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The equation of motion of a charge is obtained as a second-order
integro-differential equation, directly from Maxwell’s field equa-
tions and Lorentz’s force equation without the use of the Dirac
equation of motion. The validity of the field equations is assumed
everywhere, the position of the charge being treated as a point
singularity. The force on the charge at the field point is given by
the expression for the Lorentz force produced by the fields of a
source charge in the limiting case where the field charge is identified
with the source. The only fields which need to be considered are
the retarded solutions of the field equations, in agreement with
causality. In order to obtain the equation of motion, it is necessary
to formulate the potentials of the field of a point source in dissi-

INTRODUCTION

N a recent paper,! Rohrlich has shown that by
starting with Dirac’s equation for 'the classical
motion of a charge and imposing an additional condi-
tion which, in effect, eliminates the nonphysical solu-
tions, an integro-differential equation of second order
may be obtained. The motion of a charge obeying such
an equation is determined, as in Newtonian dynamics,
once the initial position and velocity are specified.
In this paper, we obtain an integro-differential equation
of second order for motion of a charge, directly from
Maxwell’s field equations and Lorentz’s force equation,
without the use of Dirac’s equation or subsidiary condi-
tions. As does Dirac,? we assume the validity of the
field equations everywhere, treating the position of the
charge as a point singularity. We calculate the force on
a charge at a field point, using the expression for the
Lorentz force produced by the fields of a source charge
in the limiting case where the field charge is identified
with the source. The only fields which need be con-
sidered are the retarded solutions of the field equations,
in agreement with causality.

In order to formulate the integro-differential equa-
tion, we start in Sec. 1 with the potentials of the field
of a point source expressed as a Fourier integral. These
are the dissipative potentials. They are derived in
Appendix I. In Sec. 2, we derive the integro-differential
equation of motion, together with the formulas for
momentum and energy of a charge in its self-field.
In Sec. 3, we apply these equations to the example of
unaccelerated motion, and in Sec. 4, to the case of simple
harmonic motion. In Sec. 5, we discuss the results
obtained. In Appendix II are given details of the
evaluation of some integrals for the simple harmonic
oscillator example.

1. DISSIPATIVE POTENTIALS

It is shown in Appendix I that the potentials at the
field point (x,t) produced by a point charge ¢ moving

1 F. Rohrlich, Ann. Phys. (New York) 13, 93 (1961).
2 P. A. M. Dirac, Proc. Roy. Soc (London) A167, 148 (1938).

pative form. In this form, the potentials satisfy the Lorentz gauge
condition identically. They are Fourier integrals which contain 5.
functions in the Fourier coefficients. When the equation of motion
is applied to the examples of relativistic motion of a free charge
and to the nonrelativistic simple harmonic motion of a charge, it
is found that the principal-part terms of the 5. functions provide
the electromagnetic kinetic reaction, while the 8 function terms
provide the dissipative effects. The only divergence stems from
the principal-part integrals, and is the Coulomb self-energy of the
charge. It can be removed by renormalization of mass. The results
are consistent with the Abraham theory that the mass of an elec-
tron (and positron) is wholly electromagnetic.

along a trajectory x(¢') with velocity v(¢') can be put
in the dissipative form
A.(x,0)

=¥(ei/81r3)/- . -/dkdw 05 (0—k)—dx(w+k)]

X/dt’ v, (1) expi{k-[x—x{)]—w(t—1#)}, (1.1)
where
v.(1)=[dx(¢)/d,1],

and the upper sign indicates the advanced, the lower
sign, the retarded potential. The speed of light is taken
as unity. The & functions are defined as

o (x)=mé(x)FiP(1/x),

o=1,-.--4, (1.2)

(L.3)

so that separation of §-function and principal-part
terms gives

F[or(w—k)—d5(w+k)]

=Fr[8(w—k)—8(w+k) J+2ikP(*— k)2 (1.4)

