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The equation of motion of a charge is obtained as a second-order
integro-difterential equation, directly from Maxwell's Geld equa-
tions and Lorentz's force equation without the use of the Dirac
equation of motion. The validity of the field equations is assumed
everywhere, the position of the charge being treated as a point
singularity. The force on the charge at the field point is given by
the expression for the Lorentz force produced by the fields of a
source charge in the limiting case where the field charge is identified
with the source. The only fields which need to be considered are
the retarded solutions of the field equations, in agreement with
causality. In order to obtain the equation of motion, it is necessary
to formulate the potentials of the Geld of a point source in dissi-

pative form. In this form, the potentials satisfy the Lorentz gauge
condition identically. They are Fourier integrals which contain 5+
functions in the Fourier coeKcients. When the equation of motion
is applied to the examples of relativistic motion of a free charge
and to the nonrelativistic simple harmonic motion of a charge, it
is found that the principal-part terms of the 5+ functions provide
the electromagnetic kinetic reaction, while the b function terms
provide the dissipative effects. The only divergence stems from
the principal-part integrals, and is the Coulomb self-energy of the
charge. It can be removed by renormalization of mass. The results
are consistent with the Abraham theory that the mass of an elec-
tron (and positron) is whoily eiectromagnetic.

INTRODUCTION
''N a recent paper, ' Rohrlich has shown that by

~ starting with Dirac's equation for 'the classical
motion of a charge and imposing an additional condi-
tion which, in effect, eliminates the nonphysical solu-
tions, an integro-differential equation of second order
may be obtained. The motion of a charge obeying such
an equation is determined, as in Newtonian dynamics,
once the initial position and velocity are specified.
In this paper, we obtain an integro-differential equation
of second order for motion of a charge, directly from
Maxwell's field equations and I orentz's force equation,
without the use of Dirac s equation or subsidiary condi-
tions. As does Dirac, ' we assume the validity of the
field equations everywhere, treating the position of the
charge as a point singularity. We calculate the force on
a charge at a field point, using the expression for the
I.orentz force produced by the fields of a source charge
in the limiting case where the field charge is identified
with the source. The only fields which need be con-
sidered are the retarded solutions of the field equations,
in agreement with causality.

In order to formulate the integro-differential equa-
tion, we start in Sec. 1 with the potentials of the field
of a point source expressed as a Fourier integral. These
are the dissipative potentials. They are derived in
Appendix I. In Sec. 2, we derive the integro-differential
equation of motion, together with the formulas for
momentum and energy of a charge in its self-field.
In Sec. 3, we apply these equations to the example of
unaccelerated motion, and in Sec. 4, to the case of simple
harmonic motion. In Sec. 5, we discuss the results
obtained. In Appendix II are given details of the
evaluation of some integrals for the simple harmonic
oscillator example.

1. DISSIPATIVE POTENTIALS

It is shown in Appendix I that the potentials at the
field point (x,t) produced by a point charge e moving

' F. Rohrlich, Ann. Phys. (New York) 13, 93 (1961).' P. A. M. Dirac, Proc. Roy. Soc (London) A167, 148 (1938).

A, (x,t)

= W (ei/Sv') dkdoo k '[bp(to —k) —3p((g+k)7

X dh' v. ($') expi(k [x—x(t')7 —oo(i —1")}, (1.1)

where
v, (/) = [dx(t)/dt, 17, o =1, . 4, (1.2)

and the upper sign indicates the advanced, the lower
sign, the retarded potential. The speed of light is taken
as unity. The 5+ functions are defined as

3p(x) =v 3(x)WiP (1/x), (1.3)

so that separation of 8-function and principal-part
terms gives

W [3p ((o—k) —3~(a)+k) 7
=%7r[3(M k) 3(co+—k)7+—2ikP(oo' k') ' (1.—4).

