
PH YSICAL REVIEW VOLU M E 127, NUMBER 4 AUGUST 15, 1962

Field-Theoretical Calculation of the One-Pion-Exchange and Two-Pion-Exchange
Contributions to the Phase-Shifts with Higher Angular Momenta
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The one-pion-exchange and two-pion-exchange parts of the S matrix for nucleon-nucleon scattering are
calculated field-theoretically. The rescattering of virtual pions by nucleons and the pion-pion interaction
between virtual pions are taken into account. The S matrix is then decomposed into the partial-wave ampli-
tudes, and the phase shifts are calculated. Numerical evaluations are carried out for the 310-MeV proton-
proton scattering, and the results are compared with the phase shifts obtained by analyzing the experimental
data. It is found that, without contribution of the pion-pion interaction, the results are far from agreement
with experiment because of too strong attraction arising from the contributions of the two-pion-exchange
part, but the contribution of the pion-pion resonance in the I=J= 1 state improves the results considerably
by largely cancelling the attraction. It is, however, also found that de6nite discrepancies still remain between
the theory and the experiments, and this suggests that some unknown effects must play important roles in
determining the nuclear force in the region of the internucleon distance around the Compton wavelength
of the pion.

I. INTRODUCTION

HE present work was started before the double-
dispersion representation had been discovered,

and the dispersion-theoretic approach to the nucleon-
nucleon scattering was very much developed. At that
time, the standard meson-theoretic approach to the
nucleon-nucleon scattering was, so to speak, the po-
tential approach, in which one erst derives the nucleon-
nucleon potential from meson theory, and then solves
the two-nucleon Schrodinger equation with that po-
tential. It was also desired to derive a potential which
treated the nonstatic eGects correctly, as the importance
of the LS force was recognized. Moreover, it had been
shown by Konuma et ul. ' that the resonant interaction
between nucleons and virtual pions which manifests
itself as the 3-3 resonance in pion-nucleon scattering
plays an important role in the static nucleon-nucleon
potential. It had been recognized, however, that one
encounters an ambiguity even in the definition of the
potential in addition to technical difhculties, if one tries
to derive a nonstatic potential which does not explicitly
depend on the energy. Also it was not known how one
should calculate a nonstatic potential which would
include the effects of the 3-3 resonance. These cir-
cumstances led the author to the idea of calculating
the S matrix directly, instead of deriving the potential,
because, if one tried to calculate the Smatrix, it would be
easy to completely account for the nonstatic effects,
and it would also be possible to include the effect of the
3-3 resonance.

In the present paper we calculate the one-pion-
exchange and the two-pion-exchange contributions to
the 5 matrix. The effect of the 3-3 resonance is included
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1"orce through the Air l'orce OAice of Scienti6c Research of the
Air Research and Development ('ommand.

f On leave of absence from Tohoku University, Sendai, Japan.
'M. Konurna, H. Miyazawa, and S. Otsuki, Progr. Theoret.

Phys. (Kyoto) 19, 17 (1958).

by using the dispersion relations for pion-nucleon scat-
tering. We further take the eRects of the pion-pion
interaction between two virtual pions into account.
The S matrix thus obtained contains contributions of
both the short-range interaction and the long-range
interaction. We are concerned only with the contribu-
tion of the long-range interaction because it is insufIi-
cient for treating the short-range interaction to retain
only the two-pion-exchange part. In order to separate
these contributions from each other, we decompose the
S matrix into partial-wave amplitudes, and calculate
only the phase-shifts corresponding to high angular
momenta. From the viewpoint of the potential ap-
proach, the phase shifts thus calculated correspond to
those calculated from the potential in the Born approxi-
mation, because the potential is dehned so as to give in
the Born approximation the same S matrix as that
calculated from field theory when the number of ex-
changed pions is limited as in the present case. There-
fore, among these phase shifts, only the ones whose
values turn out to be suSciently smaller than unity
can be meaningfully compared with experiment.

The purpose of the present work is to clarify the role
played in the long-range nucleon-nucleon interaction by
each of the effects considered here, and to see whether
or not we have to include other effects in order to ex-
plain the part of the observed data dominated by the
long-range interaction. By "long-range" we mean here
that the internucleon distance is larger than about
0.7' '. Examining the results of existing analyses of
the data by means of phenomenological potentials, '
we find that the Born approximation is not very bad
for almost all the partial waves with impact parameters
larger than 0.7m '; the exceptions are only 'D waves
in the energy region between 80 MeV and 300 MeV.

~ See Suppl. Progr. Theoret. Phys. (Kyoto) 3 (1956).
3 J. 1.. Gammel and R. M. Thaler, Phys. Rev. 107, 291; 1337

(1957). R. A. Bryan, Nuovo cimento 16, 895 (1960).T. Hamada,
Progr. Theoret. Phys. (Kyoto) 24, 1033 (1960);25, 247 (1961).
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Therefore, our simple method is almost sufficient for
our purpose.

In recent years the dispersion theory has been de-
veloped, and the applications to nucleon-nucleon scat-
tering have been made. 4 Our method is, in essence, very
similar to some dispersion theories of nucleon-nucleon
scattering. Indeed, for the simplified case of the scalar
nucleon, we have verified that our method is identical
to the dispersion theory of Cini and Fubini. '

In Sec. 2 we introduce the E matrix, in order to en-
sure unitarity, and the result of its decomposition into
partial waves is given. In Sec. 3 the one-pion-exchange
and the two-pion-exchange parts of the S matrix are
de6ned on the basis of the Feynman-Dyson theory.
In doing this, the two-pion-exchange part is naturally
written as a sum of two terms, one of which does not
include the eGect of the pion-pion interaction explicitly,
the other being purely a result of the pion-pion inter-
action. These two terms are separately calculated in
Secs. 4 and 5, respectively. In Sec. 6 the numerical re-
sults for the 310-MeV p-p scattering are given, and
comparison with experiment is made.

S=|—iR, (2.2)

and using the Hermiticity of E, we have from (2.1)

E= (1/2) PLR(iR/2) "+Rt(—iRt/2) "j. (2.3)
v=o

On the basis of this formula we define the e-pion-ex-
change part E„ofE as follows:

Et (1/2) (——R,+R,t),
Es (1/2) (Rs+——Rst)

+ (1/2) Ft(iR(/2)+Rt t(—iR('/2) 3,

and so on. Here R„denotes the e-pion-exchange part
of R. Since R~ is Hermitian, we have for K& and K~,
which we are here concerned with,

avoid this deficiency, we introduce the K matrix by
means of the formula

5= (1—iE/2) (1+iE/2) —'. (2.1)

The unitarity of S implies the Hermiticity of E.
Writing S as

II. KINEMATICAL PRELIMINARIES Et R1, Es ——(R +sR s——)t/2. (24)

As stated in Sec. I, we calculate the 5 matrix for
nucleon-nucleon scattering up to the two-pion-exchange
part. In this approximation, however, the S matrix
does not satisfy the unitarity condition. In order to

Owing to Lorentz invariance and charge inde-

pendence, the matrix element of E between two two-
nucleon states may in general be written in the following
form:

&qt, qslElpr, ps)=(2w)'&'(pt+p2 ql q2)~ (plsp20qlsq20)

Xp(a, (S,t)Lu(qr)r, u(pr)1Lu(q, )r,u(ps)]+b, (S,t)(u(qt)r;r u(pr))Lu(qs)r;r u(ps) j), (2.5a)
i=1

where

and

r,=1, r,=&„, r,= (7„v„—v„p„)/(2i),
(2.5b)

~4 VAJA ~5 +5) p.r tan8. r p . .r tan8;;r, (2.6a)

amplitudes has already been carried out, ' we quote
only the results in the following.

