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from the expression given by Born and Huang" in terms
of the dielectric constants and the fundamental crystal
frequency. This value is in agreement with the one
reported earlier by Picus et ul. ,

15 although the input
data which they used for their calculation were sig-
nificantly different than the ones reported in this paper.

"' M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1954)."G. Picus, E. Burstein, B. W. Henvis, and M. Hass, J. Phys.
Chem. Solids 8, 282 (1959).
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The yield vs energy relation is determined for a number of possible photoelectric production and escape
mechanisms involving volume and surface states in semiconductors. Calculations are based on density-of-
states considerations and involve energy-band expansions to lowest nonvanishing order about the threshold
point. The "direct" and "indirect" processes involving volume states have yields proportional to E—Eg
and (E Er)', respectiv—ely. Both processes appear to have been identi6ed experimentally by Gobeli and
Allen. The linear yield also requires, in addition to production by "direct" optical excitation, that the
observed photoelectrons escape without scattering in the volume or at the surface. Energy and angle dis-
tribution functions of the emitted carriers are also determined.

I. INTRODUCTION AND CONCLUSIONS

HE early theoretical work on the photoelectric
effect generally made the free-electron approxi-

mation for the energy band structure. Fan' has given a
general quantum mechanical treatment of the volume
production of photoelectrons. In his more detailed work
he also made the free-electron approximation.

Huntington and Apker' have generalized Makinson's'
work on the surface production of photoelectrons by
taking the band structure into account where Makinson
assumed "free" electrons with a surface barrier.

The present paper deals primarily with the form of
the yield vs energy curve near threshold for a general
band structure and for a variety of photoelectron pro-
duction and scattering mechanisms. These results should

be useful in inferring the production mechanism from
the yield curve. The principal results are summarized
in Table I. The discussion follows the ordering in the
table.

In Sec. II the volume production of photoelectrons by
"direct" optical transitions is studied. In the absence of
volume or surface scattering the yield should be linear
with energy, E—E&, above threshold Ed. There is good
evidence that this mechanism has been observed by

Gobeli and Allen4 in silicon and by Scheer' in CdTe and
CdS. This mechanism should produce the highest
quantum yields near threshold but it also has the highest
threshold energy. The threshold energy will consist of
the energy to free the electron, the energy of the hole
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TABLE I. Dependence of photoelectric yield, 7, on photon
energy, E, near threshold, Ez, for a variety of production and
scattering mechanisms. G~ is the Fermi level measured from the
vacuum.

r H. Y. Fan, Phys. Rev. 68, 43 (1945).
2 H. B. Huntington and L. Apker, Phys. Rev. 89, 352 (1953);

H. B. Huntington, ibid. 89, 357 (1953}.' R. E. B. Makinson, Phys. Rev. 75, 1908 t,'1949).

4 G. W. Gobeli and F. G. Allen, following paper LPhys. Rev. 127,
141 (1962)g.

~ J.J. Scheer and J. van Laar, Philips Research Repts. 16, 323
(,1961).
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which is usually not at the valence band maximum, and
the kinetic energy of the emitted electron tangential to
the emitting surface which is required by conservation
of tangential momentum. Since the surface will usually
be normal to a symmetry direction, the threshold may
often occur at a point on the symmetry axis so that no
tangential energy would be required. In fact, tangential
momentum will often be a strong factor in forcing the
threshold to occur on the symmetry axis normal to the
surface. However, for the L111j direction in silicon
studied by Gobeli and Allen, the upper valence band is
known to be degenerate in the absence of spin-orbit
interaction. Normal to the L111$ direction, the de-
generate bands separate with terms linear in k. Unless
the relatively small spin-orbit interaction negates the
importance of the linear terms, the direct threshold
should occur at three equivalent points off the L111j
axis and tangential kinetic energy should be required at
threshold.

In Sec. III the effect of surface or volume scattering
on the yield due to direct transitions in the volume is
considered. The yield is found to rise quadratically,
(E Ed,)', above—the threshold, Eq, . Eq, will often be
lower than Ed because there is no transverse momentum
conservation requirement.

In Sec. IV indirect transitions in the volume are con-
sidered. The yield is found to increase as (E—E;)& above
the indirect threshold, E;. In this process the hole is left
at the maximum in the valence band and there is no
tangential energy of the emitted electron at threshold.

