce
Eq. (13). That is, ¢ is necessarily harmonic.

Dirac” and several other authors®® suggest that the
flat coordinate surfaces of Minkowski space may be
characterized as being minimal (i.e., a solution of the
Plateau problem). Mathematically, the precise require-
ment is that each family of surfaces satisfies

L& ™¢im) 2" ]in
=(¢' m¢;m)‘§(¢; " n®' P p— @ PP, pq) =0. (16)

Equation (16) is then usually required by these authors
in the general case (at times with and at times without
supplementary boundary conditions at infinity) at least
for the space-like hypersurfaces. Here again we should
point out that the uniqueness (up to Lorentz trans-
formation) conjectured by those authors who impose
boundary conditions may be subject to some doubt.®
Nevertheless, it is again worth noting that in view of
the fact that a hypersurface-orthogonal Killing vector
field satisfies Eqs. (13) and (14), it @ fortiori satisfies
Eq. (16). That is, the ¢ of Eqs. (12) is necessarily
minimal as well as harmonic.

5V. Fock, Revs. Modern Phys. 29, 325 (1957).
8 P. G. Bergmann, Phys. Rev. 124, 274 (1961); P. G. Bergmann,
I. Robinson, and E. Schucking, Phys. Rev. 126, 1227 (1962).
7P. A. M. Dirac, Phys. Rev. 114, 924 (1959).
(1351;.)Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 116, 1322
959).
9 J. Rayski, Acta Phys. Polon. 9, 33 (1961); 20, 509 (1961).




CONSERVATION LAWS FOR GRAVITATIONAL RADIATION

At this point, one is tempted to conjecture that the
preferred choice of coordinate surfaces in the general
Riemannian manifold are familes of surfaces which are
simultaneously minimal and harmonic. However, as
we have already indicated earlier, all of the above
attempts to generalize energy and momentum to arbi-
trarily curved manifolds are formal in character, and
the “correct” choice, if indeed there is one, must be
determined by the use to which we wish to put the
resulting conservation laws. One is not particularly
interested in a formal definition of energy if it teaches us
nothing about the properties of the spaces under
consideration.

Of particular physical interest are a class of manifolds
which, due to the boundary conditions they satisfy at
spatial infinity, appear to be radiating gravitational
waves. In the treatment of these solutions by Traut-
man!® an essential role was played by Fock’s (or
de Donder’s) harmonic coordinate conditions. The
harmonic coordinate conditions were used asymptoti-
cally by Trautman in order to show that the energy
expressions were finite, and that the energy radiated
was positive-definite. The purpose of the remainder of
this paper is to investigate whether, at least for the
radiative solutions, the harmonic coordinate conditions
are truly fundamental or whether any of the other pro-
cedures mentioned above for generalizing the energy
concept play some role in the understanding of the
phenomena of gravitational radiation. In particular, it
will be shown that the minimal coordinate system is
required asymptotically in order to express the relevant
conservation laws in covariant form [Eq. (2)]. Then
paper will conclude with a discussion of some results
obtained from a procedure for avoiding the specification
of asymptotic coordinate conditions entirely. This will
be accomplished by placing asymptotic boundary con-
ditions on the descriptor vector fields, £, in order to
assure that the energy-flux vectors obtained via Eq. (3)
will be appropriate for the treatment of gravitational
radiation.

The principal motivation for the program of dis-
pensing with the harmonic coordinate conditions, and
placing the emphasis instead on the descriptor vector
fields, is to underline the fact that the preferred, relevant
conservation laws for the treatment of gravitational
radiation refer to the generators of rigid translations in
directions which are asymptotically Killing. The pre-
ferred coordinate surfaces are a fortiori asymptotically
harmonic (as well as minimal).