We first put

s= —(pt+ps)', t= (pt —qt)'.— (2.5c)

'M. L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys.
(New York) 2, 226 (1957).M. Cini, S. Fubini, and A. Stanghellini,
Phys. Rev. 114, 1633 (1959).H. P. Noyes and D. Y. Wong, Phys.
Rev. Letters 3, 191 (1959). Y. Hara and H. Miyazawa, Progr.
Theoret. Phys. (Kyoto) 23, 942 (1960). D. Amati, E. Leader,
and B. Vitale, Nuovo cimento 17, 68 (1960); 18, 409, 458 (1960).
M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and D. Y.
Wong, Phys. Rev. 120, 2250 (1960). See also S. Furuichi and S.
Machida, Nuovo cimento 19, 396 (1961); and Y. Hara (to be
published).

s M. Cini and S. Fubini, Ann. Phys. (New York) 10, 352 (1960).

u(p) and u(q) =ut(q)y4 are the free Dirac spinors nor-
malized as ug= i.

We write the E matrix given by (2.5) as a sum of the
partial-wave amplitudes, then we express the partial-
wave amplitudes in terms of a;(s, t) and b;(s, t) Since.
the decomposition of the S matrix into partial-wave

kg t, q =tanbp r, ~ cos eq +tan5qpr, p sin eq, (2.6b)

ts;+1, = tanb; 1,,' sin'e, '+tanb;+1, ; cos'e;, (2.6c)

m r = (tan8; ( r—tan8;+1, ;r) sin2e r (2.6d)

where 8;r denotes the singlet phase shift with angular
momentum j, 8&,;r denotes the triplet phase shift with
orbital angular momentum / and total angular mo-
mentum j, and e, denotes the mixing parameter. The
superscript I represents the total isotopic spin. The
phase shifts are the Blatt-Biedenharn phase shifts. Now
let the E matrix be written in the form (2.5) under the
temporary assumption that the nucleon with four-
momenta p& and q&, and the one with ps and qs are
distinguishable. Then, after the necessary symmetriza-

See, for example, P. Cziffra, University of California Radiation
Laboratory Report UCRL—9249, 1960 (unpublished).
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tion has been made, the k~'s are written as follows:

Srr (Ep/P) k,'
(2M'+P')a, r 2(M'+2P2)a +12(M2+P')a3, —2(3M'+2P')arP, 2a, r

+p'j(2j+1) '(a» 1 +4a3, 1 +as; 1 )+p'(j+1)(2j+1) '(a»+1+4a»+1 +as+1 ), (2.7a)
Srr(E„/p) k, ,'

= —(2M'+P') a1. —2 (M'+P') a2 —4M'a +2 (M'+P') a +P'a
+P'(j+1)(2j+1)-'(a»,'—2a», '+2a4, ,'—a», ')+P'j(2j+1)-'(a»+, '—2a»+, '+2a4, +,'—a»+, '), (2.7b)

163r(E /p)k, 1,,
=DE~+M)'+(E„M)'(2—j+1) ']( a1; 1

—a2, 1
—2a3, 1—r+a4; 11)

+2(2j+1)-'P'( a2,—1 +2a3j 1 +a4j 1 +a5j 1) +—2P2{ a» 1—L3—(2j+1) ']a»r —6/1 —(2j+1)—']a»r
E1 3(2j+1) 1]a4jr (2j+1) rasjr)+4j(j+1)(2j+1) 2(E M)

X (—a1,+1 —a2;+1 —2a»+1'+a4, +1 ), (2.7c)
163r(E3/p) k,-51,j'

= DE,+M)'+(E. M)'(2j—+1) ']( alj+1 —asj+1 2a3j+1 +a4j+1 )
+2(2j+1) 'p'(a—„+,' 2a3j—+1 a4j+1as'j+1 )+2P'(arj —L3+(2j+1) ']as; —6)1+(2j+1) ']as, r

51+3(2j+1) ']a4j +(2j+1) 'as )+4j (j+1)(2j+1) '(Eu M)'
X (—a». , —a2; 1 —2a3j 1 +a4j 1 )i (2.7d)

4 (E„/p)233

=Lj(j+1)]l(2j+1) '+2(asj 11—2a3j 1—a4j 1 a5j 11 2— a—sjr 12a—3,
'—6a4j'+2asjr

+a2j+1 2a3j+1 a4j+1 a5j+1 )+ (Ey M) (2J+1) (alj 1+a—2j 1+2a—3j 1 a4j 1—
a»+1 a2j+1 2asj+1 +a4j+1 )] (2 7e)

where

a," = d(cos8)Pj(cos8)a, Ls=4E ' t= —2p'(1 —cos8)],

(2.7f)
a,s(s, t) =a, (s,t) 3b;(s,t), —

a,'(s, t) =a, (s,t)+b, (s,t).

E„and p are, respectively, the energy and the momentum of either nucleon in the c.m. system. Of course, the k's
and m's are zero for the states forbidden by the Pauli principle.

III. DEFINITIONS OF THE ONE-PION-EXCHANGE AND TWO-PION-EXCHANGE PARTS OF THE 8 MATRIX

We adopt the Feynman-Dyson theory of the S matrix as the basis of our theory. We therefore suppose that the
S matrix under consideration is sum of the contributions of all connected Feynman graphs each of which has two
open nucleon polygons and no other external lines.

We define the one-pion-exchange part as the sum of contributions of all the Feynman graphs each of which con-
sists of two subgraphs connected by one pion line. Of course each of the two subgraphs has one open nucleon polygon
for any Feynman graph with nonvanishing contribution. Then the matrix element of E&, and hence that of E&,
is written as

&qr, q21~1 I P1,P2) = (qr, q21&1 I P1,P2) = (2~)'b'(Pr+P2 —
q1

—qs) M'(P1oP2oqroq») '"
X (1/2)L34(qr)G(t)3- 34(pr)]h&'( —t)L24(q2)G(t)3- u(p2)], (3.1)

where
t=-(P -q)'=-(P -q)'.

Here G(t) is the renormalized pion-nucleon vertex
function, and 61'(—t) is the renormalized pion yro-
pagator including all the radiative corrections.

We now replace G(t) by G(ps) =gas, and hp'( —t) by
h5( —t)=—(j42—t) ', where g is the renormalized pion-
nucleon coupling constant, and y is the observed mass
of the pion. It has been shown by Hoshizaki and

Machida' that this replacement is allowable in an ap-
proximation which neglects the exchange of three or
more pions. In fact, the matrix element (3.1) is essen-
tially an analytic function of t with a pole at t= p' and
a branch cut extending from 9p' to ~.The contribution
of the cut corresponds to an interaction with the range
shorter than (3j4) '. The above replacement therefore

1 N. Hoshizaki and S. Machida, Progr. Theoret. Phys. (Kyoto)
24, 1325 (1960).
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FIG. i. The irreduc-
ible graphs.

