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In the approximation neglecting any but single pair correlations, singularities of the reaction matrix
render Brueckner's integral for the average energy per particle a singular integral. Several attempts to
overcome this difficulty have been unsuccessful. By considering the infinite Fermi system to be a limit of
finite systems, it is shown that the correct result merely involves replacing Brueckner s ordinary integral
over diagonal reaction matrix elements by a principal value integral. In a finite system the level shift of a
Bethe-Goldstone state differs from the diagonal reaction matrix element by a normalization factor which
does not approach unity uniformly in the integration variable as the volume becomes infinite. In the neigh-
borhood of a singularity the expression for the two-particle energy shift takes the form cy/(y'+c'U '), where

y is the unperturbed energy measured from the singularity, c is the square of a matrix element, and'U is the
quantization volume. Hence as'U —+ ~ the sum over the energy y indeed approaches a principal value integral.
An alternative derivation, employing a modified reaction matrix for which there is no difference between
level shift and matrix element, leads to the same result. The general derivations are preceded by a soluble

example.
The connection of the Brueckner approximation with a phase-shift approximation for low-density systems

is discussed. Some corrections to the higher order terms in existing derivations of the "separation method"
expansion of the Brueckner reaction matrix are given.

1
jV =+,+

2 (2s.)'p
d'Ed'p(Kp [t [Kp)., (1)

where Eo is the average energy per particle in the
unperturbed system, K=k,+k& is the center-of-mass
wave vector of a pair, p= sr(ki —ks) is the relative wave
vector, and

(Kp[t [Ky).—=(kiks
[
t [ktks),

=(k,k, [t[ktks) —(kiks[t[k2ki), (1.1)

with t being the reaction operator. The integrals are
over the Fermi sphere F. Dependence on internal vari-
ables, such as spin, has been suppressed (i.e., we shall
discuss "spinless" Fermions). The reaction matrix in the
inhnite medium in Goldstone s formulation is deter-
mined by an integral equation which is symbolically
represented as follows: letting Q be a projection opera-
tor onto the unperturbed pair state p„ the "uth column"
of t, tQ , satisfies

tQ.= sQ.+eEQ'"'/(n. Ito)3~Q-, — (1 2)

I. INTRODUCTION

N the lowest order of Brueckner's theory' the average
' - energy per particle in an infinite system of fermions
(e.g. , nuclear matter or liquid He') is given by

unperturbed energy of the unperturbed pair state P, on
which tQ, operates (to the right).

The Brueckner approximation to the Rayleigh-
Schrodinger perturbation series, which is embodied in

Eq. (1), has been interpreted by Weisskopf and col-
laborators' ' in a simple intuitive way as an independent
pair model. (Ky[t[Ky), is regarded as a two-particle
level shift resulting from the interaction between the
members of the pair. Kith this interpretation one ex-

pects Eq. (1) to be essentially a low-density ap-
proximation.

Soon after Cooper's discovery4 that in a Fermi gas
bound pair states with energy less than twice the Fermi

energy could be produced by arbitrarily weak attractive
forces eA'ective near the Fermi level, it was recognized

by Gottfried, ' Goldstone, ' and others that Brueckner's
reaction matrix could have singularities. The existence
of singularities has by now been proved for a wide class
of two-particle interactions by Emery' and by Van
Hove. ' Brueckner and others have conjectured that Eq.
(1) is essentially correct and that the di%culty arising
from reaction matrix singularities could be eliminated

merely by replacing the ordinary integral in Eq. (1) by a
Cauchy principal value integral. Bloch' has stressed that

up until now the principal value prescription has been

an arbitrary one, completely lacking in derivation.

where Q' ' is a projection operator onto the exterior of
the Fermi sea defined by the unperturbed system, ho is
the unperturbed Hamiltonian for the pair, and g is the

*Part of this work was performed while the author was a
visiting fellow at Princeton University, and part at the 1961
Summer Theoretical Physics Institute of the University of
Wisconsin.

' The "canonical" formulation of Brueckner's perturbation
method is contained in J. Goldstone, Proc. Roy. Soc. (London)
A239, 267 (1957), from which also the earlier literature can be
traced.

2 L. C. Gomes, J.D. Walecka, and V. F. Weisskopf, Ann. Phys.
(New York) 3, 241 (1958).

s A. de-Shalit and V. Weisskopf, Ann. Phys. (New York) 5, 248
(1958).
,

4 L. N. Cooper, Phys. Rev. 104, 1189 (1956).
i' K. Gottfried, CERN report (unpublished).' J. Goldstone, thesis, Cambridge University, 1958 (unpub-

lished).
7 V. J. Emery, Nuclear Phys. 12, 69 (1959).
8 L. van Hove, Physica 25, 849 (1959).

C. Bloch, Compt. rend. congr. intern. phys. nucleaire, Paris
1958, 251 (1959).
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The difhculty has been sharpened by the finding of
Chisholm and Squires' that if the energy is computed
for a finite system using the analog of Eq. (1), then there
is no unique limit as the system becomes infinite because
there are reaction matrix singularities for various values
of the volume. The "limit" of the energy depends on
the particular sequence of volumes chosen and may take
on any value from minus to plus infinity. Chisholm and
Squires also attempted to overcome the singularity
problem by reformulating perturbation theory as an ex-
pansion in a more complicated reaction matrix than
Brueckner s. Their reaction matrix, which contains
"hole-hole" scatterings as well as the "particle-particle"
scatterings already present in Brueckner's reaction
matrix equation, is of definite interest. (A similar reac-
tion matrix has also been proposed by Iwamoto, by
Klein and Prange, and by Galitslci and Migdal. ) How-
ever, as Chisholm and Squires showed, the new reaction
matrix also possesses singularities, for finite as well as
for infinite systems.

In this article the technique of obtaining the energy
for an infinite system by computing first for a finite
system and then passing to the limit, is reinvestigated.
At first it is assumed that the Brueckner —Goldstone
reaction matrix of Eq. (1.2) is to be used for finite
systems as well as for the infinite system. It is found
that in a finite system the two-particle energy shift,
defined as the energy of the interacting pair (in a
medium) minus the unperturbed energy of the pair,
differs from the diagonal reaction matrix element by a
normalization factor. The considerations regarding the
level shifts are somewhat diferent from those of Fukuda
and Newton, " and of de%itt. " The difference arises
from the presence of the projection operator Q'"' in
Eq. (1.2) and its absence in the reaction matrix equa-
tions discussed in references 11 and 12.

It is proposed that Eq. (1) for a finite system be re-
placed by the sum over the two-particle level shifts.
This amounts to reformulating perturbation theory in
terms of a renormalized reaction matrix, and assuming
the lowest term in the modified expansion to give a good
approximation. The fact that there is great freedom in
the choice of a reaction matrix equation was pointed out
several years ago by Tobocman, " and has been made
use of by Chisholm and Squires and by others as
described above.

As a singularity of the t matrix is approached, the part
of the Bethe-Goldstone wave function which is orthogo-
nal to the unperturbed component grows more rapidly
than does the diagonal reaction matrix element. As
described in the abstract this eAect leads to a principal
value integral over the diagonal elements in the limit of
infinite volume, at constant average particle density.

