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The integral representations proposed previously are extended to the case of general transition ampli-
tudes. The analyticity domain of any term in these representations is found explicitly. It is proved that any
function analytic in this domain has an integral representation of the above type and then the weight func-
tion in this representation is uniquely determined. It is also proved in the case of two-particle scattering
that the amplitude uniquely determines the three weight functions in its integral representation if they

satisfy certain conditions.

I. INTRODUCTION

UCH recent work on strong interactions has

been done on the basis of the Mandelstam
representation.! However, the latter has two major
difficulties, namely, its validity is not assured even in
the equal-mass case and it cannot be extended to
production amplitudes. In previous works of the present
author’™ new integral representations free from these
difficulties were proposed on the basis of perturbation
theory. For instance, the two-particle scattering ampli-
tude can be represented as

fuof

p12(e,2)

a—szs— (1—2)1—1e

! p23(8,2)
—}-/dﬁ/ dz
o B—at—(1—2)u—ie

P31 (772)

1
+ / &y f s ,
o v—zsu—(1—z)s—1e

in unsubtracted form. This representation seems to
be useful as a substitute for the Mandelstam repre-
sentation.

Now, in order that the weight functions in (1.1)
shall represent physically significant quantities, it will
be required that they are uniguely determined by the
amplitude. For example, when one combines (1.1) with
unitarity, such a uniqueness property is necessary to
obtain integral equations for the weight functions. The
main purpose of the present work is to prove the
uniqueness of the weight functions.

In the next section we shall give integral repre-
sentations for general transition amplitudes. In Sec.
III, the analyticity domain of any term in our integral
representations will be found explicitly. Section IV will
be devoted to showing that any function analytic in
the domain given in Sec. III has an integral represen-
tation of the above type, provided that a boundedness
condition is satisfied. In Sec. V it will be proved that

(1.1)

(1‘ g )Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741, 1752
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2 N. Nakanishi, Prog. Theor. Phys. 26, 337 (1961).

3 N. Nakanishi, Prog. Theor. Phys. 26, 927 (1961).

4 N. Nakanishi, J. Math. Phys. (to be published).

the weight function in this representation is uniquely
determined. In the final section the uniqueness theorem
will be proved for the two-particle scattering amplitude
(1.1) under some conditions. The uniqueness of the
weight functions for general amplitudes will be shown
to be very plausible but not proven as yet.

II. GENERAL FORM OF THE INTEGRAL
REPRESENTATIONS

Consider a graph having / external lines 4, 4s, - - -,
A;. We denote the external momentum corresponding
to 4; by k;. The conservation law is

(2.1)

Now, in a previous paper* we have shown that at
least one external line must be dealt with asymmetri-
cally for the production amplitude. So we deal with
k; asymmetrically from the beginning. Namely, using
(2.1) we eliminate k; and define 2'—1 squares as

follows: :
si=k?, (I=1,2,.--,1—1)

sto=(krt+ky)?, I<I<])
sirr= (kitks+ki)?, (I<I<K<I)

-1
$12.0. (1-1) = (Z k[)zZSz. (2.2)
I=1

In (2.2), I squares sy (I=1, 2, ---, I) are fixed on mass
shells.

The S-matrix element corresponding to our graph is
written as a Feynman parametric integral, whose
denominator function is given by?

N

V=3 xml—Y tisn, (2.3)
=1 h

with

K-hg 0, (24)

where s; stands for anyone of the squares defined in
(2.2).
Theorem I. The denominator function V can always
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be rewritten as

N l
V=Z xim,-z—z f[’SI"' Z fIJ’SIJ, (25)
=1 I=1 I<JI<l
with
{1/ =0. (2.6)

Proof. Since

styex= (krtks+ - - +kx)?
=kr+ks 4tk 2(ktks ) (2.7)
and
2k1k1=81_f—81—-8,], (28)
any square sz;...x involves sy; with the positive sign.
Hence, (2.6) follows from (2.4). Q.E.D.
Only one linear identity,

Z Sry= (1—3) ii_l SI+Sz, (2.9)

I<J<i

holds between s7; (I <J <I) because of the last equation
of (2.2). Since any momentum has four dimensions,
any five momenta kr (I=1, 2, 3,4, 5) cannot be linearly
independent. Their Gram determinant must vanish.
When =6, (I—4)(I—5)/2 nonlinear identities hold
between sr; (I <J <) on account of the above reason.
If one eliminates ‘redundant squares by using these
nonlinear identities, the linearity in the denominator
function will be lost. So in the following we shall always
neglect them.