(a) (b)

retains only the contribution of the pole, neglecting the
contribution of the cut.

Comparing (3.1) with (2.5) after the above replace-
ment, we have for the a; and b; corresponding to the
one-pion-exchange part:

& (,~)=(g'!2)( '—~)
'
all the other a; and k;=0. (3.2)

FIG. 2. Series representation of the two-pion-exchange
part of the nucleon-nucleon S matrix.

We now proceed to the two-pion-exchange part. We
first de6ne a two-pion-exchange graph as follows:
Consider a connected Feynman graph which has two
open nucleon polygons and no other external lines. We
refer to this graph as a two-pion-exchange graph when
it can be divided by opening two pion lines into two
connected subgraphs each of which has one of the open
nucleon polygons, but it cannot be divided in such a
way by opening one-pion line. The two-pion-exchange
part of the 5 matrix is defined as the sum of contribu-
tions of all the two-pion-exchange graphs.

It is convenient to introduce the irreducible sub-
graphs before we proceed further. Consider a connected
graph of the type of Fig. 1(a). We call this graph
irreducible wh'en it cannot be divided by opening one
or two internal pion lines into two connected portions
one of which has the external nucleon lines p and q,
and the other has the external pion lines k» and k2.
Similarly, for a connected graph of the type of Fig.
1(b), we call this graph irreducible when it cannot be
divided by opening one or two internal pion lines into
two portions, one of which has the external pion lines k»

and k2, and the other has the external pion lines k3
and k4. We denote the sum of contributions of all the

~ ~ ~ ~ ~+

FIG. 3. Series representation of the two-pion Green's function.

irreducible graphs of the type of Fig. 1(a) LFig. 1(b)j
by T(q, k, ; p,k,) LX(k,,k, ; k,,k4)j. In this statement the
irreducible graph really means that part of the graph
which does not contain the external lines. In counting
up the diferent irreducible graphs, the labeling of the
external pion lines should be included in the feature
of the graph.

Any two-pion-exchange graph consists of a certain
number of the irreducible subgraphs in the manner
shown by Fig. 2. Correspondingly the two-pion-
exchange part of the S matrix is written as a series in
which each term is the sum of contributions of all the
two-pion-exchange graphs consisting of a definite
number of irreducible subgraphs. This series is graphi-
cally represented by Fig. 2. Summation of this series
reduces to the summation of another series which is
graphically represented by Fig. 3. We denote the sum
of the latter series by G(k&,k&, kp, k4). It is evident from
Fig. 3 that 6 obeys the integral equation

G(k&)kp', kp, k4) =X(k&,kp) kp)k4) —44(24r) ' d'k&'d'kp' 8'(k&+kp kg kp')

XX(kg,kpikg', kp)AP (k$ )Ag'(kp )G(kg Ikp jkp, k4). (3.3)

6 is the two-pion Green s function, and it becomes the scattering amplitude for pion-pion scattering when all the
four-momenta carried by the external lines are on the mass shell. It satisfies the crossing symmetry owing to the
definition of X. Carrying out the summation of the series represented by Fig. 2 with the aid of G, we have the
following expression for the two-pion-exchange part of the R matrix:

RP=EQ"&+EQ& &, (3.4a)

(qy, qp~zp"'~ py, pp)=Q(1/4)b'(py+pp —
qy

—qp)M'(pypppQqypqpp)
'" d'kid'kp h'(py+ky —

qy
—kp)

&&Le(q&)T(q&,k&, P&,k&)44(P&)1hz'(k&')5p'(k&')Lu(qp)T(q&, k&,'P&,k&)N(PQ)], (3.4b)
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(ql, q2~ &2"
~ pl, p2) = (22r) 'I'(pl+p2 —ql —q2)M'(plppppqlpqsp) '" d'kid'ksd'kl'd'k2' &'(pl+kl —

q
—k2)

XI'(p2+k2' —
q2

—kl')(u(ql)T(ql, k2, pl, kl)N(pl)76&'(kl')h2'(k2')G(kl, —k2, kl', —kl')

X62'(kl")A2'(k2")Lu(qp) T(q2 kl p2 k2 )tl(p2)7. (3 4c)

Now, owing to Lorentz invariance and charge independence, T can be written in the following form (here we

write the charge indices explicitly):

Tp~(q&kp) p, kl) =iIp~T'+'(q, k2, plkl)+ (1/2) fop, r~]T' '(q, k2, p, kl),

(q k2 p kl) A (q k2 p kl)+ (i/2)V(kl+k2)B ('q k2 p kl)

(3.5a)

(3.5b)

where A&+' and B&+& are the functions of the scalar products formed by kl, k2, P, and q. We try to express T in
terms of the quantities related to pion-nucleon scattering. For this purpose, we consider the quantity defined by

T (qp2i pykl) T(q)k2 j pykl) 42(22r) d kl d k2 I (p+kl q k2 )

X T( pq k2,
'
p,kl')Ap'(kl")42''(k2")G(kl') —k2', kl) —k2). (3.6)

This reduces to the pion-nucleon scattering amplitude when k~ and k2 are on the mass shell. Therefore, if A '+)

and B(+",respectively, denote the quantities corresponding to A (+) and 8(+) in the expression of T' corresponding
to (3.5), they can be written in the following dispersion form

A'+I'(q k p kl) =rr ' dW' ImA'+"(W' t)($(P+k )'+W' —ie] '&L(P—k2)'+W' —ie]—') (3 7a)
(M+v) '

(q,k2 p kl) g2{((p+k )2+~2 2e]—1&L(p k2)2+~2 2e]
—1)

dw' ImB&+"(w' f)($(p+kl)'+w' —ie] 'w$(p —k )'+w' ie7 '—} (3./b)

with

(p q)'= (kl k2)'

provided that k '=k2'= —fl' Here ImA&+&'(Ws, f) and
ImB&+"(W', 1) are the imaginary parts of A&+~' and
8(+&' for the total c.m. energy W and the squared mo-
mentum transfer —t. Owing to unitarity, they can be
expressed as the sum of contributions of the relevant
intermediate states. Let ImA, ~(+' and ImB,~(+& denote
those parts of ImA(+)' and ImB(+&' which are con-
tributed by the intermediate states consisting only of
one nucleon and one pion, and consider the quantities
which are obtained from (3.7) by replacing ImA&+"
and ImB(+&' by ImA, &(+' and ImB,&(+&. Then we see
that these quantities are not contributed by the second

term in the right-hand side of (3.6), and therefore they
are entirely included by A(+& and 8(+~, because the
second term in the right-hand side of (3.6) is contrib-
uted by only the graphs in which any intermediate
state for the channel of pion-nucleon scattering in-
volves at least one nucleon and two pions. This is
illustrated by Fig. 4.' Of course A(+) and 8(+& contain
the other contributions, for example, those correspond-

ing to the graph in Fig. 5. We neglect these contribu-

tions because the inelastic cross section for the pion-

nucleon scattering seems to be mainly due to the
pion-pion interaction, ' and we have already taken this

FIG. 4. The graph
with the lowest-mass
intermediate state
which contributes to
the second term in
the right-hand side
of (3.6).