It may be objected that the replacement of reaction

"J.Chisholm and E. Squires, Nuclear Phys. 13, 156 (1959).
"N. Fukuda and R. G. Newton, Phys. Rev. 103, 1558 (1956)."B.S. deWitt, Phys. Rev. 103, 1565 (1956).
"W. Tobocman, Phys. Rev. 107, 203 (1957).

For the reaction matrix of Eq. (1.3),
Qout (a I ~I a)

g, = and 8 =
q.—&0 (al a)

(1.4b)

These choices are the ones which Tobocman finds give
rise to many cancellations in the perturbation series for
the energy. This is understandable since Eq. (1.3) cor-
responds to a Brillouin-Wigner perturbation expansion
of the two-body problem in a medium, whereas
the iterative solution of Eq. (1.2) is the Rayleigh-
Schrodinger expansion of the two-body problem.

The two-particle level shift is simply (a~ r ~a)/(a~ a)
with no additional normalization factor. The energy of
a state of the whole system is given by an expansion in
terms of ~. Being careful to sum over diagonal reaction
matrix elements before letting 'U —+~, one again ob-
tains Eq. (1) with a principal value integral for the
Brueckner approximation to the energy per particle in
an infinite Fermi system.

In Sec. II a soluble one-dimensional example is
treated. The limiting processes leading to the principal
value are explicitly exhibited. The formal proofs in the
general case, given in Secs. III and IV, make use of an
expansion of the Bethe-Goldstone wave function of a
pair in a complete set of solutions of a "Hermitian
Bethe-Goldstone equation" introduced by t.uders. "

Section V contains a rather general discussion of the
low-density limit of the Brueckner theory and its con-
nection with the theory of a low-density system of
distinguishable particles (the phase-shift approxi-
mation).

II. SOLUBLE EXAMPLE

1. Solution in Terms of a Green Function
on (—~ (x( ~)

In order not to have to introduce any approximations
regarding the projections with respect to the Fermi sea

"G.I.uders, Z. Naturforsch. 14a, 1 (1959).

matrix elements by "level shifts, " for finite systems, is
just as arbitrary as assuming the principal value pre-
scription to begin with. In order to answer this objection
with more than an appeal to the intuitive physical cor-
rectness of the previous method, a second independent
formulation is also given.

In the second formulation the equation for the reac-
tion matrix in a finite quantization volume is taken to
be' '

out

rQ, = v+v r Q,. (1.3)
rl.+(a( r ( a)/(a~ a) —ho

In the limit of infinite volume (a)7 ~a)/(a~a) goes to
zero, but not uniformly in p, . As is shown in Appendix
A, the reaction Inatrix r is a member of Tobocman's
class of reaction matrices, the members of which satisfy"

~Q.= I v+vg-1 ~"g.~'1jQ' (1.4a)
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kpx+=kp+ ,'IEI. - (2.2a)

For a given value of E, values of the relative mo-
mentum corresponding to occupied states of the Fermi
gas will be distinguished by writing p instead of k. One
has

or regarding the dependence of the equations for the
relative motion of a pair on their center-of-mass mo-

mentum, a one-dimensional example is chosen. Perhaps
the simplest two-particle interaction is a delta-function
potential. Requiring that the potential be symmetric so
as to conserve parity, we choose

w(x)= —
gl h(x —a)+b(x+a)), a&0. (2.1)

For fixed center-of-mass momentum X, with IXI
&2k', the single-particle momenta k» and k2 will both
be outside the Fermi sea only if the relative momentum
k=-,'(k,—k~) satisfies lkl &kpx+, where

where the Green function is

Gx,„(x,x') =
gp &iI (~—~')

(2 g)
px+ 2|r p' —k'

+ibex„(x) =n. '* cospx 2m—*g+Gx,, (x,a) +lpx„(a). (2.9)

The corresponding reaction matrix elements are

+tx, (k) =m dx cos(kx) v (x) +iPlr„(x)

It is convenient to work directly with the symmetric
and antisymmetric BG wave functions rather than to
symmetrize later. As the two cases are very similar we

shall be content to discuss only the spatially even state.
For the delta-function potential of Eq. (2.1) the even
wave function is

Ipl &kpx =»—ll&I. (2.2b) = —2m lg coska+iPxp(u). (2.10)

The Bethe-Goldstone nonlocalized wave function

iPxp(x) is related to the reaction matrix by
Provided that the uantitP ddh h q y

where
(kl«l p)=(kl lynx. ), (2 3) +Dxp

=1+2m*g—+Gx,„(a,a)

does not vanish, where

(2.11)

Qx-'4a(x)=4~(x), lkl &kpx+,

0, Ikl &kpx+
(2.3b)

ipse, (x) =y„(x)+wx, (x), Qrr'"'wx„wx„, (2.——3a)

with
1

+Gir, „(x,x') =—
coskx coskx'

(2.12)
p2 k2

Eq. (2.9) has as its solution at x= a

(2.13)+ipse„(a) = n. cos (pa)/+Der, .

2m*
cos(pu) +Gx,„(x,u) (2.14)

If t is the Goldstone reaction matrix, satisfying Eq.
(1.2), then flap(x) satisfies the Bethe-Goldstone (BG)
equation. "In the e6'ective-mass approximation in which He~~~ at arbitrary x
the single-particle self-consistent interaction,

1t1 1
f/(p ) = f/o+ I

——p '+-&.p '+", (2 &)
2&m* m

is approximated by the 6rst two terms, the BG equation
for the relative wave function is

+

Taking the scalar product of Eq. (2.5) with respect to

y, (x)= (2')—e' ' (2 6)

P „(x)= +m*
(2m)1

dx'Gx, „(x,x')v(x')|Px„(x'), (2.7)

~ H. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238,
551 (1956).

one obtains e~= p'/m* The solution .of Eq. (2.5) can be
written as

+ibex„(x) =ir=l cospx-
Dxy

(ii) +Gx, (a,a) is a decreasing function of e

with asymptotic values 0 as e —+ —~
and —~ as ~ ~ (kprr+)'/m*.

(iii) +Gx, (a,a) is an increasing function
of kg~+. In particular for given kp,
+Go, (a,a) &+Gx„(a,a) &+G2i. ..(a,a).

(2.17b)

(2.17c)

+txp (p) = —(2/~)g cos'(pa)//+Dxp. (2.15)

If +a~„vanishes then there exists a nontrivial localized

(i.e., bound pair) solution of Eq. (2.5),

+ibex,„(x)= —2m*g+Gx, ,(x)a) +iPsc,„(a), (2.16)

with an arbitrary value of +ttx,,(a). Thus the singu-

larities of the reaction matrix are seen to be con-
nected' ' with the existence of bound pair states.

