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Fundamental Properties of Perturbation-Theoretical Integral Representations
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(Received February 8, 1962)

The integral representations proposed previously are extended to the case of general transition ampli-
tudes. The analyticity domain of any term in these representations is found explicitly. It is proved that any
function analytic in this domain has an integral representation of the above type and then the weight func-
tion in this representation is uniquely determined. It is also proved in the case of thoro-particle scattering
that the amplitude uniquely determines the three weight functions in its integral representation if they
satisfy certain conditions.

I. INTRODUCTION
'
UCH recent work on strong interactions has

& ~ been done on the basis of the Mandelstam
representation. ' However, the latter has two major
difhculties, namely, its validity is not assured even in
the equal-mass case and it cannot be extended to
production amplitudes. In previous works of the present
author' 4 new integral representations free from these
di%culties were proposed on the basis of perturbation
theory. For instance, the two-particle scattering ampli-
tude can be represented as

1

0

II. GENERAL FORM OF THE INTEGRAL
REPRESENTATIONS

Consider a graph having l external lines A1, A2,
A~. We denote the external momentum corresponding
to A; by k, . The conservation law is

Q kz=0. (2.1)

the weight function in this representation is uniquely
determined. In the final section the uniqueness theorem
will be proved for the two-particle scattering amplitude
(1.1) under some conditions. The uniqueness of the
weight functions for general amplitudes will be shown
to be very plausible but not proven as yet.

in unsubtracted form. This representation seems to
be useful as a substitute for the Mandelstam repre-
sentation.

Now, in order that the weight functions in (1.1)
shall represent physically significant quantities, it will
be required that they are uniquely determined by the
amplitude. For example, when one combines (1.1) with
unitarity, such a uniqueness property is necessary to
obtain integral equations for the weight functions. The
main purpose of the present work is to prove the
uniqueness of the weight functions.

In the next section we shall give integral repre-
sentations for general transition amplitudes. In Sec.
III, the analyticity domain of any term in our integral
representations will be found explicitly. Section IU will
be devoted to showing that any function analytic in
the domain given in Sec. III has an integral represen-
tation of the above type, provided that a boundedness
condition is satisfied. In Sec. V it will be proved that

sr ——kz, (I=1,2, , l—1)

sing=(kz+4)', (I&I&l)

szrzz = (kz+ks+krc)', (I&I&E&l)

L—1

$12"~ (l—1) (Q kz) st.
I=1

(2.2)

In (2.2), l squares sz (I=1, 2, , l) are fixed on mass
shells.

The S-matrix element corresponding to our graph is
written as a Feynman parametric integral, whose
denominator function is given by'

N

V=+ x,mP —P f'i,ss, (2 3)

with

(2.4)

Now, in a previous paper4 we have shown that at
least one external line must be dealt with asymmetri-
cally for the production amplitude. So we deal with

(1.1) ki asymmetrically from the beginning. Namely, using
(2.1) we eliminate ki and define 2' ' —1 squares as
follows:

' S. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1'/4l, 1/52
(1959).

'N. Nakanishi, Prog. Theor. Phys. 26, 337 (1961).' N. Nakanishi, Prog. Theor. Phys. 26, 927 (1961).' N. Nakanishi, J. Math. Phys. (to be published).

where s& stands for anyone of the squares defined in
(2.2).

Theorem I. The denominator function V can always
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be rewritten as III. ANALYTICITY DOMAIN

with

V Q Xi&i Q pl Sl Q i IJ SIJq
i-l I-1 I&J&l

t IJ'~o

n

dz„b(1-Q z;)dO! dzl' ' 'f(~ ~ )=
(2.6)

In this section we investigate the analyticity domain
of a function Pcf. a term of (2.12)]

IO I 1

Proof. Since

SIJ ~ K (kl+kJ+ ' ' '+kK)
= klP+kJ'+ +kK2+2(klkJ+ ' ' ') (2 7)

p(u, zi, ,z.)
(3.1)

tl

n Qz, t;—
i~1

2kzk J=SIJ—Sz SJ& (2.8)
We assume that p(n, zi, ,z ) vanishes unless

any square szJ. ..z involves szJ with the positive sign.
Hence, (2.6) follows from (2.4). Q E D.

Only one linear identity,

G& Q ZITI. (3.2)

We denote by D'(rI) the set of all points (ti, . ,t„)
such that

SIJ=(l—3) P Si+Si, (2.9) n

Q z(t —u) (3.3)

1

const dxl
0

dx~ b(1—Q x;), (2.10)
0 U'(V —ip)"

where U is a non-negative function of xi and V is given
by (2.5). Using an identity,

holds between sIJ (I(J(l) because of the last equation
of (2.2). Since any momentum has four dimensions,
any five momenta kl (I= 1, 2, 3, 4, 5) cannot be linearly
independent. Their Gram determinant must vanish.
When t~6, (i—4)(l—5)/2 nonlinear identities hold
between SIJ (I(J(i) on account of the above reason.
If one eliminates 'redundant squares by using these
nonlinear identities, the linearity in the denominator
function will be lost. So in the following we shall always
neglect them.