I
I
II

I I
I I
I I
~ I

,
«'kg Fro. 5. An ex-

ample of a graph
with an inelastic ab-
sorptive part which
contributes to T(q,
kr, P,k&).

Q. F. Chew, M. L. Goldberger, F. E. Low, and V. Nambu,
Phys. Rev. 106, 1337 (1957).

In this connection, see also M. Cini and S. Fubini, reference 5.
"W. A. Perkins, J. C. Caris, R. W. Kenney, E. A. Knapp, and

V. Perez-Mendez, Phys. Rev. Letters 3, 56 (1959).L. S. Rodberg,
Phys. Rev. Letters 3, 58 (1959).
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interaction into account in (3.4). We therefore put

A'+&(q, k2, p, k1) =2r ' dW'Imd &+&(W2 t){L(p+k )'+W' —se) 'aL(p —k )'+W' —se) ') (3 8a)
(~+tt) '

8'+'(V k2' P k ) =g'{L(P+kt)2+~' —se] '~L(p —k )'+ilf' —sej '}

dW'Im8, 1&+'(W',t){L(p+k )'+W' —sej '~[(p—k )'+W' —seh '). (3.8b)

The right-hand sides of (3.8) are the values of the actual
A&+~ and 8&+& at k~2 ——k2~= —p'. W'e nevertheless use
(3.8) in evaluating the integrals in (3.4) where the
regions of integration extend off the mass shell, because,
owing to the pion propagators in the integrands, the
values of T on the mass shell will give the most im-
portant contributions to the integrals. It seems prob-
able that the differences between the actual A (+& and
81+~ and the right-hand sides of (3.8) are appreciable
only when the —k,s are close to or greater than (3t4)2,
and therefore these differences represent a short-range
interaction which is beyond the scope of the present
paper.

In (3.4) we replace 63'(ks) by 63 (k2) = (k2+t42 se) —',
because the radiative correction can be written as a
superposition of the propagators with masses not smaller
than 3p, so that the inclusion of it corresponds to calcu-
lating contributions of the exchange of four or more
pions.

Finally we calculate the two-pion Green's function G.
Writing the charge indices of pions explicitly, we can
write 6 and X in terms of their diagonal elements with
respect to the isotopic spin as follows

2

G(kt(r k2p ksy k46) =p P p, 3 Gz(kt, ks ', ks, k4), (3.9a)

and are given by

I'-e.vs'= (1/3)~-e~vs
'= (1/2) (8 8 —8 8 ),

I'-es'= , (1/2) (~«.43+~-34m) I'-—ebs' , ~

Using (3.9), we have from (3.3) the integral equations
for Gz which are of the same form as (3.3) except that
X is replaced by Xz there. In order to solve these equa-
tions, we have to specify the kernels XI. Now from the
definition of X we find that X has the following sym-
metry property

X(klrr k2p ks7 k4~) X(k2p klzr ks'y, k4~)

=X(—k37, —k45; —ktn, —ksp).

It follows from this that

Xz(kt, ks', k3)k4) = (—1) Xz(ks, kt,' k3)k4)
= Xz (—k3 k4 kt k2). (3.10)

As the simplest ansatz to satisfy (3.10), we put

Xp(kt, ks, ks, k4) = —5)1p,
(3.11)

X1(ktik2 i k3gk4) = —(3)tt/2t4') (k1—k2) (ks—k4).

Solving the integral equations with these kernels is to
calculate Gz by the so-called chain approximation. This
has been done by Miyamoto. "The results are written as

I=O

Gp(kt, ks, ks, k4) =42rfp(t), (3.12a)

X(ktzr, ksp i ksy, k4&) =Q I'~e, ,s Xz(kt, ks, ks)k4), (3.9b) Gt(kt)ks i ks)k4) = 32rt4 '(k1—k2) (k3 k4) f1(t), (3—.12b)

where
t = —(k1+k2)'= —(ks+k4)',where I' p, ~q~ are the projection operators to the eigen-

states of the total isotopic spin with the eigenvalue I, and, for t(0, fz(t) are given by

(3.13a)

5 pt 4t 2~'
t t —'*

jz
—ty''l

f1(t)= —+ In—+—2/ /» 11— +I I I
~j E 4t42 ~4t4'J )

(3.13b)

Lambda in (3.13b) is the cutoff momentum. For t)4ps,
fz(t) are given by the analytic continuations of (3.13).
On the other hand, for t)4t42, f,(t) and f, (t) are found
to be the partial-wave amplitudes for the pion-pion
scattering for the states I=J=O and I=J= j,, re-
spectively, and they are expressed in terms of the re-

spective phase shifts go and g~ as follows

fp(t) = tl(t —4t42) 'e'"' sintlp, (3.14a)

f1(t)=4t4't'(t —4p, ') le'» sintl 1. (3.14b)
"Y. Miyamoto, Progr. Theoret. Phys. (Kyoto) 24, 840 (1960).

See also S, Okubo, Phys, Rev. 118, 357 (1960).
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Comparing the analytic continuations of (3.13) with
(3.14), we find that ar in (3.13) are just the scattering
lengths. It has been shown by Miyamoto" that fi(t)
defined by (3.13b) gives a resonance in the p-wave
pion-pion scattering, and that we can make the position
and width of the resonance close to those which are
required to fit the data of the electromagnetic form
factors of nucleon by a reasonable choice of the values
of a~ and A.

In later calculations, however, we do not use the
explicit forms of the solutions obtained here. In calcu-
lating the contributions of the p wave pion-pion inter-
action, we will replace the relevant quantities and

expressions by some phenomenological parameters, and
try to use the experimental information as much as
possible. As for the s-wave pion-pion interaction, we
will replace fs(t) by a constant, because we are not sure
that the solution (3.13a) correctly represents the
matter.