Now, when all particles are scalar, the Feynman
integral is

1 1 N
const/ dx,- - / dan 6(1—=3 x;) (2.10)
0 0

1=1

U2V —ié)*

where U is a non-negative function of x; and V is given
by (2.5). Using an identity,

n+1
?:1 0(y1—yi)- - -0(yic1—5)
XOYiz1—y) - 0(Ynp—yi)=1, (2.11)
for y;={¢1s’, we can rewrite (2.10) as follows?:
* ! 1 n+1 ntl
/ da f dzye - / dnin [ 86— 2)
—w Jo 0 i=1 i=1
p(Ol,Z PRy 2 )
__:___:L_l_, (2.12)
n+1
a— Z z,-ti—ie
i=1
where ¢; stands for s;; (I<J<I) and n+1

=({—1)(1—2)/2. When I=4 or /=35, our integral
representation (2.12) coincides with the previous ones.?*
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III. ANALYTICITY DOMAIN

In this section we investigate the analyticity domain
of a function [cf. a term of (2.12)]

] 1 1 n
Fltny i) = da/ dzl---/ d2n5(1=3 2,)
—o0 0 0

=1

p(a 21,° * *,2 )
TR @3
n
a—z Zit:
i=1
We assume that p(a,2i1,- * -,2,) vanishes unless
n
OZZ Z 2iQq. (32)
=1

We denote by D*(n) the set of all points (¢1, - +,tx)
such that

> 5i(li—a) (3.3)

i=1
can become real and non-negative®® for some (21, *,2)
satisfying 2,0 and > ;—1”z;=1. Then it is evident
that f(y,- - -,t,) is analytic in a domain D%(n), where
De(n) stands for the complement of D*(n). So our
task is to find D*(n) explicitly.

Lemma. Let H,, H_, H, be three (disjoint) sets of
natural numbers such that

H++H—-+H0={1y2y' : ‘)n}? (34)
and consider a system of an equation and an inequality

Z biz,-— Z Cjz,=0,

iCH, JEH-

Z Nigi > 0,

i=1

(3.5)

where b; and ¢; are positive numbers, A; being real. In
order that (3.5) has a solution such that 2;>0
(¢t=1, 2, ---, ) and ;4" 2,>0, it is necessary and
sufficient that at least one of inequalities,

bJ\,‘I‘C;)\,,ZO, <1€H+y JEH—)

(3.6)
\e=>0, (REH,)
holds.
Proof. Sufficiency. If d\j+c; >0, we set
Zj::biZi/Cj>9, . (37>
Zl=0, (l#l, j).
Then,
)\izi-f‘)\ij: (Zi/Cj) (Cj)\r*—b,;)\j) >0. (38)
Thus, (3.5) is satisfied. If A\;,>0, we set
0
20, (3.9)
Zz=0, (l?ﬁ k)

Then, (3.5) is naturally satisfied.

‘s Hereafter we write simply ‘“non-negative’ instead of real and
non-negative.



1382

Necessity. Assume,

bi)\j+6j>\i<0, (ZEH+, ]EH_) (310)
<0, (REH,).
From (3.5), we have
1
— X Gni—bN)zt X (Bhitein)z, ]
b, i€H. JEH-
+ > Mze>0, ((EHy). (3.11)
kEH,

When 3" ;cq, 2:>0 (then of course 3 jcn 2,>0), from
(3.11) and (3.10) we get

Z (bl>\r—bi)\z)2i>0. (312)
iCH,
Therefore,
0= X (b\i—bA)zz>0. (3.13)

I€EH, iCH+

This is self-inconsistent. When Y ;cg, 2:=0 [then of
course z;=0 (EH,+H_)], from (3.11) we get

Z )\kaZ 0.
kE&Ho

(3.14)

This is inconsistent with (3.10) and 3 rcm,2:>0.
Q.E.D.
Theorem I1. The intersection of D*(») and

Imt;>0, (FEH,)
Im4; <0, (FEH-) (3.15)
Im#;=0, (kCH,)
is a union of
Imf (t—a)/ (4=0)]20, (EH, €M) o
th>ar, (R&Ho)

within (3.15).
Proof. By definition D*(n) consists of all points
(t1,- - - ,ta) such that