Now, when all particles are scalar, the Feynman
integral is

can become real and non-negative" for some (zi, ,z„)
satisfying z;)0 and P; I"z, =1. Then it is evident
that f(ti, ,t„) is analytic in a domain D'(II), where
D'(n) stands for the complement of D'(rI). So our
task is to find D'(ll) explicitly.

LerIIIIIII. I,et H+, H, Hp be three (disjoint) sets of
natural numbers such that

H++H +H p (1,2, ,II)——, (3.4)

and consider a system of an equation and an inequality

bz, pcz, =0-,
i+H, j+II

Q X,z,&0,
(3.5)

where bi and c; are positive numbers, Xi being real. In
order that (3.5) has a solution such that z,&0
(i=1, 2, , rI) and p; p z,&0, it is necessary and
sufhcient that at least one of inequalities,

Z e(yi-y')" ~(y'-I y~)
i~1

Xe(y'+ —y') 0(y.+ —y') = »

for y, =i'IJ', we can rewrite (2.10) as follows':

1 l a+1 n+1

«-+I I:E b(z')7b(1 —2 z')

(2.11)

b,XI+c;X;&0, (i+H+, j+H )
Xl,&0, (k+Hp)

holds.
Proof. SuKciency. If b,X,+c;X,&0, we set

z, =b;z;/c;&0,

zi ——0, (l/i, j).
Then,

(3.6)

(3.7)

X,z,+X;z;= (z;/c, ) (c,A,+b;XI) &0.X, (2.12)
' "+' Thus (3.5) is satisfied. If Xq&0 we set

n+1
Zk&0,

Z;ti —le
zi ——0,

(leak).

(3.8)

(3.9)

where t, stands for sl,l (I(J(1) and n+1
= (l 1)(i—2)/2. When —/= 4 or t = 5, our integral
representation (2.12) coincides with the previous ones. ' '

Then, (3.5) is naturally satisfied.

~ Hereafter we write simply "non-negative" instead of real and
non-nej, ative.
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Necessity. Assume,

b;X,+c,A;&0, (i&H+, j&H )

Xp (0, (kgHp).

Proof. It is sufficient to show the existence of a
function which is analytic in D'(n) and actually singular
at an arbitrary point in the interior of (3.16). For
simplicity, we write s=t; a;,—t=t, a;.—Then a point

From (3.5), we have
s'= pe'4' (p) 0, 0&&&2pr),

t'=qe*t', (q&0, 0&it &2pr),
(3.19)

belongs to {Ims)0, Imt &0, Im(s(t) )0}only when

(3.20)

0 ($ (pr,
+ Q hasp&0, (t&H+) (3.1.1) pr &f (2~,

k QFiG —2pr &Q—
1t (—pr.

When P;~rI, z;)0 (then of course P, cqr s,)0), from
In order to construct a desired function, it is convenient
to use a previous example':

Therefore,

(b()I.,—b,X()s;)0. (3.12)

f(s,t) =
o { "+(1—)}{(—)+(1—)(—t)}

(3.13)0= Q Q (b(X;—b;X))s;s(&0.
l+FI+ i +H+ -(—t)

ln re'P (0& 8(pr). (3.21)
s—re"t (—s)This is self-inconsistent. When P;~~, s,=0 [then of

course s,=0 (i+H++H )j, from (3.11) we get

g 4ss&0.
k QHG

This is inconsistent with (3.10) and gq g~, sp) 0.
Q.E.D.

Theorem II. The intersection of D'(n) and Therefore, setting r=p)q and 0=2m+& —P, we get a
function which is singular at (ss, tP).

As for ts&as in (3.16), the existence of functions
having such a cut is well known. Q.E.D.

Imt;&0, (j &H+)

Imt;&0, (j+H )
Imtl„- ——0, (k&Hp)

(3.15)

IV. RECONSTRUCTION OF THE INTEGRAL
REPRESENTATIONis a union of

This is a special case of (3.1), and hence analytic in

(3.14) D (n). This function is actually singular at

(3.22)
args =argt+8 —2pr.

Im[(t;—a,)/(t, —a;)]&0, (i+H+, j +H )
(3.16)

tp&al, (kEHp)
within (3.15).