In Sec. V the yield vs energy is calculated for a
number of processes which may occur at the surface.
These processes are divided into two categories. The
6rst category, treated in Sec. V A, consists of processes
in which the hole is left in a "volume" state. In Sec. V 8
we treat processes where the hole is left in a surface
state.

In category A, an imperfect surface may be the mo-
mentum absorber for an "indirect" process whose yield
would vary as (L& E,)"* just as fo—r the volume indirect
process. A perfect surface can only absorb "normal"
momentum. For processes of type "A" with a perfect
surface, the yield is proportional to (E—E;)& assuming
that the valence maximum lies along the surface normal.
This need not be true in general, but is true for Si, Ge,
and all III-V's as far as is k.nown, since their maxima
lie at k=0.

Huntington and Apker' have demonstrated that for a
valence band possessing a nondegenerate maximum at
k=0, the k=0 wave function possesses a node at the
surface. All transition probabilities at the surface are
then proportional to E—E, which would introduce an
extra power of E—E; into all yield-energy dependences
quoted above for surface mechanisms. We find that the
Huntington-Apker node is not present for degenerate
bands or for bands, where k„, —k„QO are the k-
coordinate projections normal to the emitting surface of
equivalent maxima. In particular, for Si, Ge, and the

III-V's whose maxima are degenerate, the Huntington-
Apker extra power of E—E; should not be included.

In Sec. VA we also consider the effect of the at-
tenuation of thelight intensity,

~

Ao~'e ', which maynot
always be negligible, since n has a value of 2)(10' cm '
for Si at 4.5 eV according to Philipp and Taft. The
effect is to relax the selection rule, dk„=0, on mo-
mentum normal to the surface for "direct" transitions.

In Sec. VB a number of processes involving sur-
face states are discussed briefly. Four cases involve the
perfect surface with band states. The cases depend on
whether momentum tangential to the surface is or is not
conserved ("direct" or "indirect" processes) and whether
the threshold occurs at or away from the Fermi level.
The yield energy dependences may be listed:

1. Direct; threshold EasA
~
&z ~; I'-E—Eas.

2. Direct; threshold
~
Bp~; I" (E—

~
8~~)'.

3. Indirect; threshold E,sN
~
B~~; I' (E Es)'. —

4. Indirect; threshold
~
hp~; I' (E

~

8p~)'.

Two cases involve states due to imperfections. If the
states are distributed in energy with constant density
at the Fermi level, the yield is proportional to
(E

~
Bz~)'. If they are lumped at a discrete value,

—El„ the yield goes as E—El,.

A. Assumptions and Conventions

The yield vs energy dependences quoted are based
entirely on "density of state" considerations assuming
that matrix elements do not vary rapidly near threshold.
The only exception is Sec. V, where we discuss the
Huntington-Apker node. Symmetry "forbidden" matrix
elements may be important in practice but we do not
discuss them further in this paper. The general effect
would be to add an extra power of E to the relevant
yield vs energy relationships. When quantum yields are
written down, it is assumed that optical absorption
varies slowly near threshold. In general, if a quantity is
not zero at threshold it is assumed to be slowly varying.

Strict energy conservation is always assumed. In fact,
"lifetime broadening" effects due to strong scattering
mechanisms, particularly where "pair production" is
possible, will act to smear out predicted thresholds.

Energy loss is treated on an "all or nothing" basis, see
Sec. III B. This assumption is certainly not always
adequate.

Taylor expansions to lowest nonvanishing order for
functions of the energy bands are always made about
the threshold point. This approximation may go bad
quickly when bands are close together in energy at the
relevant k point. The simple results, in general, apply
only for energies small compared to appropriate band
separations.

%e assume a complete set of states which are HIoch
states inside the crystal and join smoothly through the

H. R. Philipp and E. A. Taft, Phys. Rev. 120, 37 (1960).
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image barrier to free electron states of equal energy and
equal tangential k vector. These states are indexed by
their Bloch k vector. All "transitions" and "scatterings"
are between such states, either in the volume or at the
surface.

Transitions are considered between a valence band,
indexed 2, and a conduction band indexed 1. Sums over
different band pairs may be important, a,s in. Eq. (1),
but will be suppressed, when possible, to avoid pro-
liferation of symbols. Similarly, sums over phonon
modes will not be explicitly indicated.