We may readily verify that (1.1) is a solution of the
D’Alembert equation

(9%/9x2—0%/0) 4 . (x,1) = —4mev, (O x—x () ]. (1.5)
The substitution #={—7 in (1.1) gives

A.(x,0)

=F (ei/87%) f e / dkdew [+ (w0—E)— 65 (w+E) ]

X/d'r 2. (t—7) expi{k-[x—x({—7r)]—wr}. (1.6)
In this form, the potentials satisfy identically the
Lorentz gauge condition

(0/0x)-A+0¢/0t=0, A,=(Ag). (L7)
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The time integrations over ¢ and = in (1.1) and (1.7)
extend over the whole trajectory of the source charge.
However, the 6+ functions are Fourier transforms of the
Heaviside function § according to the equation

/dw o5 (w—k) exp(—iwr) =2 exp(—ikr)0(F7), (1.8)

so that, performing the w integration in (1.6), we obtain

A,(x,t)=:F(e/2w2)/dr 0(¢T)va(z-r)///dk

Xk sin{k-[x—x(t—7)]+kr}.  (1.9)

In this form the retarded potential (lower sign) con-
forms to the requirements of a causality principle
according to which the potential at the field point at
time ¢ is determined by the trajectory of the source
charge at times #=¢—7<¢ This is the meaning of
causality as used in this paper. In the particular case
that the field point x is identified with x(¢), the position
of the source at time £, causality requires that the self-
field be described by the retarded potential 4, x(¢),t].

Performing the integrations over k and = in (1.9)3
we obtain

Ac(x)=ev,(")/[rxr-v({)], for ¢'=1xr, (1.10)

where r=x—x(#). These are just the Liénard-
Wiechert potentials of a point source.

Note that half the sum of the retarded and advanced
potentials contains the factor

Ho (0= k) =84 (v k) J—[6-(w—k) —d_(w+E) I}

=2ikP(—E),  (1.11)

while half the difference contains

0 (w— k) — 84 (w+E) ]+ [0 (w—Fk) —o_(w+k) ]}
=7[0(w—k)—8(w+k)]. (1.12)

According to (1.4) the first combination is equivalent
to the principal-part term of the retarded potential
alone, while the second is the é-function term of the
retarded potential alone. The principal-part terms in
the retarded and advanced potentials are identical ; the
delta-function terms have opposite sign.
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At each moment of time, the potentials 4,(x,t) have
a singularity at the point x=x(¢), the position of the
source charge. If we want the value of A,[x(s),r],
the potential of the source charge at the position of the
charge itself, we cannot simply set x=x(¢) inside the
Fourier integrals in (1.1) which diverge (the principal-
part integrals). In all Fourier integrals for field quan-
tities, the value at the singular point must be obtained
as the limit of the Fourier integral as x — x(¢) after
integration. This is the explanation of errors in earlier
work.*® Accordingly, at the singular point, (1.1) gives
the self-field as

A [x(®),1]
=F (ei/87%) Eﬂ/"'/dkd‘”

Xk exp(ik- )05 (w— k) —d+(w+k)]

X/dt’ 2,(') expi{k-[x(H)—x(@)]—w(t—1)}.
(1.13)
2. EQUATIONS OF MOTION

In order to obtain a description of the motion of a
particle in its self-field, we consider the motion of a
second particle of charge e in the field of the source
particle, in the limit as the velocity of the second par-
ticle and its position coincide with that of the source.
A second charge ¢ of mass p in the field 4, of the first
has momentum p and energy H, in the same gauge as
that in which the potentials are expressed (Lorentz
gauge in this discussion).

p=uv/(1—v")H-eA(x,0), 2.1)
H=p/(1—2")H-ep(x,)+V (), (22)
where A,(x,))=[A(x,0),p(x,/)] is the potential four-
vector for which the first charge is the source, v is the
velocity of the second charge at the field point (x,f) of

the first, and V (x) is the potential of an external force.
The equation of motion of the second charge is

w(d@/d)[v/(1—*)4]
= 6[E(X,t)+ vX B(X,l)]+ Fext)

where the external force Fexi=—9V/0x, and

(2.3)