II. TRAUTMAN RADIATIVE SPACES

Building on a striking analogy with electromagnetic
theory Trautman'® has proposed that, for a space to
be regarded as radiating gravitational energy, a coordi-
nate system should exist in which the metric tensor has

10 A. Trautman, Bull. Acad. Polon. Sci., Classe ITL5, 721 (1957).
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the asymptotic form
gii=n;;+0(r"), %))
gij k= 1ikitO(r™?), (18)

where 7;; i1s the Minkowski metric, £; is an outward
drawn null vector, 7;;=0(r1), and r?=x24y2422. In
addition, in analogy with the Lorentz condition of
electrodynamics, Trautman found it necessary to im-
pose, asymptotically, the harmonic coordinate condi-
tion, Eq. (13), in order to obtain coordinate surfaces
which are asymptotically flat. This has a consequence

(iij_“%'f]ijimm)kj: 0(7’—_2). (19)

Having assumed the existence of one coordinate
system in which Egs. (17), (18), and (19) are satisfied,
we can now obtain other such systems by performing
coordinate transformations which preserve these condi-
ditions. Such transformations are given (by Trautman)
as follows:

2t=ux4a¥(x), (20)

where
@=00"Y); a;;=bk+0(r?); (21)
bi= O(r_l); bm'-—— Cikj-f—O(?’—z); Ci20(7_1)~ (22)

The total energy and the flux of energy is most readily
expressible in terms of the von Freud!' expressions:

U= (—g)Ygunl —glgimgm—gmg"™) ] (23)

With this definition the total energy-momentum four-
vector may be written

1
P7’L(0'):~——f Um[pq]dSpq’
2K Js

where the integral is taken over the surface of a two-
sphere at infinity S, which bounds all of a space-like
hypersurface, ¢. The total energy and momentum
radiated between two space-like hypersurfaces ¢ and

o’ is given by
1
pmz__/ Um[pq}’qup,
2K Jx

where the integration is taken over the surface of the
time-like three cylinder, 2, which, together with the
hypersurfaces ¢ and o', forms the boundary of the four-
volume between the two space-like hypersurfaces.

If we substitute the asymptotic expressions for the
metric tensor Egs. (17) and (18) into Eq. (24), we find
that the integrand falls off like 1, whereas the surface
element increases as 2. Thus, Pn(s) as defined in
Eq. (24) would ordinarily diverge in the limit that the
sphere, S, approaches infinite radius. It is at this point
that we must impose the harmonic coordinate condition,
Eq. (19), in order to assure that the integrand of Eq.
(24) falls off as 2, and thus make the integral con-

(24).

(25)

1P, von Freud, Ann. Math 40, 417 (1939),



1414

vergent. The harmonic condition then has the additional
virtue of assuring that the total energy radiated, p4 of
Eq. (25), is non-negative.

III. THE M@LLER PSEUDOTENSOR IN
RADIATIVE SPACES

The expressions for energy and momentum used in
Egs. (24) and (25) were obtained from the consideration
of the generators of translations along the coordinate
axes. That is, the relevant descriptors for energy and
the three components of momentum are 8., ;% 85, 85%,
respectively. However, if we placed one of these de-
scriptors into Eq. (3) we would not, in general, obtain
the expression of the corresponding conserved quantity
used in Sec. IT. The reason is that the expressions for the
conserved quantities in Sec. IT are obtained from the
Einstein canonical pseudotensor, whereas the expres-
sions of Eq. (3) were obtained from the Mgller pseudo-
tensor!? and, in fact, for the case we are now considering
of constant descriptor fields, coincide precisely with the
Mgller pseudotensor. ,

Mgller introduced his expression for the purpose of
rectifying a gross shortcoming of the Einstein pseudo-
tensor, namely that it is not even covariant under purely
spatial coordinate transformations. The Mdller pseudo-
tensor differs from the Einstein pseudotensor by a pure
divergence, and therefore generates precisely the same
coordinate transformations. In the integrated expres-
sions for the total energy and momentum, the di-
vergence term is convertible into a surface integral over
the two-sphere at spatial infinity. Mgller has so chosen
the divergence that the surface integral vanishes for
metrics which asymptotically approach the static
spherically symmetric Schwarzschild metric. Thus, for
the nonradiative, asymptotically static flat solutions of
Einstein field equations the Mgller and the Einstein
pseudotensors agree as to total energy and momentum
in those coordinate systems where the Einstein pseudo-
tensor may be applied legitimately (i.e., asymptotically
Minkowskian); and for those coordinate systems which
preserve the preferred time direction, where the Einstein
pseudotensor is inapplicable (e.g., polar coordinates)
the Mgller tensor remains valid and continues to give
the correct values for the energy and momentum. (It
should be noted, however, that under linear coordinate
transformations which involve the time the Mgller ex-
pression no longer transforms as a tensor, in contrast
to the Einstein pseudotensor.)