The symbol E refers to photon energies while h is used
to denote electronic energy levels with the vacuum
chosen as the zero of energy.

All calculations are made for a filled valence band,
empty conduction band at T=0 with no "band bend-
ing" at the surface.

.z.
I
A 1»(k) l'~(h~(k) —h~(k) —E)&k, (1)

~total =
1,2

A is the vector potential of the light, V is the volume. A
factor of 2 for spin is included, the integration goes over
one Brillouin zone (B.Z.) and transitions are considered
between pairs of bands with energy B,(k). The index 1
runs over all empty bands, 2 runs over all filled bands.
8 is the photon energy.

If scattering and energy loss in the volume and at the
surface are neglected, the condition for escape may be
written

II. DIRECT TRANSITIONS IN THE VOLUME

The rate of photon absorption in a semiconductor in
the one-electron approximation is given by the "golden
rule"

2m e2 2U
ZV12 =—

5 m'c' (2m)'

vacuum is on the right of the solid. We neglect the re-
Rection by the image field barrier which MacColl has
shown to be small. '

The quantum yield, electrons per photon, denoted by
I", is then given by

P ~

A. py, (k) ~'b(hy(k) —Bg(k) —E)dk
1,2

p i
A pg2(k) i'8(hg(k) —b2(k) —E)dk, (3)

z 1,2

where the prime denotes integration over those values
of k satisfying condition (2). The factor by which the
yield is reduced due to scattering is treated in Sec. III F.

Equation (1) assumes "direct" transitions with the
customary neglect of the k vector of the light. We treat
"indirect" transitions in Sec. IV.

A. Energy Deyendence of Yield

We are interested in the energy dependence near
threshold of the yield, V, in Eq. (3). At threshold, Ez,
we assume that the range of integration in j' collapses
to a single point, or set of points equivalent by sym-
metry, kq.

The energy conservation relation,

E= 8,(k) —82(k),

defines an "optical energy" surface. The critical escape
condition,

h, (k) =I'b'kP/2m,

defines an "escape" surface. At threshold these two
surfaces are tangent at the point kq for an optical
energy Ed. Let a be the common normal at kz directed
toward increasing optical energy. These surfaces are
depicted in Fig. 1.Let a, b, c be an orthonormal coordi-
nate system in k space with origin kq. We may make the
following expansions which will be valid for small

k„kg, k. :
& h)/Bk. )0,

8, (k) =k'(kP+ k„")/2m.
(2) hg 82 Etg+

~
VJC($] 8g)

~ gkk~+ quad( kbk, ), (5)

The energy zero is taken to be the vacuum. The k vector
tangential to the surface, k~, is conserved but the normal
k vector, k„, k„' in solid and vacuum, respectively, is not.
The positive group velocity condition assumes the

FIG. i. The intersection of the "optical energy" surface with the
"escape" surface. As E is decreased the circle of intersection
shrinks to the point kq. a is normal to the escape surface at hg.

&2k)2

h~ — ——ngk. +quad'(kb, k.).
2m

(6)

7 I . A. MacColl, Bell System Tech. J. 30, 588 (1951).

The absence of terms linear in kb, k. in Eqs. (5) and (6)
is implied by the quadratic functions quad, quad . Posi-
tive o,1 corresponds to a "lower" threshold which is the
customary situation with the yield increasing for ener-
gies above Eg. For negative o.1 we have an "upper"
threshold with yield increasing below Ji &. A different
type of "upper" threshold would be caused by a maxi-
mum in h~ —h2. Since V~(B~—8~)=0 in this case, a
different expansion than that of Eqs. (5) and (6) is
required.
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I
~~(@ —& ) I ~'

E2mn,

(7)

Pb and P,. must have the same sign, which is positive or
negative for a "lower" or "upper" threshold, respec-
tively. The orientation of axes 0 and t," has been chosen
to simplify the quadratic form in kb, k, in Eq. (7).

The integral in Eq. (3) is then over those values of
kb, k. which satisfy Eq. (7). The "differential yield" is
proportional to the area dk~dk, . When the surface is
normal to a symmetry direction, the threshold point kd
and 7'~(8,—hs) will often also be normal to the surface.