E(xt)=F (e/8r3)f- . -/dkdw A IS (w—k)-—6;(w+k)]/dl’[k—wv(t’)] expi{k-[x—x()]—w(—1)}, (24)

B(x)=7F (6/811'3)/' . ~/dkdw k' [oF (w—k)-&;(w-i-le)]/dt’[v(t’)Xk] expi{k-[x—x()]—w(—t)}. (2.5)

We now identify the field charge with the source charge by letting v=v(¢) and x — x(¢). We obtain from (2.1)

3D. Iwanenko and A. Sokolow, Klassische Feldtheorie (Akademie-Verlag, Berlin, 1953).

4 1. Prigogine and B. Leaf, Physica 25, 1067 (1959).

°1. Prigogine and B. Leaf, Bull. Acad. Roy. Belg. 46, 915 (1960).
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and (2.2)
p=uv(t)/[1—2*(t) P+eA[x(),2], (2.6)
H=p/[1—2(t) P+ep[x (1), 1+ Vx(1) ], (2.7)
with 4,[x(¢),t] given by (1.13). The equation of motion (2.3) becomes
p(d/d){v(t)/[1—*() I} = F[x(8),t ]+ Fexe[x () ], (2.8)

where F[x(¢),t] is the Lorentz self-force,

FLx().£1= (¢/3+") mm / . / Ok F exp(ik- )3 (0= B)— 55 (wt-4)]

X/dl'{k[l—v(t)-v(t’):l-f-v(l')[k-v(t)—w:l} expi{k-[x() —x()]—w(t—1)}. (2.9)

Multiplication by v(#) gives the energy equation
(@/d){u/[1—22(t) 1} —v(2) - Fexy=ev(?) - E[x(2),t]. (2.10)

Equation (2.8) is a second-order integro-differential equation. For a given external force, the value of x(z) is
determined once the initial values of x(¢) and v({) are specified. If, instead of prescribing Fex and solving for
x(f), we assume a particular motion of the particle by prescribing x(), then Fex may be obtained from the equa-
tion; but it may turn out that this force is different from the one required for a neutral particle executing the
prescribed motion x(z). It may even occur that Fe in (2.8) is not derivable from a potential.

With the use of (1.4) we may separate the self-force F[x(#),/]into two parts arising from the principal-part and
d-function terms, respectively.

F[x(2),¢1=FX[x (1), ]+ F"[x(1),], (2.11)
FE[x(2),£]= (¢%/47%) 1113) / e / dkde exp(ik- @) (2—E)~ | dt’

XAK[1=v(®) - v{E) ]+ v )k - v() —w]} expi{k-[x()—x() ]-w(=1)}, (2.12)
F2Lx(1),6]=F (¢2/8%) f o / dkdew k[8(w—k)—8(w+E)] / dr

X{k[1—=v(@) - v#) ]+ v k- v() —w]} expi{k-[x(€)—x(/)]—w(@—1)}. (2.13)
Similarly, in (2.6) and (2.7) we separate the electromagnetic momentum and energy, letting

A[x(8),1]=A45[x(0),1]+4.”[x(),1], (2149
where, according to (1.13),

AE[x(8),t]=— (e/4n®) lirj(l)/- - [dkdw exp(ik- @) (w?— k%)

X/dt’ v,(¢) expi{k-[x() —x(¢)]—w(—1¢)}, (2.15)

A,D[x(t),t]=¢(ei/8r2)/- . -/dkdw k“‘[&(w——k)—&(w-l—k)]/dt’ v, (') expi{k-[x(®)—x(¢)]—w(t—1¢)}. (2.16)

As we shall see in the following examples, the kinetic parts, FX, 4,%, arising from the principal-part integrals,
diverge. The dissipative parts, FP?, 4,2, arising from the §-function integrals, are finite; accordingly, the limit
« — 0 has been taken inside these integrals.