IV. TWO-PION-EXCHANGE PART NOT INCLUD ING
CONTRIBUTIONS OF THE PION-PION

INTERACTION

In this section we calculate the matrix element given
by (3.4b). Using (3.5), with (3.8) for A l+& and Bi+&,
we can rewrite (3.4b) as

(ql qs I
&0 I P&~Ps)

=i(2m') '8'(pi+ps —qi —qs)M'(plspssqlsq20) dW1 dW2 d kid ks g'(pl+kl ql ks)

X (k '+ '— ) '(k '+ '— ) '{[(P+k )'+W '—'
7 '[(P —k )'+W '—'

7 '

X[3u(qr)F + pV& )t) —ki —ks)u(pi)u(qs)F + (Ws, t, ki+ks)u(ps)

—2u(qi)F' '(Wi, t, ki —ks)7—au(P1)u(qs)F (Ws, t, ki+ks)r~u(Ps)7

+[(pi—ks)s+Wis —ie7 '[(ps —k,)'+Wss —ie7 '[3u(qi)F&+&(Wis, t, ki+ks)u(pi)

Xu(qs)F'+'(Ws t kl+ks)u(Ps)+2u(qi)F (Wi t ki+ks)r&u(Pi)u(qs)F (Ws t kl+ks)rau(Ps)7} (4 1a)

with the abbreviations
F"'(W', t (&) = U"' (W', t)+ ( /2) (vQ) V"' (W', t),

where U ~+) and V {'+' are de6ned by

U'+' (W' t) = ImA. &'+& (W', t) for W') (M+p)
for W'( (M+tr)',=0

7

V + (W' t) = erg'8(W' —M')+1mB.&i+& (W' t) for W') (M+~)'
= rrg'8 (W' —Ms) for W' ( (M+ti)s

(4.1b)

(4.2a)

(4.2b)

The integrals over ki and ks in (4.1) essentially correspond to the Feynman graphs in Fig. 6. Using Feynman s
method, we transform these integrals into parameter integrals. Then the matrix element of Es&0& (Hermitian part
of Rsl'&) can be written in the form of (2.5a), and the resulting a, and b; are found to be as follows

—;Gi(s,t)

bi(s, t)
= (2~)

—4 dW ' dWs'{ —U'+' (Wis, t) U'+& (Wss t)Eii'+'(Wis, Ws', s t)+ U&+& (W ', t) V&+& (Wss t) (SM)—'

X [(2s+t+4Ms)Essl+& (Wis, Wss, s,t)+ (2s+t 12Ms)Ess&+& pVis—,Wss, s,t)7

—Vl+& (W ', t) V&+& (W ',t) (16) '[(2s+t)E4sl+& (Wrs, Wss, s,t)

+ (2s+t—SM')E04&+& (Wis, Wss s t)7} (4 3a)

W) Wp W( ~:, Wg

FiG. 6. The graphs corresponding to the integrals in (4.1).



—;a,(s,t)

b2(s, t)

;u3(s—,t)

b3(s, t)

—;a4(s,t)

b4(s, t)

bs(s, t)

SCATTF RI NCALCULATION OF e —n SHEORETI CAL CAF I EL D —TH E

(+) O''8'' U&+ (W&, )dS'1' dS'2

's, t &+' W' W22, s, t)16 'LSE '+'(Wp, W2', s)t+V(+(~& (W ' t) V'+'(W22, t) (16) 00
' ' s,t)—(2s+ t)E4&)

—M' E54&+& (WP, Wz', s,t)],+(2s+t 8M—
00 00

&+& Wp t) V&+&(W22,t)(16M)—'t= (2z)—' dWP —U (dWp dW2

V&+& (W2', t) (t/32)

45

dWp V &+& (Wp, t) V&+& (W22, t) (t= (2z.) 4 dW'P dWPV
0 ' s t +Ez4&+&(WP, WP, s,tXL

—E4g&+& (WP,WP, s,t

dWP dWP{U (W, ,

(+&(W ' t) V&+& (WP, t) (16)-'2 2 s t y(y)

4.3e))($(2s+t)E4((+& (WP, WP, s,t s

' t V&+&(WP t)(8M) (2s+-t 4M')—=(2x) '

( g , z')s, t)]&+& W'W's)t)+K32
00

't V'+'(W ')t)(M/2)PE» & ) 2, )
= (2n.)-'

with the abbreviations

'st1)m ')) ( ', )'&I (& & (W 2=I (2&(WP, WP,s, t)W — ' ';' '
2 s,t,'8''st =E;;&+ (Wg,

1 which are given bymeter integras w i~I (" are the parame w iwhere I;("an

(4.3f)

1 1

—)D& &(x,y,s,W&, 'st'st = dx yd dz s(1—sIo& &(Wy, Wz, ,

~

~ ~ ~'W'st) ', (i=1, , 5,s)D&~&(x y s W&,W2, s, , 5,d dy dks(1 —s)f, y,s'st = dx y

(4.4a)

)I;& &(Wg,W2, ,

) — s = — 4,s) = s', f);(y,s) = (2y —1 'z',

)M2+ WP+ (

'+ sWP+(1 —y)sWP.

(4.4b)

with

(4.4c)

(4.4d)D (

(1—x)(1—s) t+y( yD&'&(x,y, z,W&, W2, ,'st)= —x —x

he p 2 Since D& has z p2 inc " zero oints inhe p 6 1) and 2 . inc
1

'
l

'
el correspond to the g p 2 incnd I,",respective y,he integrals I, ' an

t e
n

'
1 calculations o

'
nt for numericaIt is convenien

I;& & (WP, WP, s,t) =

d ) e immediately haveThen, from (4.4a, d, e
'

d e we'

~ p, (a& (W 2 2 s t))

t' —t
(4.5)

1 1 1

'stdk s(1—s)b D&N& (x y,s,W&, (4.6)po ', ' s t) = e(~&(t) dx dy

ll We n

po(~& (WP, W2, s, = x d

ll . We find that, for poyt y
hi }1 o oo 1

0

o 1 M
ri

S' h
d side of 4. e o wo

hi h rt
0&'& is found to e no oi

' .5 we drop this term. po
n from the region t'(—

wav
'

anti . Thus we can re 1 hlwaves significantly.
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are given by
po&'(WP, W22, s,t) =oo~'(WP, W2', s,t)+o0''(W2', Wq', s, t),

tissu—

ao'" (W. P W2', s, t)

(4M2 —t) «D (W 2 t)$ (W W ) (4M t)j tan D4M2 t)»(t 4p )«f (W t)

(4.7a)

—(t—4p') —
»«(Wp, Wp, s,t)»(1/2) ln

$(t 4p )+—(Wp —W )f'(W )t)+«(W W2 p, t)»

$(t—4p')+ (WP —W ')l (WP, t) «(W—' W ',s)t)

when «(WP, W 2s,t))0, (4.7b)—t»sua p"' (WP, W2', s, t)

= (4M2 —t)
—

»Li (W ' t)$—(W '—W ') (4M' —t)j tan 'L(4M' —t)»(t—4y') 'f (W '$t) 'j
$(t 4p2) + (W12 W22)l. (Wp t)—(t—4&2)-»L—«(WP Wg, s,t) )-: tan-'

$—«(WP, WP, s,t))»
when «(WP, W22, s,t) &0,

t»suo0 "—& (Wp, W22 s,t)

= (4M2 —t)-»(t-(W 2 t)u —(W —W ')(4M' —t)1 tan-'L(4M' —t) (t—4t ')»t (Wp, t)-'$

+ (t—4p') —
»$«(Wp Wp, s, t)»(1/2) ln

—t»su~a &'& (WP, W22, s,t)

u(t —4~2) —(Wp —W22) f (Wp, t)+g (Wp, W2', s,t)»

„(t 4u2) (Wp —W22)l (Wp, t) —g(Wp Wm, s,t)»

when g(WP, W2', s,t))0, (4.7c)

(4M2 t)
—

»t g(W 2 t)u (W 2 W ~)(4M~ t)) tan —
&L(4M —t)»(t —4p')»l (W ')t) 'j

+ (t—4p&)
—l$—g(Wp W,',s,t)j' tan '

—u(t —4« ') —(WP —W ')f(W, t)

$—g(Wp W2' s t)$
when q(WP, W2', s,t) &0,

«(W 2 W a s t) $(t 4ti&)( ($+2«12—2M2 —Wp —W2 )'+u[s —2Wp —2W2 + (Wp —Wp)'s 'j)
~

„(W 2 W ~ s t) u(t 4&&)( {u+2&2 2M& —Wp —Wp)'—+$Lu 2W '——2W2'+ (Wp —W2')'u '3)

1 (W2 t) = t+2W2 —2M2 —2p' u= 4M' —s—t.