For x=x'= a, some properties of the Green function
may be inferred by inspection of Eq. (2.12) (cf. also

Fig. 1)

(i) +Gx, (a,u)(0 for all e((kpx+)2/m*. (2.17a)
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For negative energies, e= e„=—«'/r/s*, one has to evaluate

1 " cos'ka
—+G~ dk
a S'a Ss«+ k +«

1 7r T'
———arctan[(1+ I

E I/2k/;)/yj+ —e '&'"~»—
2m(ak&) y 2 2

('+I (/'"& )/s cos(2ak~yx)dx, (2.19c)
0 1+x'

where y=«/ks. In spite of its simplicity the integral does not seem to have a simple representation in terms of
tabulated functions. It was evaluated numerically for Fig. 1. The dependence of the energy of negative energy
bound states on g and E/k & may be seen from Fig. 1. For consideration of the dependence on the range a it is more
convenient to consider k);G than G/a. In the limit a —& 0 one has

k/ +GK, (00)= —(k&/2vrp) ln[(1+p/k(K+)/(1 p/k—pK+) j, e=e„
= —(1/ )(1+ I

&I/2k. ), a=0
= —(k//s«)[m/2 —arctan(k) K+/«) j,

(2.19d)

Bound states occur when

k s +GK, (a,a) = k / /—2m*g . (2.19e)

Since Fig. 1 is for the case uk' = 1 it may be reinterpreted
as a graph of k/ +GK, (k) ',k/; ') with $=ks/2m*g. The
corresponding curves for a=0 would lie somewhat lower
than those for a=k) '. From (2.19e) one sees that the
curves for E=O and 2k' would cross the vertical axis at
about —0.318 and —0.159, respectively. Thus, a value
of g which gives rise to a "moderate" attraction at
a=kg —', provides a "strong" attraction when placed
near @=0. Finally, for kp ——0 and a=0 we find from
(2.19d) «=mg, a well-known result for the one-dimen-

sional Schrodinger equation.
A similar treatment can be given ' if a delta, -function

repulsion is added to the delta-function attraction.

containing "excited" components, previously denoted
by wK„(x). Denoting the scalar product on L&x&L—
by (, ) todistinguishitfrom(, ) usedon —oo(x& m,
one has

2m*g)
' cos(pa) - '

(+gf (r.) +(e (r)) =
I

+g (r) (2 20)
+DK &~)

where

dx[+GK, &'&(x a)j'
cos'(ka)

(2.21)
L s)sz&r+ (p —ks)s

Taking the scalar product of Eq. (2.5) with respect to
ipK& and noticing that QKr*Q'"'=(pKr* p„*, one fin—ds

2. Solution on —L &x &L and the Level Shift

The equations of Sec. II.1 apply equally well in a
quantization volume —I &x(I.with periodic boundary
conditions if one replaces J'dx by (~/L)P/, and J'„"dx

by J'i (Ex. A singularity in +tKr (p) is accompanied

by a singularity in the part of the wave function QK„(x)

p (p I
e Ilf K.)+ . (2.22)

m +y) +y

The left-hand side is the energy of the interacting pair.
The level shift for symmetric states is then

[+gK„l —(1/m*) (d'/dx')+e I+&PKyj P' tKy(P)

Xy) Xp me L [1+(m/L)(+7//K„+7//K„)]

—(2g/s) cos'(Pa) +DK &~)

8EK„. (2.23)——
L [+DK~& )]'+(~/L)[2m*g cos(pa)/vr]'+2K~& &

The expression for the average energy per particle
analogous to Eq. (1) is, with the total number of
particles equal to LkF/rr,

112~
E=E&)+- —Q —g' 8EK „(2.24)

22k' I. &=&z I. u

where the prime signifies
I p I

&ksK . For large L it is

"R.L. Becker, Bull. Am. Phys. Soc. 5, 434 (1960).

true that+DK~ ~', +2K„& &, and the value pK&~) of p for
which the reaction matrix element is singular are nearly
independent of J. Using the Taylor expansions of the
momentum-dependent quantities about pK=—pK&"', one
sees that

»m (E—Es) = I' dKdp+tK„(p), (2.25)
4kp p

where & signifies taking the principal value.
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3. Alternative Treatment Using a Different
Reaction Matrix

Using the reaction matrix r of Eq. (1.3), the equation
for the relative wave function of the interacting pair
&p»p defined by +r»(t&„= z) +&p»„ is

1 d' s=' cos(Px) (+y, I
z) I+&P»,)

4».(x)+
ppz* dx' (1./m )

cos(hx)
+— 2 ('4 ~l~l'4». )

L 1%-Izx+

= o»„+ip»p(x). (2.26)

equal to the unperturbed energy p'/r)p~, but instead to

where

p'
e», = +—+r», (p),

m*
(2.27)

=—+«.(p) (2 29)

"».(h) = ('e~
I pl'0». ). (2 28)

On the other hand, as may be verified by taking the
scalar product with respect to +lt»p, the eigenvalue is
equal to the energy of the interacting pair; hence the
level shift is

('4». I
(1/~—') (d'/dx')+p I'0».)

m I.
Taking the scalar product with respect to +pp (x)
=zr '* cospx, one finds that the energy eigenvalue is not For the delta-function attraction one finds

'«, '"(p) = 2~ 'g co—s'(p~)
25S g K cos'(p(z)

1+
l. »~»+ [p'+m*(~/I-) +r» ('&(p)7—h'

' (2.30)

For finite I. this equation has infinitely many solutions. It is shown in Appendix B that there is a unique physical
solution in the limit I.—+ ~.

Expanding the denominator in powers of r/l. one obtains

—2s 'g cos'(pu)
+r» (i) (p) =

+D»p(z) 27rp&p*'gA—»p(~) +r» p(p)/1 +0([+r»p(~) (p)/17p)

p p» cos(p»—(z) L ~ [(d/dp) D»„7„„»
+r» (z)(p) = I.

I p p»l . -
I p —p»l ~m* 2g yg+2gA K (L)

Neglecting the terms in the denominator of order (r/1. )' one has, for sufficiently large 1.and p =p»,

(2.31)

(2.32)

Thus +r»p(i) (p) takes on equal and opposite values in
the neighborhood of the singularity, and so

lim —g +r»„(i)(P) =P +t»„(P)dP. (2.33)~" I. n

(ho —»)xzz=0 (3.3b)

III. GENERAL PROOF, USING GOLDSTONE'S
REACTION MATRIX

To construct a general proof it is convenient to expand
the Bethe-Goldstone wave function in terms of a
complete set of solutions of the "Hermitian Bethe-
Goldstone equation" which has been discussed by
t.uders. "This equation is

(h +Q'"'pQ'"')x= nx (3 1)

x= xz+ xzz, xz ——Q'"'x, xzz ——(1—Q'"')x; (3.2)

Eq. (3.1) generates separate uncoupled equations for xz
and XU, namely

(ho+Q'o'z)Q "'—
&)) xz ——0= (ho+Q'"'z) —

&))xz (3.3a)

and

Thus the solutions of Eq. (3.1) fall into two classes. The
Class I solutions are solutions of the ordinary Bethe-
Goldstone equation, consisting entirely of components
lying outside the Fermi sea. The Class II solutions
satisfy the unperturbed pair equation.

Let E;„(E') be the minimal energy of two unper-
turbed states with total momentum E. In the effective-
mass approximation,

E;„(K)—2 Uo= E'/[2 (2p)p*) 7.
Also let Ep(E) be the two-particle Fermi energy for two
unperturbed states with total momentum IC. In one
dimension in the effective-mass approximation, Ep(E)

;„(lt)+(hp»-)'/[2(ppz*/2)7. The center-of-mass
motion separates in the general case. One has

xzz, »p(xzqxo) =@»(X)4'p(x) hoxzl, »p = rtxyxzz, »y (3.4a)

and
xz, »„~(xz,x,) =C»(X)x»,~z(x), (3 4b)

where n stands for any additional quantum numbers
needed to completely specify the wave function and
where C»(X) = e'x x/(2vr)». For fixed I the spectrum of
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g for the Class II solutions is a continuum with

&;.(E)&ttrr&Ep (E).
For the Class I solutions there is a continuum with gi
greater than Ep(E) and possibly also a discrete spec-
trum below Ep(E). The wave functions corresponding
to the discrete spectrum are localized (i.e., bound state)
solutions of the ordinary Bethe-Goldstone equation. In
the example of Sec. II a singularity of the Goldstone
reaction matrix was accompanied by the existence of a
bound pair state. Thus by expanding the nonlocalized
solutions of the ordinary Bethe-Goldstone equation
with energies less than Ep (E) in terms of the solutions
of the Hermitian Bethe-Goldstone equation, the singu-
larity will be explicitly exhibited.