3. MOTION OF A FREE CHARGE

Let v({)=v({)=v, a constant, so that
x()—x()=v(@—1). 3.1)
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According to (2.13),
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F2=F (¢/812) / / dkde F[6(w—E)—8(w+E) L (1= ) k+ (k- v—)v] f dt' exp[i(k-v—a) (1—1)]

=:F[62(1—7)2)/47r]/' . -/dkdw k1 [6(k—k-v)—é(k+k-v)]=0.

3.2)

The 6 functions can never be satisfied, since v<1, so that F? vanishes. According to (2.12)

FE¥= (¢ /4n?) ﬁil‘é/' . ~/dkdw exp(ik- @) (w2—F2)'[ (1 — o) k+ (k- v—w)v]/dl' expli(k-v—w)(1—1)]

=—[4e?(1—2%)/27%] lirj;[//dk exp(ik- o) k/[k2— (k- v)?]

=— (1= lim(8/00) (¢*/e)/ (1—=0:)1],

where vi=v:(l—ae/a?). Similarly, from (2.15) and
(2.16),
A4,°=0,

A X =lim(e?/a)v,/ (1—v2)%
a—0

(3.4)
3.5)

Now?
Ao(1,) = (evs/a)/ (1—02)},

where a=r()—1'(¢) is the Lorentz gauge potential at
a field point which is at a distance « at time ¢ from a
point charge moving with constant velocity v. The
vector e is the displacement from the source point
t'(¢) to the field point r(f) at the moment ¢ when the
signal arrives at r. Let

'=r())—r(t)

be the displacement from source to field point when the
source position is measured at the time ¢ such that

F(—1)=d,

where again the upper sign refers to the advanced, the
lower sign to the retarded, time. Since the source has
constant velocity v,

e=a'ta'v.

In terms of ¢, the potential 4,(r,l) becomes identical
with the Liénard-Wiechert potential for a source mov-
ing with constant velocity:

A, (r)=ev,/(a'a’ - V).
Let
ao=ad//(1—1*)} £ o/ - v/(1—1?)},

the Lorentz scalar invariant distance between the
source point and field point in their rest frame. Then

A, (1)) =ev,/as(1—2?)1.
¢ B. Leaf, Physica 28, 206 (1962).

(3.3)

Accordingly, using (3.4) and (3.5), we find from (2.6)
and (2.7) that

p=[ptlim ¢%/ao]v/(1—27)} 3.6)
H=[u+lim ¢*/a0]/ 1=+, 3.7

while, using (3.2) and (3.3) we find that the self-force
in (2.9) becomes

F/(1-o)t=—{1+[(1—)—1]vv/e?}
X lirj}) (9/deo) (€*/a),

in agreement with the Lorentz transformation of the
static Coulomb force, — (8/d)(e?/a) from the rest
frame of the particle. But since lims,0(9/0x)(1/x)=0,

therefore, finally,
F(x(®),t]=0. 3.9

According to (3.6) and (3.7), the effective mass of a
free charge is

= im e
m y+£})r_r>10e/ao. 3.9

It is consistent to set the external potential V=0 and
external force Fex=0 in this example. The absence of
dissipative effects is attributable to the fact that the
delta functions in (3.2) cannot be satisfied. Both re-

tarded and advanced fields give the same result, since
only principal-part terms remain.