The expression in Eq. (3) was constructed to gen-
eralize the Mgller pseudotensor to a completely co-
variant quantity and to exhibit explicitly the descriptor
of the coordinate transformation which is generated by
the conserved quantity. The region of validity and
applicability of Eq. (3) is therefore strongly delimited
by the region of applicability of the Mgller pseudo-
tensor. In particular, we have no assurance that the

12 C. Mgller, Ann. Phys. (New York) 4, 347 (1958).
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Mgller expression can be applied meaningfully to radia-
tive spaces whose metrics are characterized by Eq. (17)
and (18). For example, we have no knowledge of the
significance of the disgarded surface integral which no
longer vanishes in the radiative solutions. These ques-
tions we will now subject to closer scrutiny.

If we define

U U= 2U 1) — §,3U 14 8,0, i, (26)

where Ul are the von Freud expressions, Eq. (23),
the Mdller expression for the total energy-momentum
four-vector may now be written:

1 -
E,,,(a)=—jf U,»1dS,,,
2K J s

and the Mgller expression for the total energy and
momentum radiated between two space-like hyper-
surfaces, ¢ and ¢’, is given by

1
em=—

2K Jx

@7

Unt?d, Sy, (28)

where the regions of integration are defined precisely as
in the corresponding expressions, Eqs. (24) and (25),
respectively.

In analogy with our earlier discussion of the Einstein
pseudotensor, we substitute the asymptotic expressions
for the metric tensor, Egs. (17) and (18), into Eq. (27)
and we again find that the integrand falls off like r~%,
whereas the surface element increases as 72, However,
in our present case, the harmonic coordinate condition
Eq. (19) no longer enables us to avoid the resulting
divergence. The coordinate condition now required is
readily found to be

Trmk™=0(r72), (29)

which corresponds to requiring the coordinate surfaces
asymptotically to satisfy the equation

(g™, m),n=0. (30)

Since this equation is not covariant, the resulting
family of surfaces cannot readily be geometrically
characterized.

However, if we wish to require the simultaneous
validity of the Einstein pseudotensor and the Mgller
pseudotensor [and the consequently validity of the
covariant expression, Eq. (3)], that is, if we require that
Egs. (19) and (29) be simultaneously valid, we can
easily characterize the resulting surfaces geometrically;
namely the coordinate surfaces asymptotically are
simultaneously harmonic and minimal. That this can
always be accomplished in a Trautman radiative space
may be seen by performing a coordinate transformation
of the type given by Egs. (20), (21), and (22). Such a
coordinate transformation will leave invariant Eqgs. (17)
and (18), as well as the harmonic coordinate condition,
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Eq. (19). Under such a coordinate transformation i;;
transforms thus:

=1t kic;+kjca. (31)
It is readily seen that if ¢; is chosen such that
cnk™=—3(in™), (32)

then in the new coordinate system Eq. (29) will also
be satisfied.

Our freedom to perform coordinate transformations
which alter 7;; is by no means exhausted by imposing
conditions (19) and (29). For, any ¢; such that

Cmk™=0 (33)

will, when used in Eq. (31), continue to preserve Egs.
(19) and (29). If 7% is taken to be any time-like vector
field (e.g., 7¢=25%) and we define ¢; thus

;= %(Tpkp)_%mnfm‘r"ki— (Tpkp)_liimém,

(34)

we observe first that, as a consequence of Eq. (29),
Eq. (33) remains valid. If we employ Eq. (34) in Eq.
(31) we find that in addition to conditions (19) and (29)
we may impose on ¢;; the condition

fomt™=0(r2).

(35)

This exhausts the conditions which may simultaneously
be imposed in ;. It is worth noting that as a conse-
quence of Egs. (19) and (29) we have

in=0(). (36)
Thus, 4;; is explicitly exhibited to have but two inde-
pendent nontrivial degrees of freedom, both of them
spatial and transverse with respect to k; as we should
expect for gravitational radiation.