For the nonlocalized solutions of the ordinary Bethe-
Goldstone equation, the factor referring to the relative
motion will be written, as in Sec. II, as

Pxp(x) =pp(x)+wxp(x), Qx'"twxp wxp. (3.5)

In the y representation

wxp(~~) =«x.-' I
p

I 4 p)/(exp —n), (3.g)

where it has been assumed that the XK„have been
orthonormalized. It is apparent that lt xp will be singular
if pKp is equal to an energy p of one of the bound pair
states unless'

(3 9)

for all the bound states XK, ' with energy p. This ex-
ception will occur if p (1—Q'"') =0 as in Cooper's original
example. But usually the Fredholm alternative prop-
erty will hold: Either no bound state with energy p
exists and the Bethe-Goldstone wave function is non-
singular, or a bound state does exist and the Bethe—
Goldstone wave function is singular.

Going over to a finite system, the level shift derived
as in Sec. II is, with 'U'='U/(2~)',

Taking the scalar product with respect to CKpp verifies
that the eigenvalue eKp is equal to the unperturbed
energy gKp and taking the scalar product with respect to
CKXK, ' yields

wxp(x) =
rf(EP (&)

&(Q wxp(ptn)Xx„r(x). (3.6) with

txp (P)
~J'-'Kp =-

1+(wxp twxp)/*U'

txp(p) = 9 pl plfxp).

(3.10)

(3.11)
The ordinary Bethe-Goldstone equation reduces to

cKp approaches the energy g & of a particular bound
(hp+Q 'p'Q")'C"'x'wxp C——xl expwxp Q—x'"tptt p]. (3.7) pair state, or set of states XK» '

'g Kp

(Xx,-'I pie, )'- 1
I
(x .-'I pl+.) I'

(exp —n~) 1+—,2' +—2
(exp —n)'—

(3.12)

where the prime signifies excluding q=q~ from the
summation, as the contributions from the states xK„, '
are given separately.

The energies q are only weakly dependent on the
volume for large values of 'U. Expanding tt(U) about

pt( ~), only the constant term will contribute in passing
to the limit 'U —+ ~. A similar remark is true for the
matrix elements (x«u'I pltttp). Thus, letting y=ttxp ttp,

the dependence of 5EKp on y and on the volume 'U is of
the form

uy+c
(3.13)

y+dyU
—'+cy 'U ' y'+c'U '

for y small and 'U large. Taking the limit as 'U —+ ~ of
the sum over y gives a principal value integral. The
usual divergent result corresponds to taking the 1imit of
each term as 'U —+ ~ and then integrating.

It would be of interest to have an exact expansion for
the average energy per particle in terms of a, renor-

malized reaction matrix T with diagonal elements

(kl Tx
I k) = (k

I
tx

I k)/(1//xp, lyxp). (3.14)

Unfortunately (kl Txlk) does not represent a sum of
terms corresponding to linked diagrams in t, for

(4xpAKp), l(kl«lp) I'—1+(g~)—2 P(out)

(cpu p) ' (exp —nx.)'
This does not mean, however, that the diagonal elements
of T do not provide a perfectly good lowest order term
for the system energy. It seems likely that in a complete
formulation, principal value integrals will occur in the
higher orders of the expansion in t, as well as in the
lowest order approximation of Brueckner.

IV. GENERAL PROOF USING A MODIFIED
REACTION MATRIX

Corresponding to the reaction matrix equation (1.3)
there is an equation' for the wave function of the
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interacting pair analogous to the Bethe-Goldstone
equation in a finite quantization volume. A special case
of this modified equation was given in Sec. II.3. Writing
the relative wave function as in (3.5) the general equa-
tion, obtainable from (1.3), is

(hp+Q'""v —exp)C exp=- (~„~,)-'(~,
l Ia,)+.~, (.4.1)

(~,-'I l~, )
wxp(gn) =

CKp
—g

(4.6)

of (4.4) exists for an arbitrary exp(E&(E) provided
that there is no Xi x„with g= exp and with (Xx„r

I
v

I gp)
00. Taking the scalar product of (4.4) with respect to
&r,K„, and using (3.6), one finds

(x,-'I v I4.)&,-'(x)
4*p(x) =4p(x)+Z (4»)with

(4.3)7Kp k & Kp g, a 6Kp

The solution of (3.5) and (4.1) is therefore the solution
Taking the scalar product with respect to Cx „one has of the coupled equations

«p=nxp+(epA p) "xp(p) (42)

The equation for zvKp is then

[hp+Q'"'vg'"' —exp]c exp —— 4x—gx'"'vQ (4 4)

together with the constraints implied in (4.2) and (4.3).
Ignoring the constraints, a solution

4 w.,= —D,+g-.g- —.,]-'C.g -"y, (4.5)

(4.7b)

Since (Pp,gp)='O'=—'U/(2v. )', one sees that exp —exp
=0('U ') except when exp is near an energy q of a bound
pair state, xi,K„. For qKp in the neighborhood of a
particular bound state energy g b, letting x=QKp Q b one
has

(xx.-'I v
I 4p) &x.-' ) I (&x.~-'I v

I +p) I'",(y)=l ~, l l~,+2 Z, , I+2
«» - (&') '«p(p)+exp —n& . (U') '«p(y)+x

(4.g)

Xx(x)exp(y)dx=o(~ l)—
No difficulties arising from a hard repulsive core appear With u((2b'*/~& one has, therefore,
here, provided one does not further subdivide the first
term, separating out Q p I

v
I Pp). For large 'U and small x,

(4.8) has the form (4.11)

r=a,+, b)0.
('U')-'r+x

For Ixl))bl('U') '*, the solution is ~=a+bx '. Hence the
solution everywhere in the neighborhood of q b is

Consequently,

1
lim —P «p('U, y) =P O'P «p(x&, p). (4.12)

'0-+ ao U p

where

exp(p) =g(a —x'U+ e(x) The equation for z'") is just the equation for the
&&[4bu+x'V'+2ax'U+a']l), (4.9) Goldstone reaction matrix, so that the final result is the

same as in Sec. III.
e(x) =+1, x)0

x(0.
For lxl (2b&('U') l, this gives

u- 1 (V')l
«p(y) =- 1+-

2 2 b& (1+x'U'/4b) '

+e(x)bl (V')-:[(1+x'V'/4b) l

—I*I (U')~/b'1+o[(U') —:j. (4.1o)

The unperturbed two-particle energy spectrum is of the
form

nx, =co(&)+&i(&)P'+ . ;

hence the density of states Xz.(x) =p'dp/dx is also a
power series,

A~x(x) =dp(K)+di(K)x+

V. VERY LOW DENSITY REGION

Since in the limit of zero density the excluded volume
in momentum space resulting from the Pauli principle
vanishes, it is of interest to inquire whether the exclusion
principle has a negligible effect on the energy of a gas
of fermions at sufFiciently low density. To answer this
requires a comparison of a low-density Fermi gas with a
similar system of distinguishable particles.