We may readily verify that (1.1) is a solution of the
D'Alembert equation

(8'/r) x 8'/Bt') A, (x,—t) = 4rrev, (t)3[x x(—t)7. (1.5)—
The substitution 1'=i r in (1.1) gives—

A. (x,t)

=T (ei/Sv') dkd(o k-'[3p(co —k) —3p(o)+k)7

dr v, (t—r) expi(k [x—x(t—r)7—(or). (1.6)

In this form, the potentials satisfy identically the
Lorentz gauge condition

(r)/c)x) A+r)y/r)t=0, A, = (A,y).

along a trajectory x(t') with velocity v(t') can be put
in the dissipative form
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and (2.2)
t)/[1 —v'(t))&+eA[x(t), t,p=hzv(t

(h)),II=p 1—v'(t))&+ey[x(t), t)+ x

of motion1 1 n o
'

(2.3) becomes1.13 . The equation owith A.[x t )x(t),t) given by (1.1
—v'(t))'} = FLx(t) h)

ntz self-force,

(2 6)

(2 7)

(2.8)

where F[x(t),t) is the Lore

cv —k) —8p (s&+k))~ ~F[x(t),t) = W (e'/8zrz) hm kd k
—' exp(zk n)P~(d

—
&u t t' .—2.9)v t — ex i k [x(t)—x(t')) —~(t—h'Ch — . t' v(t')[k v(t) —(u)} expi{ x — ' —(g t h'—X Ch'{k[1—v(t). v(t')) v t — ex z x
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According to (2.13),

FD=W(e'/Sz') dkdpik '[8(pi —k) —8(&o+k)][(1—v')k+(k v —pi)v] dt'exp[i(k v —pi)(t —t')]

=+[e'(1—v')/4v] dkd&u k '[b(k —k. v) —8(k+k v)]=0. (3.2)

The 8 functions can never be satisfied, since v(1, so that F vanishes. According to (2.12)

Fx=(e2i/4vp) lim dkdkv exp(ik n)(o&-'—k2) '[(1—v'-')k+(k v —cv)v] dt'exp[i(k v —&o)(t—t')]
nm0

=—[ie'(1—v')/2v'] lim
u~0

dk exp(ik n)k/[k' —(k v)']

=—(1—v') lim (8/Bn) [(e'/n)/(1 v'—)«]
u~0

(3 3)

where v, = v. (1 nn/n—') Simi.larly, from (2.15) and Accordingly, using (3.4) and (3.5), we find from (2.6)
(2.16), and (2.7) that

Now'

a.D=0,

A x=lim(e'/n)v. /(1 —v ')«
a-+0

(3.4)

(3 5)
p =[ti+ lim e'/np]v/(1 —v')'*,

ape

B=[p,+ lim e'/np]/(1 v') «+—V,
ap~0

(3.6)

(3.7)

A.(r,t) = (ev./n)/(1 —viP) «,

where n=r(t) r'(t) is—the I.orentz gauge potential at
a field point which is at a distance e at time t from a
point charge moving with constant velocity v. The
vector e is the displacement from the source point
r'(t) to the field point r(t) at the moment t when the
signal arrives at r. Let

n'= r(t) —r(t')

be the displacement from source to field point when the
source position is measured at the time t' such that

in agreement with the Lorentz transformation of the
static Coulomb force, —(8/8 n)(pe'/ n)pfrom the rest
frame of the particle. But since lim, p(8/Bx)(1/z) =0,
therefore, finally,

F[x(t),t]=0. (3 8)

while, using (3.2) and (3.3) we find that the self-force
in (2.9) becomes

F/(1 —v') «= —(1+[(1—v') '*—1]vv/v }
X 1im (8/8np) (e'/np),

~xp ~0

m =ti+ lim e'/np.

It is consistent to set the external potential V —0 and
external force F.„p=p in this example. The absence of
dissipative eGects is attributable to the fact that the
delta functions in (3.2) cannot be satisfied. Both re-
tarded and advanced fields give the same result, since
only principal-part terms remain.