If we substitute Eq. (5) in the integral in Eq. (3) we
can integrate over the variable k, . This integration re-
moves the 8 function and installs the energy conserva-
tion relation; E= B~—h2. If ee eliminate k between
Rqs. (5) and (6) using Eq. (2)& energy conservation may
be wtitten

8-Ee=p'k "+pbkb'+p, k, ',

In this case k„', kb, k, are the k-vector components of the
emitted electrons. They must lie on the ellipsoidal yield
surface given by Eq. (7). The surface character of the
yield clearly means that in a given direction the emitted
electron has a unique energy. This is to be contrasted
with the case of scattering or "indirect" transitions dis-
cussed later where the yield relation has a volume
character and a range of energies will correspond to a
single direction. This fact may prove useful in differ-
entiating between different processes.

When kd is not normal to the surface, k~ and k, refer
only to the internal electron. Let 8k= (O,kb, k,) IW. e may
neglect k compared to k~, k, in the region where
Eqs. (5) and (6) are valid expansions. ] Then k„',
(ke+5k) ~ are coordinates of the emitted electron, where
the subscript, t, refers to the projection on the plane of
the surface. The electrons are nearly tangential to the
surface in the direction kg~.

The integration over kb, k, in Eq. (3) is just the total
area for which Eq. (7) can be satisfied. We find'

F'= y(E—Ee),
~gIA p»(4) I'

I
~b@r—&s

I "(pbp. )-'*

~ Z0

I
A p„(k) I'8(h, (k) —Ss(k) —E)dk

g is the number of points, kz, equivalent by symmetry.
We have assumed that p&s(k) is slowly varying in the
vicinity of ke. If the total absorption is also slowly
varying, p will be nearly constant and the yield will rise
linearly with energy. Linear dependences of this sort
have been observed by Gobeli and Allen4 and Scheer. '

B. Nondegenerate Symmetric Bands

When the emitting surface is normal to a symmetry
direction of twofold or higher symmetry, the threshold

point, ke, and the gradient Vj, (8~—Ss) will often occur
along this direction. This is because energy terms linear
in k normal to the axis are required to vanish by sym-
metry. As noted earlier, k„', kb, and k, in Eq. (3) are
then the k-vector components of the emitted electron.
The band parameters P', Pb, P, are probably most easily
determined from the energy of the emitted electron as a
function of direction, as given by Eq. (7). These
parameters also enter into the differential yield, dF,
which may be described with the following choice of
polar coordinates:

k„'=k cos8,

k~= k sine cosy,

k.=k sin8 sing,

dQ=—sin8d8d y,
(PbP.)'ed' k'

dY=
rr(cos8 cos'pI 1+(pb/p') tans8$+cos8 sin'yL1+ (p,/p') tan'e))

(E Ee)—
k2=

{p'. coss8+pb sin'8 cossy+p, sin'8 sinsy)

(10)

(12)

dQ is the differential element of solid angle delned by
Eq. (10). 8 is measured from the surface normal. 7 is
defined in Eq. (8). Equation (12) is obtained by substi-

tuting Eq. (9) in Eq. (7). The energy of the emitted

electron is 5'k'/2m, which is a unique function of direc-
tion for a given photon energy, B.

If the symmetry axis has only twofold rotation sym-

s Equation (44) gives the reduction in yield due to scattering.
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metry, energy is quadratic in k normal to the axes but
the principal axes are not specified. The axis will in
general be different for conduction and valence bands
and for the relevant axes in Eq. (7). For "two-mirror
plane" symmetry the axes are specified. In this case we

may write

6=nika+ pibk 2'+Pi.k',
h2 n2ka+P2bkb +P2ckc Ed

is normal to the emitting surface; energy zero is the
vacuum. The quantities Pb, P„P' in Eq. (7) are easily
found to be

(ni n2) (k /22ib) +n2 plb nlP2b

In the [111)direction a new feature appears. The
quadratic terms associated with A under the square root
which were riot present for the [111)direction will have
the effect of displacing the threshold point away from
the [111)axis if 6 is small. The emitted electrons will
then have a hnite transverse kinetic energy at threshold.