Z 2 Imh:O,

i=1
n (3.17)
> z:(Reti—a;)>0,
i=1

are satisfied by some (zi,::+,3,) satisfying z;,>0 and
> i=1™ 2:>0. Hence, according to lemma, we have
(Imh) (Retj— aj) - (Imt]) (Rel,""‘ ai) Z 0,

(i6H+) j€H~-))
(keHU);

(3.18)
Relk-— ag Z 0,

which can be rewritten as (3.16). Q.E.D.
Theorem III. The domain D2%(n) is a domain of
holomorphy.
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Proof. It is sufficient to show the existence of a
function which is analytic in D*(#) and actually singular
at an arbitrary point in the interior of (3.16). For
simplicity, we write s={,—as, t=1;—a;. Then a point

S=pet, (p>0,0<¢<2m), (3.19)
P=ge, (¢>0,0<y <2m),
belongs to {Ims>0, Im: <0, Im(s/£) >0} only when
0<op <,
T <Y <2m, (3.20)
—2r<p—y¢<—m.

In order to construct a desired function, it is convenient
to use a previous example®:

1 dz
1) =
TG0 ﬁ{w%+ﬂ~ﬂﬂﬂ—ﬁ+a—@0ﬁ»

1 (=)
= - ln|:-———1'ei":|, (0<b<m). (3.21)
s—reilt —5)
This is a special case of (3.1), and hence analytic in
D2(n). This function is actually singular at
=r|f
Isl=rll, .
args=argi-+0—2m.
Therefore, setting r=p/q and 0=2xr+¢—y, we get a
function which is singular at (s°9).
As for {,>ar in (3.16), the existence of functions
having such a cut is well known. Q.E.D.

IV. RECONSTRUCTION OF THE INTEGRAL
REPRESENTATION

Theorem IV. If a function f(t1,---,f,) is analytic in
D(n), and if it is bounded by |> ._i" z:it:|~%, (6>0)
whenever |>;_1" z.4;| becomes larger than some large
positive number M, where 2, - -+, 2, are any non-neg-
ative numbers satisfying > ;1" z;=1, then it can be
represented as (3.1) with (3.2).

Proof. By setting B=a—> ;1" 2; and s;=/;—a;,
the statement of the theorem is rewritten as follows.
If f(s1,---,5,) is analytic in all points (s1,--+,5.) such
that ;1" z:5; cannot become non-negative for any
(21," * - ,2a) satisfying 2,>0 and >_.—1" z;=1, and if it is
bounded by |Y ;-1 2z:s:|~% at infinity, then it can be
represented as

0 1 1 n
f(Sl,"',Sn)=/ dﬁ/ dZ1-/ d2n5(1—2 ;)
0 0 0 =1

xp(ﬁ,zl,- : ',zn). 1)

B—Zn: 23S

=1

5 N. Nakanishi, Prog. Theor. Phys. 24, 1275 (1960).
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Now, since f(s1,*+,5,) is analytic in {Ims;>0, -,
Ims,>0}, Cauchy’s theorem leads

dsy f ds,’
2w =51 S0 —Sn

Xf(styeoosa) (42)

for such (sy,- - +,5,), where contours are large semicircles
in upper half planes. Using the generalized Feynman
identity, we have

f(slx : Sn)

f(sl,---,sn)=/ dz1-~-/ dz.,ta(l—i %)

=1
XY 250,21, -+ 120), (4.3)
=1
with
n (n—1)!
W sy )= sl G
=1 (2w
(s ”. . .’Sn/)
s (4.4)
[ zsd — 2 zs]"
i=1 =1

Since at least one of 2i, - -+, 3, does not vanish, consider
the case 2,70, for instance. We transform the inte-
gration variable s, into w=) ;i"zs, in (4.4).
Deforming the contours, we can analytically continue
¢ as far as w and Y ;1" 25/ do not become non-
negative. Setting

a1

f dsy - f dsn_i
(27wi)™ dwr—t

g(w)zla e :z") =

Xf(sty =+, sad, [w—Z 2:5{1/2n), (4.5)
i=1
we obtain (after z—1 partial integrations)
n * dB
‘P(Z 254,81, * * ,Z”)=/ -
=1 0 2
g(,3+’l:€, 21, "y Zn)—g(ﬁ—ié, %1, ", Zn)
X )
- Z 284
i=1
(e—0+), (4.6)

because the contributions from infinity vanish on
account of the boundedness condition. (4.3) with (4.6)
immediately yields (4.1). Q.E.D.