4. NONRELATIVISTIC MOTION OF A CHARGED
SIMPLE HARMONIC OSCILLATOR
Let
x(t)=oaz cosvt
’ (4.1)

v(t)= —avz sinnt,

where z is a unit vector along the line of motion.
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According to (2.12),
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FE = (¢%/4x3) lil_:% / e / dhkdw exp(ik- @) (w?—£?)1 / ' {k[1— (a»)? sinvt sinvt’]

Using the expansions in Bessel’s functions J, of order #,

we find

F& = (e2/47%) lilg(x)/- . -/dkdw exp(tk-o) (W—A)1 Y 2x fdt’{k[l—v%m/(k-z)“’]

+z(vm/k-2) (vn—w)}iv"J ,(ak-z)J ,(ak-z) expi[ (nr—w)i— (myv—w)t']

= — (e%/27?) L}E‘;///dk exp(ik- @) Xn X5 [B2— (mv)2 T Y k[ 1—v?nm/ (k-2)2]

Similarly, from (2.12), (2.15), and (2.16),

F2=F (¢%/4r) / / / K b T 30 [6(k— mv) — 8 (k+mv) K[ 1 — v2nm/ (k-2)7]

~+zav sinvt'[k-zav sinvi+w]} expi{k-za(cosvi—cosvt’)—w(t—1t')}. (4.2)

exp(=tak-z cosvt) =3, Ju(ak-z) (4=1)" exp(invt), 43
sinvt exp(d=iak-z cosvt) = —3_ . (n/ak-2)J . (ak-2) (i)™ exp (+invt), (43)
+zv?*(n—m)m/k-z}i""J ,(ak-2)J . (ak-z) exp[i(n—m)vt]. (4.4)
Fzv*(n—m)m/k-2}i"J ,(ak-z)J . (ak-2) exp[i(n—m)vt], (4.5)

AX=(¢/27?) gr»%//fdk exp(tk-@) X0 20 [k — (mv)2 T (mvz/k-2)i" T ,(ak-2)J m(ak-z) exp[i(n—m)vt], (4.6)

oK =(e/27?) EI_Z(I] / / f dk exp(ik-@) X5 3, [k2— (mw)2 ] Yin ] ,(ak-2)J n(ak-2) exp[i(n—m)vi],

4.7)

AP =F (¢i/4r) / / [ Ak E Y0 X [6(B—m)—6(k+m») ] (mva/k-z)ir—

PP==F (ei/41r)// [dk B30 2w [0(k—mv)—8(k+-mv) Jim—T ,(ak-2)J . (ak-2z) exp[i(n—m)vt].

Equations (4.4) to (4.9) are Fourier series repre-
sentations in harmonics of the oscillator frequency ».
Designating the combined contribution to FX in (4.4)
from the terms with n=m-s and n=m—s by F.X, we
have evaluated F,X in the nonrelativistic limit (see
Appendix II) for s=0, 1,

F¥=0, F,X= lin% (e*/a)zar? cosvt.  (4.10)

Similarly, for F2, AX AP in (4.5), (4.6), and (4.8)

Fo?=0, F.2=F(2/3)ze%ar® sinyt, (4.11)
A¥=0, AK=-— liné (e/a)zav sinyt,  (4.12)
A?=0, A,2==F2zear? cost. (4.13)

In the case of ¢¥ and ¢? in (4.7) and (4.9), the con-

XJ.(ak-2)J n(ak-2) exp[i(n—m)vt], (4.8)

(4.9)

tributions have been evaluated for s=0, 1, 2, as
of =lim (¢/@)[1+(av/2)7], ¢:5=0,
b K =1in(} (e/a)(av/2)? cos2vt, (4.14)
$°=0, ¢ 2=0, ¢:P=-t1ea%ssin2vt. (4.15)

Combining these contributions we obtain, according
to (2.8), (2.6), and (2.7), in the nonrelativistic case,

mdv/dt= FexsF (2/3)e2d?v/d2, (4.16)
p=mveidv/di, 4.17)
H=m(14+3®)+xev-dv/di+V, (4.18)

where the effective mass is
m=u+glj(1) e/a, (4.19)

just as in (3.9) for the first example of free motion of a
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charge. Equations (4.16), (4.17), and (4.18) have been
obtained from only a few terms of the Fourier series
(4.4) to (4.9). In every case the divergences arise from
the contributions of the principal-part terms.