If 6 is small and if the constant C in Eq. (16) were
negligible (there is no reason it should be), the energy
bands would be cylindrically symmetric and the thresh-
old would occur on a circle rather than at three equiva-
lent points. In this case, the yield goes as (E Ez)'—and
then abruptly changes to linear, E—E&, when the
emitted electrons are finally able to appear with zero
transverse energy. To illustrate these points we con-
sider a less general case, namely,

(n, n, ) (k—'/2222)+nppi. n,p2. — (14) hi(k) =nik +pi(kb2+k. 2),

hi —82 ——nk, +p(kb2+k, 2)&i [A(kb2+k. 2)]'+Ep, (19)
p'=

~
ni —n2

~
(&'/2222ni) E= Bg—82. (20)

The number of equvalent threshold points, kz, will be
unity in the case where kd is normal to the emitting
surface.

k.=k.(1/VS, 1/v3, 1/V3),

kb ——kb(1/v2, —1/W2, 0),
k, =k, (1/+6, 1/Q6, —2/Q6).

(17)

Equations (17) define the vectors k„kb, k, in terms of
their x, y, s components. 6 is the spin-orbit splitting. A
linear k dependence along the symmetry axis is assumed.

In what follows, we assume the surface is normal to
the symmetry direction in question. If the computation
leading to Eq. (8) is carried out using Eq. (15) and
ignoring 6, the same linear dependence of yield on
photon energy is found. This is due to the quadratic
character of the energy dependence on transverse mo-
mentum. The angular dependence of the square root in
Eq. (15) enters into the constant y. Two regions of
different linear slope might be found for E—E~&&5 and
for E—Eq))A in favorable circumstances.

C. Degenerate Symmetric Bands

In cubic materials the [111)and [100)directions are
symmetry directions of special interest. They both
possess doubly degenerate bands which split under spin-
orbit interaction. Group theoretical considerations show
that the forms of E vs k in the vicinity of the symmetry
axes are

[100)direction

E(1)= k,+P(k.2yk„2)

a[8i(ka'+k ')'+82k, 'k '+ (6/2)']'* (15)

[111]direction

E(k) =nk +P(kb'+k ')~[A(kb'+k ')
+8(kb'+k, ')'+C(k, '—3k,kb')+ (6/2)']& (16)

~ith the use of Eq. (19) the integral in Eq. (3) is easily
performed. The integral of dk over the 8 function gives
a factor 1/n and requires energy conservation, [Eq.
(20)). The integral is then proportional to the area in
kb, k, space which satisfies Eqs. (2), (18), (19),and (20).
Eliminating k, between these equations, we have

(kb2+k, 2) &

aiA&+2 (A+b[E (n/ni)(k2/2—222)k ")}'*

(b/2)
(21)

Eg —(A/b)+ Ep,
——

(kb2+k 2)g'*= 2A&/b,

k2 ~4A
k.g= —pi

~

2222 1nib2

(23)

(25)

The solution clearly involves transitions corresponding
to the (—) case in Eq. (19). For E&Ep, only the (—)
case is involved and the permissible area is given by

Farea= 1'62r[Ab(E —Eq)]'*/b2 E E&p&0 (26)— .

For E&0, both & bands contribute and the total per-
missible area summed over both + and —transitions is

F area= 82r[A+b(E —Ed))/b', E Ep) 0. (27)—

f k n
b—=4 p—~pi—

2222 n,

The two & signs are independent, the 6rst refers to
Eq. (19).The coeKcient bn/ni must be positive in order
that unbounded values of k„" and (kb2+k.2)' do not
occur. We also assume b positive so that we get the
normal case of a "lower" threshold. The threshold is
easily seen to be given by
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Hence, the yield abruptly switches from square root to
linear (but with continuous value and slope) as the
permissible area touches the symmetry axis.

As remarked earlier, this solution may not have much
significance since there is no good reason for ignoring
the cubic terms in Eq. (16).With the inclusion of cubic
terms the threshold would reduce to a set of three
equivalent points off the

I 111jaxis which would give a
linear yield as shown earlier. However, one would expect
a small range for this linear dependence because of the
proximity of the other band.

I'"=p p f'f (E E')'— (28)

f,(E Eq,) is t—hat fraction of the internally excited
electrons which have sufficient kinetic energy to escape.
p, is the probability that the electron is scattered with-
out substantial loss of energy. f,(E Ez,) is the fr—action
of the scattered electrons which lie within the escape
cone determined by the external tangential kinetic
energy. p, is the probability that the scattered electron
can escape without substantial loss of energy.