A. Distinguishable Particles

Fukuda and Newton" have shown that in a spherical
quantization volume the energy shift of an unbound
state of angular momentum t' of a single particle in a
potential well of finite range is proportional to the phase
shift b~ (k). They required that both the unperturbed and
the perturbed radial wave functions must satisfy the
same boundary condition at the radius Ro of the
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These equalities hold, for fixed /, in the limit Ro~~.
Neglecting surface effects, the result also applies to the
energy shift of an isolated interacting pair. It applies,
furthermore, - if the pair is immersed in a medium of
particles which are distinguishable from the two par-
ticles of the interacting pair. The two interacting
particles may, however, be indistinguishable from each
other; then 5~ —& 28~ for / even or odd, depending on the
spin and isospin state, and b~ ~ 0 for l with the opposite
parity. Interactions between the medium and the par-
ticles of the interacting pair are being neglected, so that
a low-density medium is assumed. In the Fukuda-
Newton approximation, the medium is completely
passive.

The case of distinguishable particles in the medium
has also been discussed in terms of reaction matrices. "
The distinguishability assumption is equivalent to
setting k& ——0 in the projection operator Q'"'. For kz ——0
the Goldstone reaction matrix t goes over into the
Heitler reaction matrix E, familiar from scattering
theory, which satisfies the integral equation

EQ = tz+r E Q,.
g,—ho

(5.1)

Similarly the matrix 7-, which for a finite quantization
volume contains the level shift (alrla)/(ala) in its
propagator, goes over into a matrix R satisfying

quantization volume. The wave number must change so
as to exactly compensate for the phase shift produced by
the potential, i.e. ,

(kz —koz)Ro= —zzz(koz).

Hence
2Eot 2Eozizzz(kot)

(kz —kot) =-
kot kot z Ro X ~&~

1—Q,

(alRI a)-
(pi

—ho) zi.—hp+
(al a)—

R a . (5.5)

In n dimensions (ttt t, I Pt,) ='U/(2pr) ", so that as "U ~ pc,
the second term in (5.5) vanishes except for contribu-
tions from intermediate states with energies arbitrarily
close to g . Thus the propagator of the correction term
approaches a delta function. The only matrix element
of R which then appears in the second term is (zIz a I

R
I pt, ),

so that Eq. (5.5) becomes an algebraic equation. Using
a spherical quantization volume of radius Ro and the
boundary condition kRO ——,'ml =mm, one can then obtain
(5.4) by using the identity

1 w 1 1(E +Z)
~=z n(zt+a) o zro tanzrzr

The result of Fukuda and Newton implies that it is
correct to use R rather than E in computing the energy
shift for the case under consideration. This also follows
from the considerations of the present paper regarding
level shifts: the substitution of 1—Q for Q'"' does not
alter the expressions for the level shift in terms of reac-
tion matrices, i.e., the level shifts for a finite volume are

or
(4pIEI4p)/(ll pAp)

(~, IRI~,)/8 „~,).
B. Effects of the Exclusion Princiyle

This can be seen, following Riesenfeld and Watson, as
follows: Eqs. (5.1) and (5.2) can be used to give

(alR.
I a)

(a I
R

I a) = (a I
E

I
a)—

(ala)

(alrla)
For an infinite domain, with qbz

= (2pr) le'"'*, the well- (a I
r

I a) = (al t
I
a)—

known expression for a diagonal element of E is (ala)
out

j.
QplEI&p)= — —Q (2l+1) tanzzt(rt&), (5.3)

4x'p, k &~
r a . (5.6)

(a I I a)
(ri —hp) rt, —hp+

(al a)—where p, is the reduced mass and q~ is the unperturbed
energy. It has been shown by deWitt" and by Riesenfeld Ho~ever the relation
and Watson' that the corresponding expression for R
merely involves the substitution of b~ for tanb~, i.e., &epz IRlypz ) &z(k)

Q pt IElypt„) tanbt(k)
(5.7)

h' )1
&@~IRIA)=—,I — & (2f+1)~z(np) (54)

4tr ttz(k tm true in the limit of infinite volume, is special to the case
of distinguishable particles. The result for kg&0 and
k—=p(kzrr is in fact much simpler. As pointed out
earlier, v- becomes identical with t in the limit of infinite

» W. B. Riesenfeld and K. M. Watson, Phys. Rev. 104, 492
(1956);see, in particular, pp. 505—506. The Heitler reaction matrix
is denoted by G.

An equation analogous to (5.5) holds for r at arbi-
RQo= "+t R Qo (5 2) trary density. It is

rt.—ho+(alRla)/(ala)
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volume. "The reason is that for p &kpx there is a gap
between p~ and the closest lying allowed intermediate
states in (5.6). For a given finite volume the correction
term in (5.6) has a much smaller effect than the correc-
tion term in (5.5), and vanishes as 'U —+ ~. Even as

p ~ kF the allowed intermediate states lie entirely on
one side of g„, so there remains a difference between the
correction terms of (5.5) and (5.6).

Actually the result r= t for 'U = ~ can be regarded as
consistent with (5.7) because for kr)0 and p&kpx the
phase shift bq(p) of the Bethe-Goldstone wave function
vanishes. "This is perhaps the most striking effect of
generalizing 1—Q, to Q'"' in the reaction matrix
equation.

The second method of this paper, which is to use
matrix elements of r (for 'U& ~) in computing the
average energy per particle, is seen to be the generaliza-
tion to the case of indistinguishable fermions of the
recommendation of Fukuda, Newton, deWitt, Riesen-
feld, and Watson to use R instead of E for distinguish-
able particles.

The simple one-dimensional example of Sec. II illus-
trates the difference at low density between a system of
distinguishable particles and a system of fermions. For
low densities one has

2 cos'(pa)
(p I

tx I p) = --g
m 1—(2ntg/7rk px+) A (p)

with

k~x' L1 k(p~)—'3

nt A(p)

k px+ 1+(p/k px+)
A(p) =— ln =1 except for p=krx+.

2p 1-(p/k~x')

For comparison, lowest order perturbation theory gives

(p I
~

I p&= —(2gi~) cos'(p~) = —(2g/~) [1—k(p~)'j

The integrals I=JPrx bE(P)dP for the three cases are

I[aJ= —(2/x)gkpx [1—(1/3)(kpx a)'1
2 m kpx 4 1+ntga

I[Rj= ——gkgx 1+— kg~ u ,
4 nag 3 tegu

and
2 +kg~+

I[tj=-gk~x 2'
'8 The difference between v and t for finite volume is important

for its effect on the sum over level shifts, however, as has been
stressed in Secs. II.3 and IV.

p 2 1+ntga
p[1--:-g (p) j

ns em mg
X[1+-,' (po)'],

whereas for kg~+(&nz*g

The positive sign of (p ~
tx

~ p) is discussed later. It is also
of interest that the condition for a bound state of the
Schrodinger equation with energy —z'/nt is

(nlg/2g) (1+e—2«) = 1.