When one tries to evaluate the integral (4.5), it is
convenient to transform the integration variables into
Y s,

! i ’
S1, %151 +2252, tety
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because then the integral in each stage reduces essen-
tially to a real integral from O to 4. In particular,
in the case n=2 we have

g(w;zhz?) =
2m1)?

o0 d
X/ ds’ —{f(s'+i€, [w—215"]/22)
Jo Jw

= f(s'—ie, [w=25"Y/2)}, (€ —0+) (47)

for any complex value of w. For instance, a previous
example (3.21),

f(s,)=[In(—8)—In(—s)+In(r e?)]/(s—re®®t), (4.8)
gives
—1 a 1
g(w,zl,z2)=—/ ds’ —
i Jo dw s'—re? (w—215") /22
— 22 1 1
e, (49)
2w reg 42, w
that is,
p(B,21,22) =8(B)/ (re’z1+2y). (4.10)
If f(t1, - -,tn) 1s bounded by |>i_i™zif|¥% at

infinity, subtraction procedure becomes necessary. The
subtracted from at (¢;,=b;<a;) is

.f(lly' : ‘,l")ZP(h,' : '7t7b)

+/da/dzl- . -/dzna(l—él %)

2 2(ti—by) T"P (@,21," * *%n)
i=1
X

, (4.11)
0[“2 2:b; _] a—-z 2ils

=1 =1

where a polynomial P(ly,- - -,t,) is formally defined by

P(ty, - ta)= [El 1[2 (t:—b J—}l

1=0 ] =1

Xf(lll; v '7tnl):|
ty'=b;

=A§l /da/dzl- . -/dzn d(1—220)

[2z:(ti— )]
X————p(a,31," * *,20).
[a— S ab, i+

The integral in (4.11) converges if p(a,21, - -
bounded by |a]¥—? at infinity.

(4.12)

,3n) 1S
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V. UNIQUENESS THEOREM A

For mathematical convenience, we hereafter rewrite
(3.1) as follows:

f(ll,' . ,tn)'-: da/ dzl- . '/ dZn

a (a:zl, e :Zn)

, (5.1
a— Z Zits
i=1
with
0’(0(,21,' ° ,Zn)Eé(l— Z zi)p(a;zl; vt 7Zn) (52)

i=1

and p(a,21,* - +,2,) vanishes unless 2;>0, - - -, 2,220.

Theorem V. If f(t1,--+,ta) is an entire function of ¢
when £, - -+, ¢, are real and 2 <ao, - - -, t,<a, where
as, -+, @y are real constants, and if

T Zn)zoy (53)

a’(——OO,Zl, :

then o(a,21," - *,2,) vanishes unless z;=0, namely,

N
0((!,21,' o ,Zn) = Z 8@ (Z])Uj(d,Zg,' : ',Zn) (54)

i=1
and hence,

f(tl,-n,tn):; (—tl)f/da/dz2---/dzn

(a/aa)jo'j(a,22,' o ’Z")
X .

(5.5)
a—Y zil;

=2

Proof. From the assumption of the theorem two limits
from both sides of the real axis on the #; plane must
coincide, namely,

/dzl- . -/dz,. G’(Z ziti,zl, .. ',Zn)=0 (56)
i=1
for any real value of ¢ as far as f3<as, -+, (n<@n.

Using (5.2), we can rewrite (5.6) as
f doa - / oo
Xo(t+2 sawi, 1= 3 24,22, <+, 22)=0, (5.7)
=2 =2

with u;=t;—t, <a;,—t,. We define n—1 operators,

t1 6
LiE/ a—, (=2, ---

au,;

(5.8)

NOBORU NAKANISHI

When L; operates on (5.7), we get

/dzZn-/dz,.