The weight functions for t) 4M' do not contribute to the higher partial waves. It is evident from (4.4) that
i=1,5) can be obtained as appropriate combinations of the derivatives of po& & with respect to s, u', M',

W'&', and 5'2'.
trodu g (4 5) nto (4 3) we wr te, a d b; in the similar dispe io f» . »t oduc g t"em n«(2 7)

can write k, , k~;, and m, as linear combinations of the integrals of the form

d (cos8)I'; (cos8)
p(s, t')dt' 1 "

p t
~

p(s, t)Q;i 1+ ddt,
4„2 t'+2p (1—cose) p' 4„~ k 2P')

(4.8)

where Q; is the Legendre function of the second kind.
U{+) and V&+& can be expressed in terms of the renormalized coupling constant and the partial-wave amplitudes

for the elastic pion-nucleon scattering. We retain only the 3-3 amplitude in ImA, ~(+~ and ImB,~{+&, and make the
narrow-resonance approximation to the 3-3 amplitude. Then U~+& and V&+~ can be written in the following form

U'+'(W' t) = —2U' '(W' t) =7rJtlg'h(W' —WF')(ny+n2p, 't),

P'(+) (W2 t) —~g2$(W2 M2) g(W2 W 2) (P P ~ 2t)j-
V& '(W', t) =sg'Lb(W' —M')+ (1/2)b(W2 —W ') (P —Pgp

—2t)j.
We take as the value of W,

W„=M+2@.

Then the numerical values of n; and P; are found to be

eg= 3.02, n2 ——0.147, pg= 1.12) p2 ——0.0095.

(4.9a)

(4.9b)

(4.9c)

(4.10)
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V. CONTRIBUTION OF THE PION-PION INTERACTION

136i

In this section we calculate the matrix element (3.4c). Substituting (3.5a) and (3.9a) into (3.4c), and using
(3.12), we have

(qt, qs I
~s'"' IPi,Ps)

(w) —g (x0)+g (wl) (S.ia)

= 6(2&) 't& (pi+ps —qt —qs) jif'(piopsoqioqso) '"fo(t) d kid ks 64(pt+ki qi —ks) —(kit+a' ie)—'

X(ks'+ts' —ie) 'Lu(qr)T(+)(qi, ks, pi, ki)u(pi)) d'ki'd'ks' 6'(ps+ k)' q—s k—s')(ki"+p' ,ie—) '

X (k,"+t('—ie)-'Lu(qs) T(+& (q, ,k,'; ps, k,')u(ps)), (5.1b)
(qt, qsl&s'"'I pi Ps)

= (2or) t) (pi+ps qi qs)~ (piopsoqioqao) ' 3s'&a fi(t) d kid ksd ki'd ks' (ki+ks) ' (ki'+ks')

Xl)'(pi+ki —qi —ks) (ki'+t(' —ie)-'(ks'+ts' —ie)-'Lu(qr) (1/2)Lrt&, r~) T'-& (qi, ks, pi, ki)u(pi))

Xi&'(Ps+ks' —
qs

—ki')(kr"+&a' —se) '(ks' +t(' —ze) 'Lu(qs)(1/2)Lr~, tp)T( )(qs, kr', Ps, ks')u(Ps)). (5.1c)

We first calculate (5.1b) which is the contribution of the pion-pion interaction in the I=1=0 state. Substituting
(3.5b) into (5.1b), with (3.8) for A(+) and B(+), and transforming the integrals which arise into parameter inte-
grals, we can write (qi, qs l

Es( '&
l pi, ps), where Es(~) is the Hermitian part of Rs( '&, in the form of (2.5), and find

that the resulting u; and b; are zero except u& and that u& is given by

00 1 1

ai(s, t) = —(3/or) (2s) 4fo(t) dWs dy ds sl —U(+) (W', t)+ (1—s)M V(+) (Ws,t))

XLsts'+ (1—s)W' —s(1—s)~'—y (1—y)s't) ' . (5.2)

We now proceed to the calculation of the matrix element given by (S.ic) which is the contribution of the pion-
pion interaction in the I=7= 1 state. If we substitute (35b) into (51c),with (38) for A (+& and 8 (+', we encounter
divergent integrals. Therefore the result of the calculation will not be reliable. Such a calculation has been made by
Fujii."He first wrote the integrals in the dispersion form, and then cut them off at the threshold for the nucleon-
antinucleon pair formation, as suggested by a unitarity argument. He has, however, noticed that his results are
not completely satisfactory. %e try to avoid the difFiculty by introducing information from other experiments.
Recently Sowcock et a/."have tried to explain the data for the low-energy pion-nucleon scattering and the electro-
magnetic form factors of the nucleon simultaneously by introducing terms representing the pion-pion resonance
in the dispersion relations for the pion-nucleon scattering. They expressed these terms in terms of some phe-
nomenological parameters. We try to express our matrix element in terms of the same parameters. For this purpose
we consider the pion-nucleon amplitude given by (3.6). If G is replaced by (3.9a) with (3.12), and only the part
with I= 1 is retained, (3.6) becomes

Tp~'(q, ks) P,ki) =Tp~(q, ks, Piki) —4s(2s) 3sti—'fi(t) d'ki'd'ks'(ki+ks) (ki'+ks')

X(&'(p+kt' —
q
—ks')(kr's+t(' —ss) '(ks"+ti' —ss) '(1/2)Let&, r~)T' )(q,ks'i p)kt'). (5.3)

Following Bowcock et u/. , we make the narrow-resonance approximation to the pion-pion scattering amplitude.
Then we have, for t&4p2,

(5.4)

where t„ is the square of the total energy at the resonance, and p is the width of the resonance. Equation (5.4)
has been derived by using the dispersion relation for fi(t) inferred from the expression (3.13b). If we use the p-
meson theory of Itabashi et al.'4 to calculate fi(t), we obtain the same result.