III. DIRECT VOLUME TRANSITIONS
WITH SCATTERING

In the event that the threshold energy for direct
transitions, Eq, corresponds to a k vector, kq, which is
not normal to the emitting surface, there will be a lower
energy threshold, Ed„resulting from surface or volume
scattering which allows the electron to escape with very
little momentum tangential to the surface. The yield
near threshold will be much lower in this case and will
rise like (E Ez,)' a—s compared to (E Ed) since o—nly
a small fraction of the scattered electrons will lie within
the solid angle permitting emission.

The total yield, F&„in the scattering case depends on
the product of four factors which we shall consider in
turn.

8j 89 Edg+
I
V+8/ 8$

I Qg k~+quad(kp)k, ). (30)

We also expand 8~(k),

8,(k) =n,k.+quad'(k b,k,)a5a&,

e=—8, (k)w5(o.
(31)

e is the energy of the emitted electrons. The absence of
linear terms in k&, k, is a necessary consequence of the
assumption that kq, is a threshold. The procedure is
entirely analogous to that used for Eqs. (5) and (6).
Substituting Eq. (30) in the integral in Eq. (3), we
integrate over k„ to remove the 6 function. Then k, can
be eliminated between Eqs. (30) and (31), giving

E Eg, $Vg—(8g ——82) g„,/n, $—e+Pgkg'+P, k,' (32).

Axes have been chosen for b and c to simplify the quad-
ratic form in Eq. (32). pq, p„and Vq(8~ —82)/n~ must
be positive for a "normal" threshold. We use Eq. (32)
to define an "internal" differential yield, dI';, for elec-
trons of energy e in an energy range de. Using Eq. (3),
we calculate

A. Internal Kinetic Energy

The threshoM, Ed,„is defined as the minimum photon
energy for which the conduction electron is energetically
able to escape. We make our energy-band expansions
about the point, kd„defined by

8, (kg, ) = +)i~,

Eg, = 8~(kg, )—82(kg, ).

Energy zero is still the vacuum and 8, (k) is the con-
duction band. +, —is for phonon. emission and ab-
sorption, respectively; Sco=0 for elastic scattering. We
expand E about kz, in the same way as in Eq. (5):

dI', =f,(l |7.(8i—8~) I ../~~)de

~gI & p»(4 ) I'(&~/I ~~(8j.—8~) I ~")

(p~p.): IA I-(k) I'~(E—8 (k)+8 (k))dk

(33)

0(C( (Qg/ I
7 Q(8$ '82)

I ~„)(E—E~.). (35)

The total fraction of electrons having sufficient kinetic
energy to escape is f,(E Ez,) as contai—ned in Eq. (28).
g is the number of distinct points kz, which are equiva-
lent by symmetry.

B. Probability of Scattering

%e should first mention and then dismiss the possi-
bility of "surface umklapp" scattering. By "surface
omklapp" we mean scattering by a principal vector of
the two-dimensional surface lattice. For high-index
surfaces these vectors may be much smaller than the

principal vectors of the solid. For low-index planes such
as L111$ and L100j in the face-centered cubic lattices,
the principal vectors of the surface are just the principal
vectors of the volume projected on the surface plane;
hence, no new scattering is obtained. Since the usual
surfaces are low index, it seems unlikely that "surface
umklapp" will be important.

Note added irl, proof In the case of ". surface super-
lattice" structures such as those found in germanium,
"surface umklapp" could be more important.

We divide scattering mechanisms into two types:
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p, =w./(w. +w t,). (36)

(a) Phonons, impurities, or imperfections in the volume
or the surface. (b) Electron-electron collisions resulting
in pair production. Within one band gap of threshold,
category b necessarily leads to loss of the excited elec-
tron. m and mb represent the total scattering rate of
mechanisms u and b, respectively. We assume that
energy losses can be ignored for processes of type u
(obviously not always true for phonons), and that type
b scattering always removes the electron from considera-
tion. Then the probability, p„ that one or more scat-
terings of type u precede a scattering of type b may
easily be shown to be

band structure information contained in the unseat™
tered case has been washed out by scattering.