O. =e &0. V.

In terms of n', the potential A, (r, t) becomes identical
with the Lienard-%iechert potential for a source mov-
ing with constant velocity:

W(t —t') =n', According to (3.6) and (3.7), the effective mass of a
free charge is

where again the upper sign refers to the advanced, the (3.9)
lower sign to the retarded, time. Since the source has
constant velocity v, ~ ~

A, (r,t) =ev./(n'an' v).

n, =n'/(1 —v')* + n' v/(1 —')«
4. NONRELATIVISTIC MOTION OF A CHARGED

SIMPLE HARMONIC OSCILLATOR

the Lorentz scalar invariant distance between the
source point and field point in their rest frame. Then

A, (r, t) = ev, /np(1 —v') «.

Let
x(t) =az cosvt,

v(t) =—avz sinvt,
(4.1)

P B. Leaf, Physica 28, 206 (1962). where z is a unit vector along the line of motion.



L CHARGES OF A CLASSI CALE POTENTIALDISSI PATI V E P

According to ,2.12),

' k 1—(av)' sinvt sinvtdkda) exp(ik n)F»= (e'i/4 zr) lim

zav
'

- ex j k za(cosvt co—svt') —co t
' k xav sinvt+co]) expi xa c+xav sinvt xap

of order e,1's functionsions in Besse sUsing the expansion

J„( k')(~ )"-p(~ t),(muzak x cosvt) P a

z= —Q„(n/ak z)J„a xumiak x cosvt) = — n
we find

' hm dkd p(e'i/4n') im

nv —(o)t—(m v —a))t']k x)J„(ak z) expi[(nvx(pm/k x) (vn —(u))z -"n J (a

k' —mv)'] '(k[1 v'n—m/(k z 'dkexp(ik n) g P„k'—m= —( ie/2m') lim

sinvt exp(

o) ex z n ' ' „dt'(k[1—v'nm/(k x)'].o) ex (ik n)(aP —k') 'Q„Q dtF»—

(4.2)

(4.3)

m (2.12), (2.15), and ( .d 2.16),Similarly, from

xp — x z „(ak z) exp[i(n —m)v—m vt . (4.4)+xv'(n m)—m/k x)z „a
FD =w (e'/4zr)

A» = (e/2zr') lim

y» = (e/2zr') lim

p k[1—p'nm/(k z)']„[g(k —m p) —li (k+mv) ]f

+zv' n —m mp — kzz J(
)
'"—"J„(ak x)J (a xz z z

— „ak x) exp[i(n —m vZ. k' —(mv)'] —'(mvx/ z z"-dkexp(zk n) g

ak x) exp[i(n —m)vt,' -'i"-"J„(ak x)J„(a[kz—(mv i" ~ adk exp(zk e) P (4.7)

An =W (ei/4zr)

D =~ (ei/4zr)

8 k mv) b(k+m—p)](m—vz .x i"
ak x)J„(ak z) exp[i(n—,4.8a x „ i n —m)vt], (4.8

(4.9)i n —m)vt].Lg k —mp — p i" ~J„ak x)J (ak x) exp[i(8 k mv) b(k+—mv)]i"—"J„a x-dkk-'P~g„b k —mv—

for s= » 2, asr' '
ave been evaluated for s=. . . s

e n [1+(av/2)'], Pi»=,
z»=lim (e/n)(av 2 'cos v,

o =+ 'ea'v' sin—2vt.P=O, pP= —,ea v'
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m = T 2 3)e~dv dt,mdv/dt= F, ,T ' d '

(4.17)e'dv dt,

H= (m1+-'u')&e'v dv/dt+V,
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0 =, F»= lim (e'/n)zav'cosvt.Fo»=0, i ——i (4.10)

im', Fo A», An in (4.5), ( .Fo, '
. 4.6), and (4.8)Similarly, for Fo,

Fo =, o= (2/3)ze'av' sinvt,FOD=O, Fp=w (4.11)

(4.12)vt»= —lim (e n/)zav sinv,

(4.19)+=~zeav2 cosvt.1

Ao» ——0,

tz+(4.13)
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charge. Equations (4.16), (4.17), and (4.18) have been
obtained from only a few terms of the Fourier series
(4.4) to (4.9). In every case the divergences arise from
the contributions of the principal-part terms.