's Y. Pujii, Progr. Theoret. Phys. (Kyoto) 25, 441 (1961).
'o J.Bowcock, W. N. Cottingham, and D. Luri6, Nuovo cimento 16, 918 (1960); 19, 142 (1961)."K. Itabashi, M. Kato, K. Nakagawa, and C&. Takeda, Progr. Theoret. Phys. (Kyoto) 24, 529 (1960).
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Bowcock et al. wrote the pion-nucleon scattering amplitude in the following form

Ts '(qks, p,kt) = Tp (qks, p kt) —(1j2)Lrps ]6s(t„—t)
—'fCs(p+q). (kt+ks)+iy (kt+ks) (Ct+2MCs) j, (5.5)

where Cr and Cs are adjustable parameters. Comparing (5.3) with (5.5), and taking account of (5.4), we have

r14ktrf4ks p(p+kr q
—ks) —(kt+ks)„(kts++ —ie) (ks +p, —ie) T& & (qIks, p,kt)

= —i(2~)'PsV '1. '"LCs(p+q)s+iVs(C&+2MCs))
Inserting (5.6) into (5.1c), we have

(qr qsl ~s'"&
I pt ps)

(qlyqs ( Ks
~ pl)ps) (2&) ~ (pl+ps ql qs)M (plspssqlsqm) 3''p 'y 1 (1 1)

Xu(qt)LCs(pt+qt)„+i&„(C&+2MCs)jr„u(pt)t2(qs)LCs(ps+qs)„+i&„(Ct+2MCs)]r. u(ps). (5.7)

We can readily rewrite this in the form of (2.5), and
find that

a, (s,1)=0, i=1, ",5,

br(s, t) =g(t)(2M) '(2s+t —4M')Cs(C&+4MCs),

bs (s)1)=g (t) (Ct+ 2MCs) (Ct+4MCs),

bs(s, &) = —g(t)t(4M) 'Cs(C&+2MCs),

b4(s, t)=0,

bs(s, &) =g(t) (2M) '(2s+t —4M')Cs(C&+2MCs),

where

(5.8a)

Cg ———1.0. (5.9c)

The value of t, in (5.9a) is considerably smaller than
that which has been found from the analyses of inelastic
pion-nucleon scattering. " In the present work, how-

ever, we are concerned with the region t (0, which is
the unphysical region for pion-pion scattering, as in the
case of form factors. Also we have adopted the approxi-
mation (5.4) which fit the data of form factors with the
value (5.9a); we therefore take (5.9a).

VL NUMERICAL RESULTS FOR THE 310-MeV
P-P SCATTERING AND DISCUSSION

In this section we compute the phase shifts for the
proton-proton scattering at 310-MeV laboratory kinetic

'~ J. A. Anderson, Vo X. Bang, P. G. Burke, D. D. Carmony,
and N. Schmitz, Phys. Rev. Letters 6, 365 (1961).D. Stonehill,
C. Baltay, H. Courant, W. Fickinger, E. C. Fowler, H. Kraybill,
J. Sandweiss, J. Sandford, and H. Taft, Phys. Rev. Letters 6, 624
{1961).A. R. Erwin, R. March, W. D. Walker, and E. West,
Phys. Rev. Letters 6, 628 {1961).

g(1)= 3rrp'y 't, "'(1, I) ' ——
(.5.8b)

The values of the parameters C~, C2, t„and y have
been determined by Bowcock et al. as follows: From
the comparison of the isovector electric form factor
with experiments, one has

t„=22.4&a', C&1&,'y 't, 'I'= —0.6. (5.9a)

From the fact that the isovector magnetic form factor
has the same form as the electric form factor, one has

MC2 = 1.85Ci. (5.9b)

From the low-energy pion-nucleon scattering, one has

energy by the method described in the preceding
sections.

In the preceding sections we have expressed the total
E matrix as a sum of the one-pion-exchange contribu-
tion E~ and the two-pion-exchange contribution E2. E2
has been divided into three parts: E2"), E2' '&, and
E2& ", where E2(" was the part not containing explicit
effects of the pion-pion interaction, and E2& p& and
E2( "were the parts coming from the pion-pion inter-
actions in the I=J=0 state and I=J= 1 state, re-
spectively. Here we further divide E2& ~ into two terms
E2' ' and E2'~), where E2& ' is that part of E2"
which is obtained by the renormalized fourth-order
perturbation theory, and E2&~~ is the correction to it
due to the 3-3 resonance. Therefore E2& ) is defined as
that part of Ks&s& which is obtained from (4.1) by
putting

U&+& (W', t) =0, U&+& (IUs, 1)=sg'b($" —M'),

and E~'~' is defined by E2& '=E2&"—E2& '. Thus we

have
K=K&+Ks'~&+Ks'"&+K.&~"+Ks'~&. (6.1)

We tabulate in Table I contributions of the terms in
the right-hand side of (6.1) to the partial-wave ampli-
tudes k;, k~;, and m; which were defined in terms of
nuclear Blatt-Biedenharn phase shifts by (2.6). The
columns 1, 28, 2R, w1, and ~ correspond, respectively,
to E~ E2' ) E~(~), E2&~'~, and E2~~~. The figures in
the columns 1, 28, and 2E have been obtained by
taking gs/kr = 14.4. In computing the columns 28 and
2R, we have cut off the integrals of the type (4.8) at
t=132p ssince a table of the functions Q; was not
available beyond this value. This cutoff affects only kp,

hap, k~~, and k~2, and therefore does not acct the phase
shifts for /~2. In calculating the contributions of
Ks&~&, we have treated the function f~(1), the pion-
pion scattering amplitude in the I=J=O state, as a
constant for the reason mentioned in Sec. 1. Moreover
we evaluated the integral appearing in (5.2) in a very
crude approximation, so that the results in the column
~p should not be taken seriously. The figures in this
column are probably too large, in particular, for higher
partial waves. We should have cut oG the integral in
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(5.2) after writing it in the dispersion form, in order to
ensure the unitarity for the channel tt+n —+2pr in
the S state. "

We see from Table I, 28 that the fourth-order per-
turbation theory gives a strong attractive force in the
singlet even and triplet odd states. Such an attractive
force has been derived by the present author previously
In a calculation of a semistatic potential. "That calcu-
iation shows that the attractive force is a nonstatic
effect and it disappears in the static limit. The column
2R shows that the effect of the 3-3 resonance strengthens
the attraction for the states other than S and I' states.
The column m1 shows that the pion-pion resonance in
the I=J=1 state gives a strongly repulsive central
force. It also gives an attractive LS force. This is seen
from the fact that k~, ~+~&k~, ~&k~, ~ ~. These features
are also observed in the Fujii's results. "The pion-pion
interaction in the I=J=O state gives a simple central
force as is seen from the column mO. This force is
attractive or repulsive according to whether fo is
positive or negative.