According to (4:16), the energy equation (2.10) be-
comes, in the nonrelativistic limit,

Lmde?/dt=v- FouTF (2/3)e2v-d2v/d,  (4.20)

or

mav® sinvt cosvi=v- Foya= (2/3)e%a?v* sinvt.  (4.21)

Taking the time average in this equation over a whole
number of oscillations, we find that the external force
must provide energy at the average rate

(v Fexe)=TF 32" (4.22)

This is the well-known’ radiation damping term, often
expressed as F (2/3)e22U/m, where U=4%m(av)? is the
energy of a neutral oscillator of mass m. It is seen that
the correct sign for the damping is given by the retarded
potential.

When the effective mass m is introduced according to
(4.19), and interpreted as the experimental mass, this
renormalization procedure removes the infinities arising
from the principal part terms. The potential energy V
and the force Fey, imposed on the system externally,
can only contain experimental quantities, and, there-
fore, are taken to be renormalized, ab initio. In the
present example, it must be remembered that we have
postulated that the charge executes simple harmonic
motion according to (4.1). We use the equation of
motion (2.8) to obtain the external force Fex; required
for this motion. Accordingly, we identify V as

V=3im*x>L£e’v-x. (4.23)

With this choice of V, the energy of (4.18) reduces to
H=m(1+i®)+im?2=m(1+31a*?), (4.24)

the correct expression for the simple harmonic motion
of an equivalent uncharged particle of mass m. The
radiation damping term (4.22) accordingly takes its
usual form as F(2/3)e%?U/m where U is now the
energy H of (4.24) apart from the rest mass. A La-
grangian can be written as

L=p-v—H

=m(—1459%) — Imr’a®>F e2?v - x. (4.25)
We verify that, according to this Lagrangian,
p=93L/Iv=mvFe’x, (4.26)

in agreement with (4.17). The equation of motion
obtained from the Lagrangian (4.25) is
(d/dt) (mvTF e2v?x) = — mp®xF etv’y
or
mdv/dt=—my*x, (4.27)

" R. Becker, Theorie der Elekirizitit (B. G. Teubner, Leipzig,
1933), 6th ed., Vol. II.
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the correct expression for a simple harmonic oscillator.
Comparison with (4.16) shows that

Foxi= —m?x= (2/3)ed?v/de,

which agrees with (4.22).

Two conditions must be provided externally for
simple harmonic motion of a charge. The potential
energy V of (4.23) must be supplied, and in addition
the external force Fex of (4.28) must be maintained.
The potential energy does not provide for the dissipa-
tive term in the force.

(4.28)

5. DISCUSSION OF RESULTS

In both examples considered, the principal-part
terms in the self-field give rise to the electromagnetic
kinetic reaction; all divergences in the equations of
motion stem from principal-part integrals. These can
be removed by renormalization of mass, as in (3.9)
and (4.19). No infinities requiring charge renormaliza-
tion have appeared. The dissipative effects associated
with motion of a charge derive from the é-function
terms, which are finite. As we have seen in (4.22) and
(4.28), the retarded potential gives the correct sign for
the radiation damping; the advanced potential, the
opposite sign. Only the retarded field needs to be con-
sidered, in agreement with causality. As we have shown
in (1.9), causality requires that the self-field be de-
scribed by the retarded potential.

According to (1.11) and (1.12) the field obtained as
half the sum of retarded and advanced potentials gives
the same electromagnetic kinetic reaction as the re-
tarded potential, but without the damping. On the
other hand, half the difference of retarded field minus
advanced field gives the correct damping without the
divergent principal-part terms. A finite theory can be
obtained by using this latter combination alone,?
justification for this choice of field being adduced from
the absorber theory of radiation.® However, this choice,
in the first place, violates the causality principle of
(1.9). In the second place, it neglects the important
attribute of the field theory, that it can account for the
electromagnetic mass (even though it is divergent in the
present theory).