There are still several sources of possible confusion
regarding the consistency of the results of the present
paper with previous treatments of the very low density
region. These confusing aspects can be clari6ed by a
discussion of the various effects of the exclusion prin-
ciple as incorporated in the Bethe-Goldstone equation.

I. Reduction of the Phase Shift

In the absence of the exclusion principle each two-
particle phase shift attains the full value occurring for
an isolated pair. For fermions, however, the exclusion
principle greatly reduces the phase shift, and in the case
of the Brueckner-Goldstone formulation (in which only
the "particle-particle" interactions are included) the
phase shift completely vanishes, i.e., the wave function
"heals'" asymptotically. This is an extreme and special
result which no longer holds when hole-hole interactions
are included or when the Fermi surface is smoothed out.
But, in general, the exclusion principle greatly reduces
the phase shifts.

Z. sects Concerning Bound Pair States and Reaction
Matrix Singularities

Because r = t for 'U = there is no need to consider r
unless there is a singularity in t. This is quite different
from the case of distinguishable particles where there is
a difference between (aIR~a) and (a~E~a) for 'U= ~
whether or not there is a singularity in (a~K~a).
Furthermore, when there is a singularity in t it is
necessary to go to 6nite volumes in order to get a r
distinguishable from t.

The matrix E has a singularity if 5&= &s/2, which
requires a sufficiently strong net attraction or repulsion.
The critical strength of the interaction necessary to give
a singularity is independent of the density of the system
and is not related to the existence of a bound state of the
Schrodinger equation. For calculating the energy per
particle in a system of distinguishable particles, the
singularity problem is completely eliminated by using R
instead of E.

Turning to the case of fermions, one should recall that
in the Brueckner theory the occupation number dis-
tribution in momentum space is assumed to be that of
the ideal Fermi gas for the purposes of calculating
reaction matrix elements. All bound state solutions of
the Bethe-Goldstone equation are thereby required to
be constructed solely of components lying outside the
Fermi sea; they are Class I solutions of the Hermitian
Bethe-Goldstone equation. A bound state solution of
the Bethe-Goldstone equation may have either negative
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or positive energy. It will be convenient to refer to the
former as "molecular states'"' and to the latter as
"Cooper states. "4 The Cooper states exist mathe-
matically in the Brueckner theory (i.e., are stable) only
because the states into which they could decay are
assumed to be completely 6lled.

For k~=0 the "molecular states" are bound states of
the Schrodinger equation. Their existence requires a
suKciently strong attraction. As k& increases the mo-
lecular state has a rising energy and eventually becomes
a Cooper state. As the density is further increased or the
attraction is weakened the energy of the Cooper state
approaches the Fermi energy, but remains belo~ it;
there is a singularity of t for an arbitrarily weak net
attraction.

In the example of Sec. II the existence of a t matrix
singularity is associated with a vanishing denominator.
The diagonal elements for p less than the singularity
are negative whereas those above the singularity are
positive. As the energy of the Cooper state is lowered

(by decreasing k& or by increasing the coupling con-
stant) more and more of the reaction matrix elements
become positive. If the bound state is a "molecular"
state, all the diagonal elements of t with p ksx are
positive. This is clearly an unphysical result, and shows
the inapplicability of the Brueckner approximation for
such strong attractions.

For a strong net attraction the Fermi sea is not a good
first approximation and consequently the Bethe-Gold-
stone equation is not relevant. Usually the density will

be high arid clusters of three particles or more will be-
come so important as to invalidate the restriction to
two-body correlations. However, in case the forces
saturate at two-body clusters, as with some gases of
diatomic molecules, the independent-pair approximation
may still be useful. In this case, instead of using
Brueckner theory, it would seem more appropriate fjrst
to fill the bound states of the two-particle Schrodinger
equation and then to buiM up the occupation of
continuum states taking into account the partial occu-
pation already implied by the filled bound states.

7Vhen the only bound-state solutions of the Bethe-
Goldstone equation which exist at the saturation den-
sity are Cooper states lying fairly close to the Fermi
level, the Brueckner approximation should be a good
one. The present paper shows that at least the formal

difhculty arising from the reaction matrix singularities
can be avoided by taking into account the renormaliza-
tion of the wave function. The very existence of the
singularities indicates a weakness in the description of a
Fermi gas provided by the Brueckner theory. The BCS
theory has shown that this weakness is related to the
failure to incorporate a smoothing of the discontinuity
in occupation numbers at the Fermi surface. However,
the energy given by the Brueckner approximation will

presumably differ only slightly from the exact energy,
provided the Cooper states lie close to the Fermi surface.

3. Effect ol the Magnitude of the Level Shifts at
I.om Deesi ty

For a potential consisting solely of a hard-core re-
pulsion the average energy shift per particle is"

E= (kp'/2'�) $0.63k FC+0.32 (k s C)'+0 (k p'C') $,

where C is the core radius. The first term corresponds to
using the R matrix while the second term comes from
the exclusion principle. Thus for a purely repulsive
potential, for which there are no t-matrix singularities,
the effect of the exclusion principle becomes negligible at
sufficiently small densities, as expected because of the
small "excluded volume" in momentum space. With the
core radius of nuclear forces and with the saturation
density of nuclear matter, 0pc 0.6 so that the eBect of
the Pauli term on the hard-core contribution to the
nuclear reaction matrix is quite significant.

Turning to potentials which give a net attraction,
attention will be restricted to an intermediate range of
densities suKciently high to avoid "molecular" states,
but sufficiently low that the excluded volume in mo-
mentum space is small enough that an expansion of t in
terms of E would converge rapidly. If the net attraction
is so weak that tanb =5 then an expansion in terms of E
is adequate. In practice this is much easier to do than to
expand in terms of R. Moszkowski" has developed a
practical method of this sort, termed the "separation
method, " applicable when the potential is repulsive at
short distances and attractive for larger distances. It is
separated into two parts, a short-range part v„con-
sisting of the repulsion plus part of the attraction chosen
so that the free-particle phase shifts are very small (e.g. ,
vanish for a particular relative momentum), and a long-
range part e~. The method requires that v~ be weak
enough to be treated by perturbation theory. The
Goldstone reaction matrix I, produced by the short-
range potential v, is expanded in terms of the corre-
sponding distinguishable particle reaction matrix E,.
Some improvements have recently been made by
Kohler. "I.evinger et e/. 22 have used a similar expansion,
but choose for ~, the repulsion alone; consequently the
series converges more slowly.

In deriving the expansion of t by the separation
method one makes use both of reaction matrices oper-
ating to the right and of their adjoints, which operate to
the left. The energy eigenvalue q appearing in the
integral equation for an adjoint reaction operator refers
to the unperturbed state standing to the left, on which

"This case is reviewed in J. S. Bell and E. J. Squires, Advances
in I'hysics, edited by N. F. Mott (Taylor and Francis, Ltd. ,
London, 1961), Vol. 10, p. 211; see, in particular, pp. 251-252.

2 S. A. Moszkowski, Ofhce of Ordnance Research Technical
Rept. No. 2, University of California at Los Angeles, 1959
(unpublished); S. A. Moszkowski and B. L. Scott, Ann. Phys.
(New York) 11,65 (1960);14, 107 (1961);Nuclear Physics 29, 665
(19|2).

sr H. S. Kohler, Ann. Phys. (New York) 16, 375 (1961).
~' J.S.Levinger, M. Razavy, Q. Rojo, and N. Webre, Phys. Rev.