According to (4.16), the energy equation (2.10) be-
comes, in the nonrelativistic limit,

OI
,'md''—/dt= v F,„,W(2/3)e'v d'v/dt' (4.20)

ma'v' sinvt cosvt= v F, 4+ (2/3)e'a'v' sin'vt. (4.21)

Taking the time average in this equation over a whole
number of oscillations, we find that the external force
must provide energy at the average rate

(v F...)=w-', e'a'v4. (4.22)

This is the well-known radiation damping term, often
expressed as W(2/3)e'v'U/m, where V=-,'m(av)' is the
energy of a neutral oscillator of mass m. It is seen that
the correct sign for the damping is given by the retarded
potential.

When the effective mass m is introduced according to
(4.19), and interpreted as the experimental mass, this
renormalization procedure removes the infinities arising
from the principal part terms. The potential energy V
and the force F, &, imposed on the system externally,
can only contain experimental quantities, and, there-
fore, are taken to be renormalized, ab initio. In the
present example, it must be remembered that we have
postulated that the charge executes simple harmonic
motion according to (4.1). We use the equation of
motion (2.8) to obtain the external force F,„& required
for this motion. Accordingly, we identify V as

V= —tFLv2x2&8~v~v x. (4.23)

p =BL/gatv =mv+e'v'x, (4 26)

in agreement with (4.17). The equation of motion
obtained from the Lagrangian (4.25) is

or
(d/dt) (mvWe v'x) = mv x&e—v'v

mdv/dt= —mv'x, (4.27)

R. Becker, Theoric der Etektriz4tat (B. G. Teubner, Leipzig,
1933), 6th ed. , Vol. II.

With this choice of V, the energy of (4.18) reduces to

II=m(1+-,'e')+-,'mv'x'=m(1+-, 'a'v') (4.24)

the correct expression for the simple harmonic motion
of an equivalent uncharged particle of mass m. The
radiation damping term (4.22) accordingly takes its
usual form as W(2/3)e'v'V/m where U is now the
energy H of (4.24) apart from the rest mass. A La-
grangian can be written as

L=y v —H
=m( —1+-,'v') —-', mv'x'We'v'v x. (4.25)

We verify that, according to this Lagrangian,

the correct expression for a simple harmonic oscillator.
Comparison with (4.16) shows that

F,„4———mv x+ (2/3)e d v//dt (4.28)

which agrees with (4.22).
Two conditions must be provided externally for

simple harmonic motion of a charge. The potential
energy V of (4.23) must be supplied, and in addition
the external force F,„, of (4.28) must be maintained.
The potential energy does not provide for the dissipa-
tive term in the force.

S. DISCUSSION OF RESULTS

J. A. Wheeler and R. P. Feynman, Revs. Modern Phys. 17,
157 (1945).

In both examples considered, the principal-part
terms in the self-field give rise to the electromagnetic
kinetic reaction; all divergences in the equations of
motion stem from principal-part integrals. These can
be removed by renormalization of mass, as in (3.9)
and (4.19). No infinities requiring charge renormaliza-
tion have appeared. The dissipative effects associated
with motion of a charge derive from the 5-function
terms, which are finite. As we have seen in (4.22) and
(4.28), the retarded potential gives the correct sign for
the radiation damping; the advanced potential, the
opposite sign. Only the retarded field needs to be con-
sidered, in agreement with causality. As we have shown
in (1.9), causality requires that the self-field be de-
scribed by the retarded potential.