Proof By definition . D'(n) consists of al] points
(t~, . ,t„) such that

Q s;Imt;=0,
i=1

P s;(Ret,—a;))0,
i=1

(3.17)

(Imt;) (Ret, a,) (Imt, ) (Ret;—a~) &0-, —
(i+H~,j +H ), (3.18)

Retj, —ag &0, (k+Hp),

are satisfied by some b&, . ,s„) satisfying s,)0 and
P;=~"s;)0. Hence, according to lemma, we have

Theorem IV. If a function f(t~, ,t„) is analytic in
D'(n), and if it is bounded by ~P,=z" s,t;~ ', (b&0)
whenever

~
g; ~" s,t,

~

becomes larger than some large
positive number M, where s1, ~, s„are any non-neg-
ative numbers satisfying P;=q" s,=1, then it can be
represented as (3.1) with (3.2).

Proof By setting .P=n P; ~"—s,a, and s,=t; a, , .
—

the statement of the theorem is rewritten as follows.
If f(s~, ,s„) is analytic in all points (s~, ,s„) such
that P; ps,s; cannot become non-negative for any
(s&, ,s„) satisfying s, &0 and g;=&"s, = 1, and if it is
bounded by ~P;=&" s;s;~ ' at infinity, then it can be
represented as

1 1

dP der ds„b(1—Q s,)

which can be rewritten as (3.16). Q.E.D.
Theorem III. The domain D'(n) is a domain of

holomorphy.

p — s,s;
i=1

' N. Nakanishi, Prog. Theor. Phys. 24, 1275 (196G).
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I UENESS THEOREM A

ft r rewritee we herea e1 convenience, hF math ematicaor m
(3.1) as follows:

rates on (5.7), we getWhen Li opera es

dZ2' ' ' dZ)1, .

f(t, ,~.)= dZy' ' '
s;Ll;, 1 Q sg, s,2''',Xs'p($i+Q sg'L4, ~, q

' ' ' a (5 9)

eral, an opera
'

ation of a poly-(5.3). In general,because of
nomial of L; y'ields

with
d . ds„P (s2, ,s„S2'

s = —,s,s„) (5 2), , ~ .—=~(I-E,)p(, .O' 0!)Z]) )S~

. , s.)=0,o(—oo, s.. (5 3)

=0 namely,,s„) vanis ehes unless z~=,then o (n,si,

8&"(si)o; (n,s.. .s„o (n)»)

and hence,

~, s &0.. .)
I tt ~ f„) is an entire. If

~ ~ ., t„u„1 dt&~ t„are rea
nsta t adRie rea COIl~2) ) ~a

X, 1—;,, s„)=0, (5.10)Z'L) Z2) ) SXp(ti+g s,~;, 1—;,, s„
$—2

olynomial of z»~ -, „an arbitr ypo y z

p vanishes
1 S tli

Weierstr ass appg p
'nfinitely di eren

'
theorem, o

here exists ae(, "
that

)Z~

s2, ,s„(5.11)s ) =P(s2, ,s.)+eP s2, ,s„y(s2, . ,s. = s2,

annstant de is an in nie i fi 'tesimal conion, where e i

re we havef(510), h f~
) P ~

(1.Because of

dS2'=P (—ti)&' dn ds,f(~i, ",t-)= dZ2' ' '
n

,s n, 1—g s;, s~, , s„d'~(", ,")p(, —

(8/Bn) &o; (n,s.. .s„
X

n

n —P s,t;
4=2

= e ds2 ds. P(s2, ,s.

n, ' s2 ~, s„) —+0, (5.12)X (n, 1—g;;, s2, ~
) s. ~, . 2

where
two limits

'
n of the theorem tw

h 1h l o tfrom ob th sides of the rea
coincide, namely,

n —t, , ;= 1— s;)ti+P s;,.
n

.t.n=i, +P s,e;= (1—P
4=2

(5.13)

dsy' ' ' ds„o (P s,t, ,si, . ,s„= (5 6)

This means
n

n, 1—g s, , si. (5.14)

dS 1,~ - =0,Xp(t,+P s,~;, 1— s;, „
i 2

(5 7)

—1 o erators,—t~. We define n —|p=—t —t~ &ai—~. ewit ui=— ;—

(i=2, .
, ii).

BN

~ ~, t &u„.as fal Rs t2 &82

(5.6)
1 value of tj as

Using (5.2), we can rewri
= "s,g0. Q.E.D.