Having agreed to impose both conditions (19) and
(29) on our choice of coordinate systems, both the
Einstein pseudotensor and the Mgller pseudotensor can
be made finite. It does not follow from this that both
expressions agree for the values of the total energy and
momentum, Egs. (24) vs (27), or for the energy and
momentum radiated between two space-like hyper-
surfaces, Egs. (25) vs (28). In order to obtain such an
equality, additional conditions would have to be im-
posed on the »—2 terms in the metric tensor and its
derivatives. This is not very surprising since, even in
the static Schwarzschild solution, the Einstein and
Mgller expressions agree only in a particular class of
coordinate systems, those which decompose the space-
time into a three-space orthogonal to the time-like
Killing direction and which are asymptotically rec-
tangular at spatial infinity. The Mgller expression which
transforms as a tensor under all coordinate transforma-
tions which do not involve the time, is then presumed to
apply when more general coordinate systems are used.

For the radiative spaces considered in this paper
there is also, presumably, a class of coordinate systems
in which the values given by the Einstein and Mgller

1415

expressions coincide. Since, by means of descriptor
fields, the Mgller expression can be generalized more
readily than the Einstein, we may then prefer to use it
for other coordinate systems. In view of the fact that
the Mgller expression was contrived to agree with the
Einstein expression for the static Schwarzschild solu-
tion, we may say with certainty that if a space is initially
asymptotically static Schwarzschild, then radiates for a
finite interval, and then returns to an asymptotically
static Schwarzschild form, both the Mgller and the
Einstein expressions will agree for the total amount of

energy and momentum radiated in that interval. :

IV. ASYMPTOTIC KILLING FIELDS

It is evident that the Trautman-Fock device of em-
ploying harmonic coordinate systems is a means of
selecting the conserved quantities which generate co-
ordinate transformations whose descriptors are in some
sense asymptotically Killing. In this section we wish to
examine the extent to which the concept of asymptoti-
cally Killing can be made precise. Care must be taken
to avoid definitions which, though they may be precise,
are sterile.

The first indication in Sec. I that the preferred con-
servation laws are to be associated with Killing vector
descriptors, was the observation that the Killing vectors
enabled us to construct conserved quantities whose
values could be determined by a Gauss-type flux inte-
gral over any surface surrounding the sources of the
gravitational field. This might suggest that for asymp-
totic Killing fields one should be able to obtain expres-
sion for conserved quantities which are asymptotically
surface independent. Duplicating the steps which lead
to the derivation of Eq. (4), we are led to conclude that

it &= 0(r~2+9) (37)

is implied by the requirement of asymptotic surface-
independence. However, Eq. (37) is much too strong a
condition. For, in a coordinate system in which the
vector field is a descriptor of a rigid translation of a
coordinate surface, that is, in a coordinate system in
which the descriptor has the form

i= i,

(38)
we find from Eq. (37)

gii.a=O0(r ),

in contradiction to the requirement Eq. (18). This result
should not be particularly surprising, since, if the value
of the conserved quantity can be obtained asymptoti-
cally in a surface-independent fashion, it is evident that
this quantity cannot be radiated to infinity.

It would be better to take the expression “asymptoti-
cally Killing” to mean that the vector field to which
the expression is to be applied has the property that, in
a neighborhood of infinity, it is hypersurface-orthogonal
to a surface which, asymptotically (to order r—2), is

(39)
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simultaneously harmonic and minimal. That is, the
surface ¢ satisfies the equations

é.m™=0(r"?)

[(@™p.m) i) n=0(r2).

The asymptotic Killing field, &, is then obtained via
Eq. (12a).

Given such asymptotic Killing fields it does not as
yet follow that the conserved quantities obtained via Eq.
(6) will prove to be finite. For this, we need that in the
preferred coordinate systems determined by Egs. (40)
and (41), the metric tensor satisfy the Trautman con-
ditions Egs. (17) and (18). It is possible to characterize
the Trautman conditions covariantly by placing equiva-
lent conditions on a vierbein of vector fields, although
such a procedure is of questionable practical value. We
will very briefly sketch at this point how such a charac-
terization may be accomplished, since a few of the
resulting expressions have interesting consequences.