119, 230 (1960).
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the adjoint reaction operator acts. In the existing
derivations the eigenvalue g has not been identified with
sufFicient care. Consequently certain equations are given
as operator equations which actually hold only for
diagonal matrix elements, and some terms of third and
higher order are not correct even for diagonal elements.
Diagonal elements are not affected to second order,
however, so that existing numerical calculations stand.
Because of the practical importance of these series
solutions of the Goldstone reaction matrix, a derivation
of the basic formulas with attention to the identification
of g is given in Appendix C. Moszkowski and Scott have
given a detailed and quantitative discussion of the effect
of the exclusion principle on the magnitude of the level
shifts for the case of nuclear matter.

The present discussion indicates how the Brueckner
approximation goes over into the phase-shift approxi-
mation in the low-density limit when the potential is
incapable of giving a bound state of the Schrodinger
equation. It has also been shown why the phase-shift
approximation and the Brueckner approximation are
invalid when the density is so low and the net attraction
so great as to support "molecular" (negative energy)
bound states. The corrections to the phase-shift ap-
proximation resulting from the exclusion principle as
given by the Brueckner theory at low density have been
discussed and some modifications of higher order terms
in the "separation method" pointed out. The second
method of the present paper has been shown to be the
generalization to the case of fermions of the use of the
matrix R (R i ~ h i) instead of Heitler's matrix IC

(Ei~ tanlt) for distinguishable particles.
1Vote added in proof Additional in. sight into the rela-

tions between the formulations using reaction matrices
with and without a modi6ed propagator is given by a
direct comparison of the level shifts. As has been pointed
out to the author by Dr. T. Terasawa one can easily
obtain from (5.5) or (5.6)

advice in connection with this paper and related matters.
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APPENDIX A. EQUIVALENCE OF EQ. (1.3)
AND EQS. (1.4)pt

Qout

r Q.
e —hp

Qout

rQ
e.+(al r

I a)/(al a) hp —e. hp—

Out

(I I) e- Qout

rQ.
(ala) e. he—p.+(alrla)/(ala) —hp

(al. I
a) Q'"'

v Cv 'r 1]Q,— —
(al a) e,—hp

( I I ) Q-'
v 'v reg, .

(al a) e.—hp

(1.3)

APPENDIX B. UNIQUENESS OF THE SOLUTION
FOR +e OF SEC. II.

If we let

218 g 7l

f(pr(p))=1-
7r I.

cos'(pa)
x p, (&.1)

p) prz' O' —Cp'+(vnt*/L)r(p)7

Eq. (2.30) may be rewritten as

(a I
T'

I a) = (a I
T

I
a) —C(a I

T'I a)/(a I a) j(~.I ~.')
= (al Tla)/C1+(~ I~.')/(ala)3,

f(p, r(p))=
2v. 'g cos'(pa)

(p)

where T is either K or t and T' is R or v, respectively.
The level shift computed with T' is then in a form very
similar to that obtained with T. The two di6er only by
a term in the denominator, namely by

('U') '(w.
I
w.' —w.)

=«')-'( IT'I )( .I(.-h.-e e)- I .')
= —«') '(al T'I a)&, l (a I

v
I x') I'/(n. —n)'

XC~.+(~)- (alT la) —,g,
where Q= 1—Q, or Q'"'.
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Regarding r as an independent variable, f(p, r) has a
singularity whenever r= T(k,p) where

T(k,p) = (L/prnt*) (k' —p') k& k pz+. (8.2)

Since f(p, r) —+ —~ as r~ T(k,p) from below and

f(p, r) ~ + ~ as r +T(k,p) from a-bove, it is apparent
that for fixed p the graph of f(p, r) intersects the graph
of —2v 'g cos'(pa)/r at an infinite number of points
with r& T(kpz+, p). As L —+ pp, T(kvz+, p) + pp so that
all these solutions become singular for all values of p,
and are therefore unphysical. In addition, there are
solutions with r(T(kFz+, p). Denoting by pz the value

23To facilitate comparison with Tobocman's paper (reference
13) his notation v 'r has been used. The notations m, and 0—1 as
defined in the present paper are to be preferred since, while e T
is well-defined, u ' may not exist.
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of the relative momentum for which function. The adjoint equations are

f(px,0)=+—Dx,x"'=o, (bI tt= (bI.+(bI tt v—, (C.1e)

consider first the case p) px, for which f(p,0) (0.There
is a solution of Eq. (2.30) with positive r, and also one
for a large negative r since f(p, 7) —& 1 as r —+ —~.The
latter solution moves off to —~ as L —& ~ for all p. A
unique physical solution rxy('&(p) &0 (p& px) remains.
The positivity is in agreement with the result for the
Goldstone reaction matrix t. If p(px, then f(p,0))0
and there is a solution with 7 (0 and also one for a large
positive r which is near, but less than, T(k px+,p). The
latter moves off to + ~ as L ~ ~ . Therefore for p (px
there is also a unique physical solution, with ~x„(p)
(0, the negativity again being in agreement with the
result for t.

tla)=via)+v tI a), — (C.1a)

l~)=(t —~.)lo)=(to+ V—~ )l~)=o, (c 1b)

APPENDIX C. ON MOSZKO%'SKI'S
"SEPARATION METHOD"

To conform to the literature p —h will be denoted by e
and Q'"' will be written Q. However, reaction matrices
for distinguishable particles will be denoted by E as in
the rest of this paper rather than by the t„, (no ex-
clusion) of Levinger et al. or various notations of
Moszkowski, Scott, and Kohler. One has

(bl»=(blfl, ». (C.1f)

It is assumed that the unperturbed states
I a), I b),

are real so that (b I
tt

I a) =—(a
I
t

I b); in the plane-wave
basis this requires symmetric or antisymmetric com-
binations.

Following Kohler, " expansion of t is hrst made in
terms of a matrix, here denoted by T, (Kohler's G,N),
satisfying

where

T, la) =v, la)+v,—2, la),

&=&e+&t

(C.2)

(C.3)

The equation for T, differs from the equation for the
reaction matrix t, determined solely by v„satisfying

t, la)=v, la)+v, t, la),
ea

(C.4)

by involving b rather than h, =ho+V„where V, is
produced solely by the potential v, .