The important point with respect to the electro-
magnetic mass, lim,,0e?/a, is that it is additive to the
bare mass u, permitting the sum # to be interpreted as
the experimental (finite) mass. Any argument advanced
for obtaining a finite quantity as the sum of bare mass
and electromagnetic mass goes beyond the present
classical theory. In conformity with renormalization
procedure, our equations become finite if in (2.6) to
(2.10) we replace the bare mass u by p—lima,e*/a.
However, alternatively, since only the sum of the bare
mass and the electromagnetic mass is an experimental
quantity, we may agree to set the bare mass, u=0,

8J. A. Wheeler and R. P. Feynman, Revs. Modern Phys. 17,
157 (1945).
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so that the entire mass is electromagnetic. The diver-
gence in this case must be considered a defect of present
theory. This procedure is consistent with the hypothesis
of Abraham? that the mass of the electron (and posi-
tron) is entirely electromagnetic. When these particles
are considered to be represented as point singularities
in the field, rather than spherical shells of finite radius,
there is no need to invoke extraneous forces to hold the
charge together. For such a purely electromagnetic
particle the equation of motion (2.8) takes the form
(with x=0),

FEx(8),6 1+ FP[x(2),t ]+ Fext=0. (5.1)

The procedure of suppressing the bare mass u in favor
of the electromagnetic mass, even though the latter is
infinite, is attractive because the electromagnetic mass
is calculated from the theory.

Equation (4.16) for the retarded case (lower sign) is
precisely the Dirac equation for one-dimensional motion
of a charge in the nonrelativistic limit. It is sometimes®
argued that this equation should be adopted as an exact
mathematical representation for the force of radiative
reaction within the framework of classical theory. As
such, it introduces more freedom in specification of
initial conditions than is allowed in Newtonian dy-
namics, where only the initial position and velocity of
the particle are specified. This permits ‘“runaway”
solutions for (4.16) such as

x(t) =2z (4¢?/9m?) exp(3mi/2e?) (5.2)

for the free-particle case in which one sets Fe=0. In
our treatment of the oscillator it was shown that the
dissipative term, (2/3)e%d?v/di2, of (4.16) is cancelled
by a term in the external force Fex (4.28) required for
the simple harmonic motion imposed by (4.1). The re-
sulting equation of motion for the oscillator is then
correctly the Newtonian equation (4.27). Run-away
solutions such as (5.2) for free-particle motion are ex-
cluded according to the equation of motion (2.8) which
is an integro-differential equation of second order, so
that the motion of the charge is determined, as in
Newtonian dynamics, once the initial position and
velocity are specified. In this respect it is similar to
Rohrlich’s integro-differential equation.! But unlike
Rohrlich’s equation, which is obtained by adding a
subsidiary condition to the Dirac equation, (2.8) is
obtained directly from the Maxwell-Lorentz equations
without the use of Dirac’s equation or subsidiary
conditions.

APPENDIX I. DERIVATION OF DISSIPATIVE
POTENTIALS IN (1.1)

We start with the Lorentz gauge potentials in the
form,°

® G. N. Plass, Revs. Modern Phys. 33, 37 (1961).

©1,. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1951), pp. 174, 72.
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Ao(x,0)= / dx' j.(X,t+R)/R, R=|x—x'|, (AL1)

where the current four-vector for a point source is
Jo(x,8) =evq (DO x—x(2) ], (A1.2)

with v,(¢) defined in (1.2). Writing the Fourier integrals
(with limits from — o to + ),

A.,(x,l)=/A.,(x,w) exp(—iwt)dw, (A1.3)

ja(x,t)=/j,(x,w) exp(—iwt)dw, (A1.4)
and substituting them into (A1.1) gives
A,(X,w)=/dx’[j,(x’,w)/R] exp(FiwR). (ALS5)
Using (A1.2) and the inversion of (A1.4) we find

Jo(X' )= (e/2m) / dt v,()0[x’— x(8) ] exp (iwt)

= (/167 / e / dkdt v,(f)

Xexpi{k-[x'—x(@) J+wt} (AL1.6)
so that

A, (x,w)= (8/1614)/ .. -/dkdt v,(£)

Xexpi{k-[x—x(6) 4wt} (kw), (ALT)

where, with R=x"—x
I(kw)= /dR R exp[i(k- RFwR)].

