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(this property is proved by applying two times the
uniqueness of the usual single dispersion relation whose
two cuts are separated).

Since single dispersion terms can be represented as
(6.20), fr minus these terms must be an entire function.
Therefore, Theorem VI shows that pss(n, s) vanishes
except for z =0 and z= 1. The same is true for the other
two weight functions. Q.E.D.

In the above theorem the condition (6.23) is very
important. Without it even the Mandelstam represen-
tation loses its uniqueness property. Our previous
results' show that this condition is satisfied in almost all

practical cases (e.g. , equal-mass, nucleon-nucleon,
pion-nucleon, and kaon-nucleon scatterings) in every
order of perturbation theory.
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Factorization of the Residues of Regge Poles*
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A proof of the factorizability of the residues of Regge poles, valid for a many-channel potential scattering
problem, is given. Unitarity and certain other plausible assumptions about the S matrix allow the proof
to be extended to the re]ativistic 5-.matrix theory.

ECENTLY, Gell-Mann (private communication)
has postulated that the residues of Regge poles of

the S matrix for a many-channel problem are factoriz-
able, viz. , for

P;&(E)=limy igl $J n( E)]S'&'( E)—,

where i, j label the channels and n(E) is the position of
a pole, then

&' (E)=7'(E)v (E)

Gell-Mann has given a proof of this equation based on
the nonrelativistic Schrodinger equation. '

In the course of a general study of analyticity in J for
the nonrelativistic potential scattering problem we had
also obtained a simple proof of this result, which is
worth reporting, since the method, being based directly
on the S matrix, can immediately be generalized to
enable us to say something about the relativistic
problem. '

For the potential case (and for a wide class of po-
tentials), it can be shown that the S matrix can be
written in the form

where F& and F2 are e-by-e matrices, ' e being the num-
ber of channels, with F& and F2 analytic functions of J.
Thus, poles of S(J,E) occur for

dett Fs(J,E)]=0.

Except for accidental degeneracies, the zeros in

detLFs(J, E)]

(4)

r(G)+r(Fs) —I&~0,

where r(A) means the rank of the matrix A. Thus

r(G) &~1,

(6)

i.e., all 2-by-2 cofactors of 6 are zero. Simple calculation
then shows that the residues satisfy

are simple zeros. Since the elements of F2 are analytic
in J, it follows that the rank of F2 is n —1.

If we write
LFs] '=G/det Fs, (5)

where G is the matrix of cofactors, then Sylvester's
law of nullity tells us that

S(J,E)=F (J,E)$F,(J,E)] (3) H u

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.' Murray Gell-Mann, Phys. Rev. Letters 8, 263 (1962).

Since writing this paper, we have seen an article by V. N.
Gribov and I. Ya. Pomeranchuk t'Phys. Rev. Letters 8, 343
(1962)] in which the result is proven for a two-channel problem,
with the same assumptions that we have made.

Apart from an irrelevant sign, Eq. (2) follows from
Eq. (8) and the fact that S is symmetrical.

If, as seems plausible, the relativistic S matrix can
also be written in the form of Eq. (3), with F& and Fs

3 The matrices PI and P~ are generalizations of Jost functions;
see, for example, R. G. Newton, J. Math. Phys. 1, 319 (1960).
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analytic functions of J, then the generalization of the
above to the relativistic case is immediate. In fact,
however, we may not even need this, since we can pro-
ceed directly from unitarity. This tells us' that for fixed
real E, with E~&E&E~+I,

There are two ways in which the above condition
might be violated; namely, the function n(E) being
real, or there being a pole at n*(E) in addition to the
one at n(E). To rule out the first, consider the matrix
of residues, p, defined by

Stvt(J*, E+ze)Stv(J, E+ze) =1, (9) S(J,E)=p(E)/LJ —rr(E)7+regular part, (11)

where S~ is the submatrix containing only those chan-
nels which are open in this region of E between the
consecutive thresholds E~ and E~+1. Thus,

SN(J, E+ie) = fStvt(J*, E+ie)7 (10)

We now assume that the S-matrix elements are
meromorphic functions of J.' Then Eq. (10) is of the
form of Eq. (3) and we can prove the factorizability
relation, provided that at a pole J=n(E) of Siv(J, E+ie)
none of the matrix elements of Stv(J*,E+ie) has a pole.
The latter condition ensures that poles of S~(J,E+i e)
correspond to zeros of dett Ssr(J*, E+i e)7. Note that a
further consequence is that all elements of S& have, in
general, the same poles.

' That the appropriate continuation of S (J,Z) satisfies unitarity
for nonphysical J was shown by M. Froissart (unpublished); see
also E. J. Squires, Nuovo cimento (to be published).

5 So far this has been proven only for one-channel problems and
in a restricted region of J.

where n is now real. Then Eq. (9) certainly requires

p'p= o, (12)

which is clearly impossible unless P=—0. We cannot at
present rule out the other possibility, but since there is
no reason for any symmetry between S(J,E) and
S(J*,E), we believe' that it can happen only acciden-

tally, and for isolated values of E.
We have proven the factorizability relation, Eq. (2),

for E~&E&E~+1, and for the corresponding submatrix
Sz. The relation can obviously be continued to other
regions of E, provided we do not cross any cuts. Fur-
ther, by taking Ã sufficiently large we can include chan-
nels with arbitrarily high thresholds.

It is a pleasure to acknowledge very many useful dis-
cussions on the subject of this note with the members
of the S-matrix theory group at this laboratory, and at
the University of California, Berkeley, Physics
Department.
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The possibility of a term proportional to Po(1) —o(2) g L in hyperon-nucleon interactions is suggested,
and an experiment is considered in which the presence of such a term might be detected.

HE form of the (strong) interaction potential
between two spin 1/2 particles, which follows from

generally accepted invariance requirements, was first
set forth by Eisenbud and signer. ' For the sake of
simplicity, these authors limited consideration to po-
tentials which contain the relative momentum of the two
particles in powers no higher than the 6rst. The consider-
ations of Eisenbud and Wigner have subsequently been
extended to include higher powers of the relative
momentum. "Those terms in the potential which con-

*Supported in part hy a grant from the National Science
Foundation.

'I, . Eisenbud and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.
27, 281 (1941). They required that the interaction be invariant
under (1) translations, (2) spatial. rotations, (3) spatial reflections,
(4) time reversal, and (5) Galilean transformations.' L. Puzikov, R. Ryndin, and J. Smorodinsky, Nuclear Phys. 3,
436 (1957).' S. Okubo and R. E. Marshak, Ann. Phys. 4, 166 (1958).

tain the scalar product of the spin operators o(i) of
the interacting Fermions and the relative oribtal
angular momentum I, are

Vio(1) L+Vso(2) L=-', (Vi+Vs)Lo(1)+o(2)7 L

+s(Vi—V:)Lo(1)—o(2)7 L (1)

where the potential coefficients V1 and V2 are functions
of the magnitudes of the dynamical variables (r,p,l).
The first term on the right-hand side of (1) is the familiar
spin-orbit potential. The second term, which is anti-
symmetric in the coordinates of the two particles,
cannot appear in the interaction between two identical
particles (two protons, etc.), which must be symmetric
in the particle coordinates; nor can it appear in the
interaction between a neutron and a proton if the
nucleon-nucleon interaction is charge-symmetric, as
it almost certainly is. In the charge-symmetric nucleon-