According to (1.11) and (1.12) the field obta, ined as
half the sum of retarded and advanced potentials gives
the same electromagnetic kinetic reaction as the re-
tarded potential, but without the damping. On the
other hand, half the difference of retarded field minus
advanced field gives the correct damping without the
divergent principal-part terms. A finite theory can be
obtained by using this latter combination alone, '
justification for this choice of field being adduced from
the absorber theory of radiation. ' However, this choice,
in the first place, violates the causality principle of
(1.9). In the second place, it neglects the important
attribute of the field theory, that it can account for the
electromagnetic mass (even though it is divergent in the
present theory).

The important point with respect to the electro-
magnetic mass, lim oe/n, is that it is additive to the
bare mass p, , permitting the sum m to be interpreted as
the experimental (finite) mass. Any argument advanced
for obtaining a finite quantity as the sum of bare mass
and electromagnetic mass goes beyond the present
classical theory. In conformity with renormalization
procedure, our equations become finite if in (2.6) to
(2.10) we replace the bare mass tt by tt —lim Oe'/n.

However, alternatively, since only the sum of the bare
mass and the electromagnetic mass is an experimental
quantity, we may agree to set the bare mass, p, =0,
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The term with n=m in Fx, Eq. (4.4), is

Fpx= —(e j/2n ) ljm dk exp(jk n)kg~ LkP —(mv) $ 't 1—(mv/k z) ]J (ak z). (A2.2)

I.et k=kx, aTid then let 4= Kw. Theo,
8

Fp~ = —(e'v/2~') lim-
n~0 g~

where

dh)Ig —Ip/(h z)'j, (A2.3)

1
I~ dE——e—xp(ih nEv) P LE'/(E' —m')]J„'(h zEav),2—

1
I2 d——E—exp(ih nEv) P feP/(E' m')$J—'(h zEav).

2
Now'

(m'/(E' m'—)5J„'=—1+(7rE/sin7rE) J x(h zEav) Jx(h zEav)

(A2.4)

(A2.5)

(2m)! (h zuv/2)'" 1'
~ t

2'
~ ( m'

1+ II 1+ j.
I
1+ I. (A2 6)

(m!)' E' 1') i E'—2') i —E' m'l—
But on integration over E, the only nonvanishing integral is the divergent integral,

Accordingly,

(2m) f(h ~ zgv/2) ~
dE J '= dE

E2—m2 (m!)'
dE{$1—(avh z)']—

&—1}. (A2.7)

I,= (~/vn)b(h n/n) I 1—(h zav)') —'*,

I2 (n/vn)8(h n/n)——{$1—(h. Zav)'1 l—1}.

We find, in the nonrelativistic limit, with av=v, «1,

Fpx= —(e'/2z) lim(1/n) dh 8(h n/n) = —lim(B/Bn)(e'/n) =0, (A2.8)

as stated in (4.10).
To calculate the terms in the Fourier series (4.4) to (4.9) for m=m+1 and e=m —1 (combined), we replace

exp/i(n —m)vtji" J J by —(2m/ak z)J 'sinvt —(i/k z)(8/Ba)J 'cosvt, and mN expti(e —m)vtjt'" ~J J„by
—(i/k z) cosvtBJ '/Ba (2m'/ak z)J—'si vnt+(2i /mek z)J ' cosvt+(m/k z) sinvtBJ '/Ba.

To calculate the terms in (4.14) and (4.15) for n=m+2 and e=m —2 (combined), we replace i" "J„J
yexpLi(n —m) vtj by

2 cos2vtP '—2m'J '/u'(k z)'+(8J '/pja)/a(k z)'j+2mi sin2vtt —2J '/a'(k z)'+(8J '/Ba)/a(k z)'j

A new integral appears, similar to I~ and I2 in (A2.4), (A2.5), namely,

1
I3=— dK exp(ih nEv) P (E'—m') 'J '(h zEav).

2—
This integral vanishes in the limit 0.~ 0.

(A2.9)