If the separation of v into v, and vi is allowed to be
momentum dependent in order to keep the phase shifts
8g' small, then v, and vg are not Hermitian. If an average
separation distance is used for ease of computation,
then v, and vi are Hermitian and various terms given
below will vanish; however, certain other terms will

acquire larger values. T,t. and Q&,~ satisfy

tla) =», lu)=vlf. ), (C.1c) (bl T,t= (bin, t+(bl T.t v.t, — (C.Sa)

fi, I ~) =
I ~)+ t

I o) =
I
~—)+—»,

I o), (C.1d)
T',t=n, .tv, ~, (C.Sb)

ea ea
(blQ, t=(bl+(bl T,t =(bl+(blftr, », t——. (C.Sc)

where V is the self-consistent single-particle interaction
produced by e and lf,) is the Bethe-Goldstone wave An expansion of t in terms of Qz, and v& is given by

(bltl )=(bl("+ )fl I )=(bILfi .'—& .'.'(Q/ )3("+ )fl
I )

= (b I fir.'~.
I 1+(Q/~.)6 I ~)+(b I fir.'~if' ~ I ~)—(b I fir. '& '(Q/~~) t

I ~)
-Q Q-

=(blflr, ~, l~)+(blfl. .'.,fl, l~)+I b fir.' .——»t—«
I

e. e~
(C.6)

which divers from the operator expression in Kohler s Eq. (6) by distinguishing e, and e& in the third term. The
second term can be expanded to give

f Q Q i (
(blur. "iftil~)=(bl~~l~)+I ».' »+» t ~ I+I ».'—~~—t ~ I—

e. j i '
e, e. )

If v., is Hermitian the diagonal elements of t are

(i Q i ( Q 'i f(~ltl~)=(~I2'. +~il~)+I ~ ~~—(22'+&i) & I+I &»—(t—2'.—~i) ~ I+I ~ 2".—~i—«
I

e, ) i e, ) i e, e, )

(C.6a)

(C.6b)
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It is desirable to express the first term of Eq. (C.6) in terms of T,t or T, and i), —v,.t. One has

(blfl, .'~,
l ~) = (bl T.'I ~)+(bl~,,'(~,—~,') I~).

Also

(blBa 'ala. ) , (bl=T,'la)+ b Ba! (a a '.)—B.a T.—-a).
&a

(C.7a)

= (b
I
T.+B'T. T,!Ba—Ia) —.(b B '(aaaa) ,—T a—).e„

-e e- i e= (b I
T

I ~)+ I
b T ' ——T

I

— b Dr '(" &") —T* &—
I

eb e, i
'

e.
(C.7b)

=(bIT. I~)+I b T,t ——T ~
I

—(blflr*'(~ —")(~lr.—1) l~)
-Q e-

eb e.
(C.7c)

Equation (C.7b) reduces to Kohler's Eq. (7) if gb=g„. Subtracting (C.7a) from (C.7c) gives

(b I
T. T.'I a) = (b I

B—a '(a. a!)Ba Ia.) (—b T'a —. ——T. a I,

Q Q

eb e. j (c.s)

which does not vanish if e, is Hermitian unless gb= g,.
In order to isolate the e6ect of the exclusion principle, T, may be expanded in terms of a reaction matrix E,

(MS's ti&, Kohler's G, ; D signifies that dispersion is included in the propagator) satisfying

One finds

EPI(b) =i),
l
a)+i). EP

I
a).

&a

(bIT. lla)=(bll& 'Ia)-(be, aa

(c.9)

(C.10)

1-Qb —
Q ) 1-Q.-Q

P —IabT ' .= T, a = —IaE, IC a)e. 4 e.
-1-e e-——T, a . C11

e

1
+g a&, & bl bZP t

8a eb
The analog of Eq. (C.S) for E,n is

The chief eGect of the exclusion principle on the level shift is through the "Pauli term"

(biz, —z, l~)=(bin~. .(.,—., )a~.-l~)—
I

b z,
The lowest approximation to I' is therefore, if v,~=7:„

8b

1—Qb 1—Q E,~a.
&a

(C.12)

1-Q —Qr.& &= —u r,»
e,

= —(~l (fl~.'—1)e (1—Q.—Q)(~l~. '—1) I ~),

(C.13a)

(C.13b)

in agreement with Kohler's Eq. (20).
For ease of computation E, has been further expanded in terms of a reaction matrix E, for freely propagating

particles (no dispersion); its integral equation is

(C.14a)
&a

0

where
e,'=g '—hp. (C.14b)
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The expansion of E,~ in terms of E, is

The "dispersion term" for the level shift is

-1—Q. 1—
Q ED a l.

e. e. )0
(C.15)

2 2

(s~Ic. Ic.~s)—=(a (Qz&—ne. ' ——e.(0», —o s .
0ea ea—

(C.16)

One could approximate Qrc. D in Eq. (C.16) by 0&, or by Qrc„ leaving correspondingly different correction terms.
The equations as given here contain corrections to terms beyond the second order, which should be included if

detailed calculations are extended to third order.
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A relativistic model of x-77. interaction is proposed from analogy with field theory. The main assumption
in the model is that the interaction kernel is separable in momentum space. A Frazer-Fulco type resonance
formula for the isovector 277 resonance is exactly derived on this model and its parameters are determined
from the observed 271- resonance at 750 MeV.

The 3~ problem is then solved with this model of m--~ interaction and the exact isoscalar 371- wave function
expressed in terms of a single-parameter function which satisfies a one-dimensional integral equation for the
cases of "scalar" and "axial vector" forms of the wave function. It is found that it is possible to understand
the observed energy (780 MeV) of the 371- resonance, on the above model, only for the case of the axial vector
wave function and not for the scalar case. The model thus predicts a vector isoscalar meson at the observed
energy.

1. INTRODUCTION

'HE recent experimental discovery by Maglic et al. '
of an isoscalar three-pion resonance at 787~25

MeV must be welcome to a large number of persons
who, for various reasons (electromagnetic structure,
resonances in m-S and E-E scattering, spin-orbit po-
tentials, etc.), found it necessary to postulate the ex-
istence of an isoscalar vector meson. In the same
analysis, ' these authors have also confirmed the ex-
istence of the previously known' isovector two-pion
resonance at about 750&50 MeV, from which, they feel
confident, the 3m. resonance can be distinguished, in
spite of the anomalously small separation of the two
resonances. Their analysis, based on Dalitz-type plots,
though lacking detailed statistics, suggests further that
the resonance can be interpreted more likely in terms
of an axial vector "matrix element" (corresponding to
a vector meson) than as vector or scalar elements
(axial vector or pseudoscalar mesons, respectively).
While such an interpretation would no doubt be most

'B. C. Maglic, L. W. Alvarez, A. H. Rosenfeld, and M. L.
Stevenson, Phys. Rev. Letters 7, 178 (1961).

M. L. Stevenson et cl., University of California Radiation
Laboratory Report UCRL-9814 (to be published); also E.
Pickup, F. Ayer, and K. 0. Salant, Phys. Rev. Letters 5, 161
(1960).

desirable from the point of view of the electromagnetic
structure of the nucleon, there still remains the im-
portant question of whether the muss of the observed
particle fits in with the value needed to explain the
isoscalar form factor. For example, the recent findings
of Littauer et al.' on the nucleon model proposed by
Bergia et al.' suggest that the two-pion state should
have a mass of about 4.0 p, and the three-pion state
an even lower mass, viz. 2.9 p,—a quasi-bound state. If
this interpretation comes to be accepted, the resonances
observed by Maglic et al'. ' should apparently have
nothing to do with the electromagnetic form factors.
However, the very fact that they have been observed
must put their existence on a stronger footing than
those of hypothetical particles dedlced from specific
models of the type discussed in reference 4, at least
until such time as the latter are also "seen." In the
meantime, one hopes that a more careful investigation
would be in order before such a delicate question, as to
the exact masses of the iritermediate T=2 and T=O
vector mesons needed to explain the electromagnetic
form factors, is finally answered.

~ R. M. Littauer, H. S. Schopper, and R. R. Wilson, Phys. Rev.
Letters 7, 144 (1961).

S. Bergia, A. Stangnellini, S. Fubini, and C. Villi, Phys. Rev.
Letters 6, 367 (1961).