In a coordinate system which satisfies Egs. (17), (18),
(29), (35), and (36), consider the four-vector fields &,*
given by Eq. (38). It is readily verified that each of
these four vector fields is asymptotically Killing (in the
above precisely defined sense of the words), and in
addition satisfy the following relations:

(40)
and
(41)

Eariijt Ealiii=1ikatO(r2)=0(r), (42)
keka=0(r"), (43)
15;=0(r), (44)
Ea™m=0(r"?), (45)
km(Eatm;it Eali;m) =0(r2), (46)
7™ Eams it Ealizm) = E4™(Eatmi it Ealim) =O0(r72),  (47)
Ea1™Eblm= Nab 00 ™), (48)
Ea™EbEim— b Eaim=0(r2). (49)

If we define what we mean by » via
ri=km,./2, (50)

it is possible to turn the above conditions about and
deduce the Trautman metric in the preferred coordinate
system. In this regard, Eq. (49) is particularly important
for it is the condition which assures us of the possibility
of finding a coordinate system in which, at least asymp-
totically (to the correct order), &,*=4,¢ for all a. It is
also the condition which says that the coordinate trans-
formations, generated by the four conserved quantities
obtained from the four descriptors £,%, commute.

One other relation, which is readily deducible, deserves
particular mention

E4]mkn($a|m;n— fa]n;m)=0(7’_2)- (51)

It is this condition which assures us that the surface
integral, Eq. (6), yields a finite results, since the two-
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surface over which the integration is to be performed
has as surface element

dSi~kikyj—k;qs. (52)

V. ENERGY

The condition expressed in Eq. (35), or equivalently
in Eq. (47), yields a preferred status for the time-like
descriptor £ *=7* This has an important consequence
for the resulting conserved quantity, which we wish to
identify with the energy. In view of the asymptotic
relations Eqgs. (45) and (47), let us consider in general
the following conditions on a time-like vector field 7¢:

(53)
(54)

T = 07
Tm(Tm; 1‘+ T m) =0.

We note that Eqgs. (53) and (54) form precisely half
of the Killing equations. We may therefore call such a
vector field semi-Killing. In view of the fact that these
are five differential equations for the four components
of 7%, they are somewhat overdetermined. It is therefore
not clear whether the assumption of the existence of a
semi-Killing vector field is a limitation on the generality
of the Riemann space. However, we found it no limita-
tion to impose such five relations asymptotically to
O(r7?). The assumption of the existence of a time-like
semi-Killing vector field is equivalent to the assumption
that we can find a coordinate system in which the metric
tensor takes the form:

(55a)
(55b)

gi4,4=0,
(detgij),4= 0.

It is well known that there is no difficulty to imposing
any four of the above five conditions locally.

Let us assume that we can find a time-like hyper-
surface-orthogonal semi-Killing vector field 7% -The con-
served quantity determined by it (i.e., the energy) is
[via Egs. (3) and (5)]

1
E=— ./‘(Ti;m_Tm:i);mdSi, (56)
K

Since it is understood that the integration is to be
performed over a surface of constant time, we have
[note Eq. (12a)]

dSi~¢,i=(177p) Vri=— | 777, 7

(S7)

[The last step in Eq. (57) results from the tacit assump-
tion throughout this paper that the signature of the
metricis (1, 1, 1, —1).]

Comparing Egs. (56) and (57) we are led to consider

- lTprl_lTi(Ti:m_ T i):m
=— l 127, | Tl (rimap i i Qpmid)
=— | 727, | Y — rim(r8 4 778 — 2777R,;

F[ri(rimd7m9) ] =27 ). (58)
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We have made use of the commutation relations for
covariant derivatives as well as an integration by parts.
The last two terms in Eq. (58) vanish as a consequence
of Egs. (53) and (54). We conclude from Eq. (58)

(Ti;m_ ™) ;m@S i~ | T'7p | -1
X[G(rei+750) (7547594 27777R; 120, (59)

The positive-definiteness of the first term in the brackets
is a consequence of Eq. (54). The positive-definiteness
of the second term in the brackets is a consequence of the
property of all known energy-momentum tensors for
matter distributions. Thus, the energy density, as deter-
mined by a semi-Killing descriptor, is necessarily positive
definite. We have, in addition:

E=0 Ti;j+Tj;i=Rij=0. (60)

We can therefore paraphrase a well-known global
theorem!® and say that under suitable boundary condi-
tions at infinity and with the exclusion of singularities,
E=0 implies that the space is locally flat.