Xzip(t1+z 3ilki, 1- Z %iy 32, "7, Z”)ZO, (5'9)

=2 =2

because of (5.3). In general, an operation of a poly-
nomial of L; yields

/dzz- . -/dz,, P22, *,2n)

XP(151+Z 2, I_Z Ziy B2, "7, Zn)=0, (510)
=2

=2

where P(2,- - +,2,) is an arbitrary polynomial of 2, - - -,
2.. By assumption, p vanishes outside a region
{220, -+, 2,20,3 ;9" 2,<1}. Since this region is
compact, according to Weierstrass’ approximation
theorem, for any infinitely differentiable function
¢ (22, - +,2s) there exists a polynomial P(z, - +,2,) such
that

¢(Z2)' . -,zn)zP(zg,- : ',Zn)+€¢(22,' . ';Zﬂ) (511)

in this region, where e is an infinitesimal constant and
|¢| <1. Because of (5.10), therefore, we have

/dZZ' . /dzn ¢(22)' . ')Zn)P(a) 1_2 %iy %2, zﬂ)
=2

=€/d22' . '/dznlp(zZ:"':Z")

Xola, 1= 3 %, 32, -+ +,2.) >0, (5.12)

=2
where
a-Et1+Zﬂ:2 2= (1— Z: zi)),‘l-l-.f":,2 gt (5.13)
This means ; 1 l
pley 1= 3 5y 2, -+, 32) =0 (5.14)

=2

as a distribution as far as 1—)_ ;2" 2;#0. Q.E.D.
Theorem VI. If f(t1,---,tx) is an entire function of #
for any real values of fy, - - -, {a, and if (5.3) is satisfied,
then o(e,21,- - ,2,) vanishes identically.
Proof. In the last step of the proof of Theorem V,
a can take any real value even for

1—2,':2" z:=0

in the present case. Q.E.D.

Theorem VII. In the representation (5.1) with (5.2)
o(a,z1," * +,22) is uniquely determined by f(t1,--,ts) as
far as (5.3) is satisfied.
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Proof. If f(t1,- - ,ta) is represented in terms of two
weight functions ¢, and ¢, zero must be represented in
terms of ¢1—o2. Since zero is of course an entire function,
o1—o2 must identically vanish on account of Theorem
VI. QE.D.

This theorem assures the uniqueness of the integral
representation for vertex function® and particularly of
the Deser-Gilbert-Sudarshan-Ida integral represen-
tation.”

VI. UNIQUENESS THEOREM B
Theorem VIII. When an identity

n+1

Z l1;=6

=1

(6.1)

holds between n--1 variables ¢, if a function f(¢1,- - - ,t.)
is represented in the following two ways (we use the
notation mentioned at the beginning of the last section):

= [ da | dzy--- na——-—————(a’zl" ) .
F(t1,e+ ta) /d fdz fdz a_z”: . (6.2)

=1

where o(a,21,* * *,2,) vanishes unless

a3 %, (6.3)
i=1
and
f(tly' : ',t,J’—‘/dﬁ/ng' : '/dzn+1
0"(3,2 PR )
i I (6.4)
n+1
B— 2 zits
i=2
where o’(8,22," - *,%x41) Vanishes unless
n+1
B> za;, (6.5)
=2
and if
n+1
> ai>c, (6.6)
i=1
then f(#1," -« +,ts) is written as
G‘k(a,22,‘ ° ,Zn)
> l{‘/da/dzr . -/dzn —_—,  (6.7)
k n
o— Z Zili
=2

¢ N. Nakanishi, Suppl. Prog. Theor. Phys. 18, 1 (1961).

78S. Deser, W. Gilbert and E. C. T. Sudarshan, Phys. Rev. 115,
731 (1959); M. Ida, Prog. Theor. Phys. 23, 1151 (1960). Their
proofs are incorrect,.but their result is correct in every order of
perturbation theory under stability conditions (see reference 6).
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where o (e,22," - -,2,) vanishes unless

n
a>y 2.

1=2

(6.8)

Proof. From (6.2)-(6.5) we see that when t,<a.,
cooy tn<@a, f(l1,+-,ts) is analytic with respect to #;
either unless

ty is real and ¢ > a0y (6.9)

or unless

tiisreal and H<c—@np1— 2, i (6.10)

=2

On account of (6.6) there exists a nonempty domain

D={t:<ay, -+, t2<@n, 2 ti>c—1—@ny1}. (6.11)

=2

From (6.9) and (6.10) we see that f(¢1,fs,- - +,ts) is an
entire function of ¢; as far as (fs,- - +,¢,) belongs to D.
When (fs,- - -,tn) does not belong to D, f(l1,ta," - 4tn)
may have a finite cut [the intersection of (6.9) and
(6.10)]. But using Cauchy’s formula

1 F@ o, - tn)
f(tl,tz,~--,tn)=5f f dt1’~—1—,2——’——, (6.12)

e ' —1t

we can make analytic completion, since f(t1,t2," - *,in)
is “real analytic” with respect to the auxiliary variables
t2, +++, .83 Thus, we see that f(i1,fe,- - +,t») is an entire
function of ¢, as far as £2<as, -, t»<a,.. We can,
therefore, make use of Theorem V [the condition (5.3)
is automatically satisfied because of (6.3)]. Thus, we
get (6.7) with (6.8). Q.E.D.