Evaluation of I(k,w) gives, with the notation of (1.3),
I(k,w)=F 2ni/k)[0+(w—k)—d+(w+k)]. (A1.8)
Substituting (A1.7) into (A1.3) yields (1.1).

APPENDIX II. EVALUATION OF SOME
INTEGRALS IN (4.4) TO (4.9)

In spherical polar coordinates,

f{ o [ [

where the unit vector x ranges over the unit sphere.
Since % is always positive, §(k—mv) can only be satis-
fied for positive m; §(k-+mv) for negative m. The term
with n=m in F2 ] Eq. (4.5), clearly vanishes, so that
Fy?=0, as stated in (4.11).

(A2.1)
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The term with z=m in FX, Eq. (4.4), is
FoX=— (e%/2x?) ligff/dk exp(tk- o)k 3, [k2— (mv)2 T [1— (mv/k-2)2 )] 2 (ak - 2). (A2.2)

Let k=Fkx, and then let 2=Kpv. Then,

d
Foft=—(¢%/27°) lim - / / dx[I1,—1,/(x-2)?], (A2.3)
where 1 po :
11=5 / dK exp(ix- aKv) 3o [K*/ (K*—m?) 1] *(x-2Kav), (A2.4)
1 0
Iz=£/ dK exp(ix-aKv) 3, [m*/(K2—m*) ]2 (x-zKav). (A2.5)
Nows? -

o [/ (K= m2) W 2= — 14 (K /sinm K)J _x (- 2K av)J k (x-2K av)

w  (2m)!(x-zav/2)*" 14 12 22 ( m?
- 1+ + (14 (A2
z m):  \ K2—12><1 K2~22) ! K2—m2) (A26)

But on integration over K, the only nonvanishing integral is the divergent integral,

0

o m? ©  (2m)!(x-zav/2)*™
/ dK Jm2=/ dK—*————————=/ dK{[1— (avx-2)*T1—1}. (A2.7)
~ K2—m? e (m1)? -
I1=(7/va)d(x- a/a)[1— (x-zav)* ],
L= (r/va)d (v a/c){[1— (x-zav)* i —1}.

We find, in the nonrelativistic limit, with @v=1,.,<1,

Accordingly,

FoX=—(¢?/2m) ljr_g(l/a)//du (x-e/a)= ~£i_1}:(6/6a) (e*/a) =0, (A2.8)

as stated in (4.10).

To calculate the terms in the Fourier series (4.4) to (4.9) for n=m+1 and n=m—1 (combined), we replace
exp[i(n—m)vt i*"JnJ » by — (2m/ak-z)J,? sinvi— (i/k-z)(8/9a)J m? cosvi, and mu exp[i(n—m)vt]i*"J,.J, by
— (i/k-z) cosvtdJ,2/da— (2m?/ak-2) T2 sinvi+ (2im/ak-2)J .2 cosvi+ (m/k-z) sinvid J .2/ da.

To calculate the terms in (4.14) and (4.15) for n=m+2 and n=m—2 (combined), we replace :""J,J,
Xexp[i(n—m)vi] by

2 cos2vt[ T2 —2m2] 2/ a(k-2)2+ (8T,:2/0a)/a (k- 2)2 ]+ 2mi sin2vi[ — 27,2/ a*(k - 2)2 4 (0] .2/ da) /a(k-2)7].

A new integral appears, similar to /; and I in (A2.4), (A2.5), namely,

0

1
1= / K exp(in- oK) Son(K2—m?)~L],2 (x- 2K av). (A2.9)

This integral vanishes in the limit ¢ — 0.