This result, which may be regarded as a version of
Mach’s principle, depends on the existence of a hyper-
surface-orthogonal time-like semi-Killing vector field
globally. If we now return to the case of asymptotic
semi-Killing vector field, we find that in place of the
zeros on the right-hand side of Egs. (53) and (54), we
really have O(r~2). This does not appear to suffice for a
proof of the positive-definite character of the energy.
What we apparently require to carry through a proof
of the positive character of the energy is that the right-
hand side of Egs. (53) and (54) should behave as
O(r—+9). It does not appear particularly difficult to
accomplish this by means of a coordinate transforma-
tion, however such an investigation would be beyond
the scope of the present paper, since it would require
examining the terms in the metric tensor which go as
O(r7?). It is fair to say that the results of Egs. (59) and
(60) encourage us in the belief that we are at least on
the right track.

VI. ANGULAR MOMENTUM

The vector fields which we have considered, thus far,
described coordinate transformations which were rigid
translations of the coordinate surfaces. The conserved
quantities associated with them are therefore suitable
generalizations of the linear momentum and energy.
This is particularly evident in view of the commutation
relations Eq. (49). We shall now present a brief discus-
sion of the angular momentum radiated by an asymp-
totically Trautman gravitational field.

In flat Minkowski space the angular momentum is
associated with the rigid rotations of the coordinate
surfaces described by the Killing vector fields of the
form:

(61)

13 A, Lichnerowicz, Théories Relativistes de la Gravitation et de
I’ Electromagnetisme (Masson et Cie, Paris, 1955).

— -
£i= €ipgrxPa”,
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where @9" is an arbitrary constant antisymmetric tensor.
The six possible independent choices for a?" lead to six
independent Killing vector fields, and therefore six
components of angular momentum.

If we require that the vector fields of Eq. (61) be
hypersurface-orthogonal, the tensor a?" has to satisfy
the additional (necessary and sufficient) condition:

detar?=0. (62)

Thus, a??is a simple bivector and can always be written
in the form

aPI=\PyI— NP, (63)

where A? and u? are constant vector fields. In this event
the vector field £; can be written in the form Eq. (12a),
where the hypersurface, ¢=const, is harmonic and
minimal, 4

If the six possible independent choices for the simple
bivector field, @97, are obtained by forming the six
possible antisymmetric combinations of pairs of the
vierbein, &% of section IV, we obtain the usual com-
ponents of angular momentum. The three descriptors,
&;, formed via Egs. (61) and (63) from those three pairs
of vectors of the vierbein which contain £, yield,
via Eq. (3), the three components of what one ordinarily
understands by the expression ‘the angular mo-
mentum.” The three remaining components refer really
to the motion of the center-of-mass. Properly speaking,
the reason we are able to recognize that the above de-
scriptors are associated with the corresponding integrals
of motion stems from the fact that the descriptors satisfy
the usual commutation relations for the Lorentz group.
Thus, for example, if we label the descriptors associated
with the «, y, and 2z components of the angular mo-
mentum by Ay, Ny, and Nz, respectively, it is easy
to see that we obtain

ISTEOVTRNEES PILO STRES) WA (64)

as well as the two other similar relations found by
cycling the digits 123.

If we now return to the case of a curved space satisfy-
ing the Trautman boundary conditions, we must deter-
mine what is the correct generalization of Eq. (61) for
the purpose of obtaining a useful and meaningful defini-
tion of angular momentum. The criteria which we must
employ are: (a) Eq. (51) must remain valid so that the
resulting integral of motion [Eq. (6)] will not diverge;
(b) Eq. (64) (as well as the five other commutation rela-
tions) must remain valid to O(r~2) in order to assure
that the commutator of each two such transformations
is the descriptor for the correct integral of motion,
[when used in Eq. (6)], in accordance with homo-

4 For example, for the z component of angular momentum where
only a® is taken unequal to zero and where &= (y, —x, 0, 0),
take ¢=arctan(y lx). We readily confirm the validity of Eqgs.
(12a), (12b), (13), and (16). We see from this example that &;
generates a rigid rotation in the sense that it describes a rigid
motion of the (flat) surfaces of constant longitude into one
another.
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geneous Lorentz group; (c) the vector fields should be
determined in a covariant fashion. Condition (c) is no
limitation at all since our coordinate frame is already
uniquely determined by the vierbein &,® constructed
in Sec. III.