Now, we conjecture that if a function F(t4,- - -,t,) is
represented as

F(ty, - ~,tn)=/da/d21~ : -/dzn+1[glé(zz)]

0’((1,21, e 7zﬂ+1)

6.13
n+1 ( )
a— Z Zih
=1
with (6.1), if o(a,21," - *,2241) vanishes unless
n+1
>3 %0 (6.14)
i=1

and if (6.6) is satisfied, then the weight functions
a(e,21,° * *,2i-1,0,%i41," * *,3a41) are uniquely determined
except for the parts of z;,=0 (j1). Namely, we expect
that if F=0 then o(a,21," **,2:-1,0,%i11," * *,8ny1) must
vanish unless z;=0 (j5%1).

8S. Bochner and W. T. Martin, Several Complex Variables
(Princeton University Press, Princeton, New Jersey, 1948),
Chap. IV.
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Let D;* be the analyticity domain of

filtsy - -,t")é/da/dzx- . -/dzn+1 8(z)

o(e,21," * *,2nt1)
2 (6.15)
n+1
a— Z Zili
i=1
The assumption =0 means
n+1
2 fi= (6.16)

Then if these functions f; can be decomposed into
functions f;; analytic in D;*lJD,?, such that

nt1
fi= Z=:1 Siis (6.17)
fi=—=fiu (fu=0), (6.18)

then our conjecture is valid, because Theorem VIII
together with Theorems IV and VII assures that f;; is
just the contribution from z;=0 in (6.15).

The above decomposition is not always possible for
arbitrary domains of holomorphy. This problem is
closely related to the cohomology group of a domain
with coefficients in the sheaf of holomorphic functions.?

Now, our conjecture is trivially correct for n=1,
because (6.13) then reduces to a usual dispersion rela-
tion whose two cuts are separated. We can prove that
our conjecture is valid also for n=2.

Theorem IX. If a function F(t1,t2) is represented as

F=fit+ fot f3 (6.19)
where '
p23(a1,5)
fl——f da1/ dZ
—o Zt2 (I“Z)ts
fo= / dets / PR (6.20)
o —al3— (1_2)151
p1z(as,2)
fs= / daz f dg ——m——
Ztl (1—‘2)12
with
t1+i2+t3=6, (621)

9 M. Sato derived the following theorem from Theorem B of
H. Cartan and J. P. Serre [Seminaire Henri Cartan (1951-52)]
and J. Leray’s lemma on the Cech cohomology [Seminaire
Bourbaki (1953-54)]. If domains A; (¢=0, 1, ---, #) and their
union U;—o"A; are domains of holomorphy, if functions f; are
holomorphic in N Ax, and if Z;" f;=0, then we can always
find functions f;; holomorphicin Mz, jAx such that fi=Z 0" fij
and f;;-+ f;:=0. This theorem can be applied to our problem only
in the case n=2.

NOBORU NAKANISHI

if the weight functions pes, p31, p12 vanish unless

1> g0+ (1—2)as,

s> za3+ (1—2)ay, (6.22)
as> 201+ (1—2)as,
respectively, and if
a1+ax+a3>c, (6.23)

then the weight functions are uniquely determined for
0<z<1. In other words, if F=0 then the supports of
p23, P31, p12 are 2=0 and z=1 only.

Proof. Let D;* be the analyticity domain of the
function f; defined in (6.20) and D;* be the complement
of Di* (z=1, 2, 3). If F=0, f; is analytic in the enve-
lope of holomorphy of

DU (Dy*NDy?) = (D1*UD:*)N (D1*U Ds%)
because fi=—(f.+f3). We will first compute the
complement of D,*lJD,?, i.e., Di*(\D®.