If f(ti, ,t„) is an
al values of t2, ~ ~

ih ide tic y~ - s„vani tic y.
oi tll

l f
the last s

o. Can ta eke any real vau

1—g,=2+ s'=0

I n r
'

n 5.1) with (5.2)
ln

resentationI. In the repr n

dt i ~I fo. n,si, ,s ) is uiiiquey e

far as (53) is satisfied.
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M BVI. UNIQUE NESS THEORE

n& E siai

or unless
t» is real an t &a» (6.9)

we see that when t2&a2,
ith respect to 11l(11, ,t„ is~ ~ ., t&a,

either unless

I. When an identityTheorem VII .
's real and t»& c—a +»» is (6.10)

p t, =c
i=»

xists a nonempty domainOn of (6.6) there ex1sts a
(6.1)

ation mentione

~ ~ ~

~(6 2)dQ dS»' ' 'f(t1, ~,1„)= n 1 s„
n

n —P z;t;
i=»

~,s„) vanishes unlessWhere a(n, s&, ~ &Z„V

,1„)~ if a function t»,

p
not

(6.11)$iQ c—a» —a~+»~ t~&a~,D=—(t, (az&

But using Ca y

'"'"" ', ( )f(, z, &.)

t„) 1S alle tha t (t&&t2&.9 and (6.10) we see t
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ction o t» as

Lthe intersection oe finite cut
(6.10)j.

n&P s;a;,
i »

anl

dP dsz' ' ' ds»+1f(~1 ' ' ~ ) =

a'(p, », "».+1)
X

n+»

p—Q z;&;
i=2

anl lf

n+»

p&p s,a, ,
$~2

w ',s„+1) vanishes unlesswhere 0'(P, 2, ,S„~1 van

(6.5)

represented

n+»
ds dz.+&LE ~(')j)= dn s1'''

i=»
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0(n S1»' S
X

m+»
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'
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n+»
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i=»
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7
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4=2

'
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icit domain ofD. be the analytI.et D;
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where
f1+f2+fs (6.19) (6.26)

i

dpi ds
0

P22(~i, S)

ui —st2 —(1—s)ts
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'

& ti& c—a2 —t3.Imti ——0 and ai i c— (6.27)

f2=
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n2 —st, —(1—s)t,0

(6.20)
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(this property is proved by applying two times the
uniqueness of the usual single dispersion relation whose
two cuts are separated).

Since single dispersion terms can be represented as
(6.20), fr minus these terms must be an entire function.
Therefore, Theorem VI shows that pss(n, s) vanishes
except for z =0 and z= 1. The same is true for the other
two weight functions. Q.E.D.

In the above theorem the condition (6.23) is very
important. Without it even the Mandelstam represen-
tation loses its uniqueness property. Our previous
results' show that this condition is satisfied in almost all

practical cases (e.g. , equal-mass, nucleon-nucleon,
pion-nucleon, and kaon-nucleon scatterings) in every
order of perturbation theory.
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Factorization of the Residues of Regge Poles*
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A proof of the factorizability of the residues of Regge poles, valid for a many-channel potential scattering
problem, is given. Unitarity and certain other plausible assumptions about the S matrix allow the proof
to be extended to the re]ativistic 5-.matrix theory.

ECENTLY, Gell-Mann (private communication)
has postulated that the residues of Regge poles of

the S matrix for a many-channel problem are factoriz-
able, viz. , for

P;&(E)=limy igl $J n( E)]S'&'( E)—,

where i, j label the channels and n(E) is the position of
a pole, then

&' (E)=7'(E)v (E)

Gell-Mann has given a proof of this equation based on
the nonrelativistic Schrodinger equation. '

In the course of a general study of analyticity in J for
the nonrelativistic potential scattering problem we had
also obtained a simple proof of this result, which is
worth reporting, since the method, being based directly
on the S matrix, can immediately be generalized to
enable us to say something about the relativistic
problem. '

For the potential case (and for a wide class of po-
tentials), it can be shown that the S matrix can be
written in the form

where F& and F2 are e-by-e matrices, ' e being the num-
ber of channels, with F& and F2 analytic functions of J.
Thus, poles of S(J,E) occur for

dett Fs(J,E)]=0.

Except for accidental degeneracies, the zeros in

detLFs(J, E)]

(4)

r(G)+r(Fs) —I&~0,

where r(A) means the rank of the matrix A. Thus

r(G) &~1,

(6)

i.e., all 2-by-2 cofactors of 6 are zero. Simple calculation
then shows that the residues satisfy

are simple zeros. Since the elements of F2 are analytic
in J, it follows that the rank of F2 is n —1.

If we write
LFs] '=G/det Fs, (5)

where G is the matrix of cofactors, then Sylvester's
law of nullity tells us that

S(J,E)=F (J,E)$F,(J,E)] (3) H u

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.' Murray Gell-Mann, Phys. Rev. Letters 8, 263 (1962).

Since writing this paper, we have seen an article by V. N.
Gribov and I. Ya. Pomeranchuk t'Phys. Rev. Letters 8, 343
(1962)] in which the result is proven for a two-channel problem,
with the same assumptions that we have made.

Apart from an irrelevant sign, Eq. (2) follows from
Eq. (8) and the fact that S is symmetrical.

If, as seems plausible, the relativistic S matrix can
also be written in the form of Eq. (3), with F& and Fs

3 The matrices PI and P~ are generalizations of Jost functions;
see, for example, R. G. Newton, J. Math. Phys. 1, 319 (1960).