Possible candidates for the correct generalization of
Eq. (61) for the descriptor which yields the z component
of angular momentum, for example could be

)‘3Ii: ()’, -, 0) O) (65)
or
x3("5: (y7 —X, 0) 0) (66)
or perhaps
)‘311': 2(_g)llzfimnpkmg3ln£4lp(kq; q)_1~ (67)

Although the three vector fields defined by Egs. (65),
(66), and (67) coincide in Minkowski space with the
correct descriptor for the z component of angular mo-
mentum, all three vector fields are different to O(7°) in
radiative solutions. The generalization represented by
Eq. (65) satisfies condition (b) precisely, however it
does not satisfy condition (a). The generalization repre-
sented by Eq. (66) satisfies condition (a), but not condi-
dition (b). The generalization represented by condition
(67) satisfies neither (a) or (b). It is mentioned since in
appearance it seems a most likely generalization of
Eq. (61).

We have as yet been unable to construct a set of
vector fields consistant with (a) and (b), above. We
conjecture that the correct choice should be vectors
which are asymptotic Killing in the precise sense of
Sec. III. [None of the above generalizations of Eq. (61)
appear to have this property.] However, we have as yet
been unable to determine whether the asymptotic
Killing fields are in fact consistant with both conditions
(a) and (b).

It may well be that in the radiative solutions it is not
possible to define an expression for angular momentum
in conformity with (a) and (b). This possibility may be
a consequence of the nonintegrability of the affine
connection even asymptotically, a property of radiative
solutions recently found by Bergmann, Robinson, and
Schiicking.® Thus, the commutation relations for the
Lorentz group [condition (b)] may have to modified,
end the concept of angular momentum thereby altered.

ARTHUR KOMAR

However, it is as yet premature to discuss such
possibilities.!5

If we are prepared, at least for the time being, to
relinquish the possibility of writing an expression for
the total angular momentum, and ask only for an ex-
pression which yields the angular momentum per unit
time radiated by the gravitating source, then it easily
confirmed that the descriptor fields of the type given in
Eq. (65) will give a convergent result, in addition to
preserving, at least formally, condition (b).

VII. CONCLUSION

We observed that the preferred conservation laws of
physical theories are properly associated with the gen-
erators of transformations in the Killing directions. By
properly defining what is meant by asymptotic Killing
vector fields we were able to extend the definition of
preferred conservation laws to situations where, in the
strict sense of the word there are no Killing fields, but
where it still becomes meaningful to speak of the energy,
momentum, and possibly angular momentum radiated
by the gravitational field. We were able to understand
the circumstance which singles out the energy as a
positive-definite quantity, with the possible global con-
sequence that vanishing energy implies that the space
is flat.

The particular definition of the term ‘‘asymptotic
Killing” involved using surfaces which are simultane-
ously minimal and harmonic. We showed that in Traut-
man radiative solutions it was no restriction to assume
the existence (asymptotically) both of families of such
surfaces, and of a time-like semi-Killing vector field. It
is natural to conjecture that such geometric structures
can always be found locally and would thereby provide
a local, meaningful scheme for constructing energy,
momentum, and angular-momentum densities. It might
also be possible to trace through a relationship between
the vector fields here conjectured and the vierbein de-
termined by the eigen-directions of the Weyl tensor.
But this possibility seems more remote.

15 The customary treatment of angular momentum [e.g.,
V. Fock, Theory of Space, Time, and Gravitation (Pergamon Press,
New York, 1959)] requires an analysis of the form of the metric
tensor accurate to O(»~%) which is beyond the intended scope of

this paper. Furthermore, a consideration of the extent of the
validity of the usual commutation relations is invariably ignored.
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