—g
—WQ t

e (40)

where t is the time required to reach the surface. If the
electron moves without scattering, this time is

D. "Escape" Probability

The final factor to be considered is the probability
that the electron travels from the point of origin to the
surface without su8ering an energy losing collision. This
we call the escape probability, p,.

The escape probability may be written

C. "Escape" Cone

We now calculate the fraction of scattered electrons
which are able to escape. Their tangential momentum,
k&', must satisfy the energy conservation relation

e=5'(k '2+k "2)/2m (37)

where e is the total kinetic energy of the emitted elec-
trons. A detailed treatment of the scattering seems
uncalled for; hence, we assume that the scattered par-
ticles are distributed uniformly over the energy shell
8(Bi(k)%5co—e). This is equivalent to assuming a mo-
mentum independent scattering matrix element. For the
case m, ))mb, so that many quasi-elastic scatterings
occur, the assumption should be quite accurate.

The fractional "volume" of the energy shell satisfying
Eq. (37) is easily seen to be 2f,L ~

V'~(8, —82) k„,~/ni]e,
where

mPn, /( '.7g(8,—h, )g„[]

~(hi(&) )d&
~ Z0

(38)

d V~cosNQ ed&, (39)

where 8 is measured from the normal and c is the emitted
electron's kinetic energy. dQ is given by Eq. (10). For a
given direction, a range of energies from a=0 to
&= {&i/

~
Vk( hi —82)

~
g„,}(8 Eg,) may be found in con-—

trast to the unscattered case where a single energy
occurred. The fact that e,„/E—Ed, still attests to the
initial production by direct transitions, but most of the

k„ is the point on the energy shell 8(h&) normal to the
emitting surface and assumed to be normal to the energy
shell also. f, is assumed not to vary rapidly with energy
near threshold; The total yield factor introduced by the
escape momentum condition, Eq. (37), is

f,(g +~,)

where an average has been taken over all e for which
escape is energetically possible, i.e., values of e satisfying
Eq. (35).

The differential yield is easily computed to be

i
ah, /ak„i'

(41)

where x is the distance from the surface of the point of
origin. If many quasi-elastic scatterings occur, the
electron will diffuse to the surface and the escape
probability will be lowered.

The absorption probability per unit length is pro-
portional to exp( —x/l ). If we crudely ignore the
electrons motion prior to the first scattering and average
over x for 3 given by Eq. (41), we find

p =~/(l+~ )

I,= (88,/8 k)1/Awb

E. General

(42)

(43)

The yield in the scattering cases rises like (Z Ez,)'—
as compared to the linear rise (Z Ed,) of the—mo-
mentum-conserving case. The two processes will become
comparable within a few volts of threshold as f.(8 Eg,)—
approaches unity. Of course, the approximations leading
to the linear and quadratic energy dependences will not
generally be applicable for more than a volt above
threshold.

lhi) 1

Bk„)fi(w. +wg)

IV. INDIRECT TRANSITIONS IN THE VOLUME

We have so far considered processes where the ex-
cited electron is produced by a direct optical transition.

F. Escape for Unscattered Electrons

In computing the yield for direct transitions without
scattering we should include an escape factor, 1—p, ', so
that Eq. (8) becomes

n= (1—p. )v(&—&.)
p,

' is the probability of any type of scattering. Re-
placing w& by w +wb in Eq. (43) and using Eq. (42), we
find

p. = t. /(f +~ )



138 EVAN O. KANE

The threshold energy then contains the energy necessary
to excite the electron above the vacuum zero plus the
energy of the hole. Since the threshold will seldom
correspond to a hole located at the valence band maxi-
mum, a lower threshold is generally possible for processes
where the initial excitation is "indirect. "

The rate of "indirect" excitations is given by the
second-order "golden rule"

s denotes a possible angular dependence of effective
mass. The "indirect" threshold energy, E; is then given
by

E,= —e2&ACO

with + for phonon emission, —for absorption. The
density of states may then be written

2z hg2h23
wg3 ———p Q 8(Eg—E,).

3 2 g]—g2
(46)

V2m(m2*) & V'
C=

15~9&'(ah, /ak„)

1, 2, 3 index the initial, intermediate, and final states,
respectively. The initial state is the unexcited crystal
plus a photon; the 6nal state is the electron at k~, the
hole at k~, and no photon. The intermediate state is
formed by optical excitation producing a virtual elec-
tron-hole pair both at either k~ or k, (ignoring the k
vector of the light). A phonon or imperfection then
scatters either the electron or the hole to the final
condgur ation.