From Theorem II we see that when Im¢;<0, D,*
consists of all points such that

Imi;>0 and Im[(f2—a2)(ts*—a3)]>0, (6.24)
while D,* consists of all points such that
Im#; >0 and Im[(h—a1)(i5*—a3)]1>0.  (6.25)

Since f;=c—1t;—1;, the second inequality of (6.24) is
rewritten as

Im[ (ti—a.) (t5*—as) ]+ | ts— a3

+ (a1+as+a3—c) Imi;*<0.
Because of (6.23) this is clearly incompatible with
(6.25). Namely, (6.24) and (6.25) are disjoint. The
same is true also for Im¢3>0. When Imé;=0, D;* and
D,* overlap in a cut

(6.26)

t3_>_ as (626)
and some exceptional points such that
Imtl=0 and (lls tlsc—dz—ls. (627)

Similar consideration applies also to D:°(Ds®. Thus,
we find that f; is analytic except for

Imi;=0 and #>as
or (6.28)
Imt3 =0 and t3 Z as.

Namely, fi is represented as

(¢ “52)N(¢3—b3)N/ dt2/ dt3 ¢12(l2 ) (6.29)

—19) (t' —13)

plus single dispersion terms for f, and for ¢35 with a
polynomial. The other two functions f, and f; are
likewise represented. Since fi+4 fo+ f3=0, (6.29) must
vanish because of the uniqueness property of the
Mandelstam representation when (6.23) is satisfied
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(this property is proved by applying two times the
uniqueness of the usual single dispersion relation whose
two cuts are separated).

Since single dispersion terms can be represented as
(6.20), f1 minus these terms must be an entire function.
Therefore, Theorem VI shows that ps3(e,z) vanishes
except for z=0 and z=1. The same is true for the other
two weight functions. Q.E.D.

In the above theorem the condition (6.23) is very
important. Without it even the Mandelstam represen-
tation loses its uniqueness property. Our previous
results? show that this condition is satisfied in almost all
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practical cases (e.g., equal-mass, nucleon-nucleon,

pion-nucleon, and kaon-nucleon scatterings) in every
order of perturbation theory.
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Factorization of the Residues of Regge Poles*
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A proof of the factorizability of the residues of Regge poles, valid for a many-channel potential scattering
problem, is given. Unitarity and certain other plausible assumptions about the S matrix allow the proof

to be extended to the relativistic S-matrix theory.

ECENTLY, Gell-Mann (private communication)

has postulated that the residues of Regge poles of
the .S matrix for a many-channel problem are factoriz-
able, viz., for

Bii(E)=limyer [J—a(E)]S4(E), (1)

where 7, j label the channels and a(E) is the position of

a pole, then
Bii(E)=vi(E)v;(E). @)

Gell-Mann has given a proof of this equation based on
the nonrelativistic Schrédinger equation.!

In the course of a general study of analyticity in J for
the nonrelativistic potential scattering problem we had
also obtained a simple proof of this result, which is
worth reporting, since the method, being based directly
on the S matrix, can immediately be generalized to
enable us to say something about the relativistic
problem.?

For the potential case (and for a wide class of po-
tentials), it can be shown that the S matrix can be
written in the form

S(J,E)=F.\(J,E)[F2(J,E) I, ©)

* This work was performed under the auspices of the U. S.
Atomic Energy Commission.

! Murray Gell-Mann, Phys. Rev. Letters 8, 263 (1962).

% Since writing this paper, we have seen an article by V. N.
Gribov_and I. Ya. Pomeranchuk [Phys. Rev. Letters 8, 343
(1962)7] in which the result is proven for a two-channel problem,
with the same assumptions that we have made.

where F; and F; are n-by-n matrices,? # being the num-
ber of channels, with F; and F, analytic functions of J.
Thus, poles of S(J,E) occur for

det[F.(J,E)]=0.
Except for accidental degeneracies, the zeros in
det[Fy(J,E)]

are simple zeros. Since the elements of F, are analytic
in J, it follows that the rank of Fs is n—1.
If we write

4)

[Fo1'=G/det F,, (5)

where G is the matrix of cofactors, then Sylvester’s
law of nullity tells us that

7(G)+r(F2)—n<0, (6)
where 7(4) means the rank of the matrix 4. Thus
r(G)<1, (M

i.e., all 2-by-2 cofactors of G are zero. Simple calculation
then shows that the residues satisfy

BiiBii=BiiBii- (8)

Apart from an irrelevant sign, Eq. (2) follows from
Eq. (8) and the fact that S is symmetrical.

If, as seems plausible, the relativistic .§ matrix can

also be written in the form of Eq. (3), with F; and F,

3 The matrices F; and F, are generalizations of Jost functions;
see, for example, R. G. Newton, J. Math. Phys. 1, 319 (1960).