In Table II we tabulate the phase shifts for l&2
calculated from the values in Table I, together with the
phenomenological phase shifts. The columns 1, 1+28,
1+28+28, and 1+28+2R+rr1 correspond to Kr,
Kt+Ko' 'Kt+Ks& 'yKs&"' and Kt+Ks' '/Ks' '

+K&& '&, respectively. In the columns CMMS and
MMS we list the results of the phase-shift analyses
made by Cziffra et al."and MacGregor et c/. ' respec-
tively. In the CMMS analysis phase shifts for the
partial waves up through H waves are taken as ad-
justable phase shifts, and all the partial-wave ampli-
tudes beyond II waves are replaced by one-pion-
exchange contributions. On the other hand, in the
MMS analysis phase shifts up through F phase shifts

2B

kp —1.1993 19.1g3
kg 0.0428 0.5454
k4 0.0160 0.0410
k6 0.0065 0.0046

2R

—8.1504
0.7057
0.0184
0.0014

—39.809—0.9875—0.0328—0.0012

7rO

165.1 fp

89.9 fp

298 fo
10.2 fp

k11 —0.6374 2.7313 —1.9816
k33 —0.0825 0.1345 0.2340
k55 —0.0229 0.0130 0.0045

—6.9924—0.1936—0.0067

130.6 fp

518 fp
169 fo

kto 1 1993 2 2617 —4 1281 —9 0790 128 6 fo

k12 0.0973 2.6488 —1.0692
k32 0.0506 0.0614 0.3107
m2 —0.2287 0.0546 0.0517

—5.4808—0.2262
0.0729

134.5 fp

49.8 fp—0.05 fp

k34 0.0161 0.1401
k54 0.0096 0.0085
m4 —0.0574 0.0022

0.0767
0.0037
0.0015

—0.1640—0.0078
0.0021

54.5 fp

162 fp—0.01 fp

kpp 0.0041 0.0137 0.0043 —0.0058 17.8 fp
k76 0.0026 0.0012 0.0004 —0.0003 6.6 fp

m6 —0.0198 0.00018 0.0001 0.00007 —0.003 fp

are taken as adjustable ones, all the partial-wave
amplitudes beyond Ii waves being replaced by one-
pion-exchange contributions. In view of the fact that
our results for 6 and II phase shifts appreciably differ
from the one-pion-exchange contributions, and that
CMMS results have been obtained by taking the same
value of the pion-nucleon coupling constant as ours,

TAsLE I. One-pion-exchange and two-pion-exchange contribu-
tions to the partial-wave amplitudes. k, , k~;, and m~ in the first
column are the partial-wave amplitudes dehned by (2.6) in the
text. Column 1 is the one-pion-exchange contribution. Column 2B
is that part of the two-pion-exchange contribution which does not
contain effects of 3-3 resonance and pion-pion interaction.
Columns 2R, ~1, and 21.0 are corrections to the two-pion-exchange
contribution due to 3-3 resonance, pion-pion interaction in theI=J= 1 state, and that in the I=J=0 state, respectively.

TAmE II. Calculated phase shifts for l & 2 in comparison with the phenomenological phase shifts. The second to fifth columns are
results of the present theory. 1, 28, 2R, and 71-1 in the captions of these columns correspond to those in Table I. CMMS, MMS, and H
are sets of the phenomenological phase shifts given by Cziffra et al (reference 18)., MacGregor et al (reference 1.9), and Hamada (refer-
ence 20), respectively. Entries are nuclear bar phase shifts in degrees.

1+28 CMMS
1+2B 1+28+2R +2R+mi Set 1 Set 2 Solution 1

MMS
Solution 2

1D
IQ
'I6

2.45
0.92
0.37

30.47
3.26
0.64

52.30
4.31
0.72

17.04 12.1 4.4 11.87~0.49
2.44 1.2 1.1 0.77
0.65

4.78+0.54
0.85

13.06
1.20
0.11

3p~
3P
3P4

3II'4

3H5
3II6

C4

2.82—4.72
0.92

0.55
1031
0.24

—1.64—0.57

6.25
2.98
8.88

1.03—0.57
1.02

—1.56—0.56

22.83
15.96
13.11

1.24—0.31
1.27

—1.50—0.56

11.12
5.2g
3.94

0.80—0.69
0.94

—1.47—0.56

1.3—4.6
3.2

1.7—0.4
1.2

0,1—0.5
2.9

2.4—1.5
1.4

—1.7

1.21+0.70—3.53&0.66
3.54~0.35

0.49—1.12
0.21

—1.40

—0.49+0.89—0.03&0.39
3.33&0.56

0.54—1.24
0.23

—1.55

0.54—3.61
3.35

0.55—1.09
0.11

—1.52—0.57

' P. I'ederbush, M. L. Goldberger, and S. B. Treiman, Phys. Rev. 112, 642 (1958)."I. Sato, Progr. Theoret. Phys. (Kyoto) 10, 323 (1953).
' P. CziRra, M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, Phys. Rev. 114, 880 (1959).
'o M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, Phys. Rev. 116, 1248 (1959).
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we think that the CMMS phase shifts are more ade-
quate to be compared with our results than the MMS
phase shifts. However differences between the CMMS
phase shifts and the MMS ones will give some measure
for uncertainties in the phenomenological phase shifts.
Cziffra et al. do not give the errors associated with their
results. But the errors are expected to be a little bit
larger in the CMMS phase shifts than in the MMS
ones, because Cziffra et cl. use a larger number of ad-
justable parameters than MacGregor et a/. As another
example of an acceptable set of the phenomenological
phase shifts, we list in Table II, Column H the phase
shifts which Hamada' has given in his analysis by
means of a phenomenological potential. With these
phase shifts he has obtained quite a good Qt. At 310
MeV, the impact parameter for the D wave is 0.7p, '.
Therefore we have calculated only the phase shifts for
l &2 according to what was mentioned in Sec. 1.

We see from Table II that, without the pion-pion
interaction, the calculated phase shifts for the singlet
states and 'Il states are extremely large compared with
the experimental values, and that the inclusion of the
pion-pion interaction in the I=J=1 state very much
improves the results. For the singlet phase shifts, we
cannot say that the remaining discrepancies between
theory and experiments are definite, if we consider that
the calculated values are the result of mutual cancella-
tion of large quantities each of which has an uncertainty
due to various approximations. The 'll phase shifts are
not very much affected by the pion-pion resonance.
This is due to the largeness of the resonance energy t„.
Our Anal values (1+28+2R+m1) of the 'H phase
shifts lie between CMMS, set 1 and MMS, solution 1,
and also between CMMS, set 1 and H. We see, how-

ever, that definite discrepancies still remain for the
'Il phase shifts. These discrepancies cannot be removed
by a simple central force such as that due to the S-state

"T.Hamada, Progr. Theoret. Phys. (Kyoto) 24, 1033 (1960).

pion-pion interaction. This leads us to the conclusion
that there must be some other e6'ects which play an
important role in the long-range nucleon-nucleon inter-
action. It is probable that the three-pion resonance
discovered recently" is one of such eGects.

As for the S-state pion-pion interaction, we cannot
even draw any conclusion concerning its sign. If the
three-pion resonance gives a signi6cant contribution
to the nuclear force, it will probably give a repulsive
central force as the P-state pion-pion resonance does,
because the spin and parity of the three-pion resonant
state are expected to be the same as those of the two-
pion resonance. " It is possible that the 5-state pion-
pion interaction is required to be attractive (fs posi-
tive) in order to cancel the repulsive force due to the
three-pion resonance.

From the above results we observe that, in the
nucleon-nucleon interaction, there is no single eGect
which dominates over all the others. This is partly due
to the fact that the nucleon-nucleon scattering ampli-
tude cannot be expressed as a combination of a small
number of partial-wave amplitudes, when it is con-
tinued to the nucleon-anti-nucleon scattering channel.
We further observe that there is a large cancellation
between the contributions of various eGects. It seems
to the present author that the recognition of these
facts is important for further developments.
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