Assuming that matrix elements and energy denomi-
nators are approximately constant for all possible transi-
tions near threshold, we write Eq. (46) as

hg2h232m. 2V'
wi3=

t't (2x)6 2 Ey—E2

b(h~(k~) —h2(k2) —E)dkgdk2. (47)

The symbols are the same as in Eq. (1).The quantum
yield is given by the ratio of w» from Eq. (47) to w of
Eq. (1).

The "escape" condition is

hg(k) = (ft'(kP+k„")/2m) &h(o. (48)

t '(~) =
(2m.)'

& (h, (k,)—h, (k2) —&)dk,dk2, (49)

nSV2 82 2 EWACO dk2

l't~ is the momentum tangential to the surface, + is for
phonon emission, —for absorption, AM=0 for elastic
processes. Energy zero is the vacuum. We eliminate the
5 function in Eq. (47) by integrating over k„, the com-
ponent of k~ normal to the surface. This installs the
energy conservation relation which we use, together
with Eq. (48), to integrate over k„ the tangential
component of k~.

2V2

s(0, y)dQ/4n. = 1. (55)

Equation (55) is applicable for degenerate bands. The
density of states for degenerate bands should also be
summed over bands, although this has not been ex-
plicitly indicated. The yield, I', will be proportional to
the density of states as given in Eq. (53).

The differential yield may be written

drl~cosg dQ e(E—E,—e):de, 0(e&E—E,. (56)

e is the energy of the emitted electron. The yield does
not depend on any band structure parameters except in
the factor of proportionality.

V. TRANSITIONS AT THE SURFACE

We distinguish two main categories of optical transi-
tions occurring near the surface. The erst category is
that where the hole left behind is in a "volume" state
and the second category where the hole is in a surface
state. In both cases we assume the electron is in a
"volume" type state characterized by asymptotic mo-
menta k„, k, in. the solid or k„', k, in the vacuum. Near
the surface the normal momentum, k„, is not constant.
For convenience we use the volume state density ap-
propriate to the k„degree of freedom. Alternatively, one
could use the apparently different vacuum state density
appropriate to k„' but the volume amplitudes would
have to be renormalized. We take the state density for
k„as a constant near threshold and always integrate out
this variable to remove the 5 function on energy. The
remaining degrees of freedom are then integrated over
subject to strict energy conservation.

m2* is a density of states mass which has the well-known
value

m, *'*=
g (m.mmmm, ) '* (54)

for g equivalent ellipsoids. The value of m2* in Eq. (51)
is chosen, so that

t.(&)=
16n't't'(8 hg/Bk )

(50) A. Transitions from "Volume" States

In the neighborhood of an extremum, k, we write

h2(k2) = e2+ft'(tt J't )'s(0, y)/—2m2*

1. DiJlse Surface Transitions

Equation (53) should apply for any form of indirect
(51) scattering mechanism including diffuse scattering at sur-
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face imperfections, provided the final state involves a
hole free in the volume.

dk,dk„, (58)

2. Specular Surface Tralsitiorts

Transitions made at a perfect surface must conserve
momentum tangential to the surface (ignoring "surface"
umklapp). The energy threshold will be the same as for
indirect transitions for those cases where the valence
band maximum lies along the k vector normal to the
surface. In this case, we write

Bg(k) =h'(kP+k„'")/2m,

82 (k) =—E,+ h'(kp+ k„') /2m~*. (57)

The yield integral is

single function which can only be done by making the
combined amplitude zero.

In the case of a degenerate maximum, k and k' may
lie in different bands; for a group of equivalent extrema
k and k' may lie in different minima (if the minima have
the same transverse momentum). In either of the above
situations P~ and P~ do not become identical as k tends
to the extremum so there appears to be no reason to
expect a node at the surface in these cases. Si, Ge, and
all known III-V's come in this category since their
valence extrema are degenerate at k=0.

As Huntington and Apker have pointed out, in those
materials where a node is required, the transition proba-
bility vanishes proportional to E—E; at the threshold
for processes where the hole is left at the valence
maximum. The "diffuse" and "specular" yields calcu-
lated in Secs. I and II would then vary as (E E,)'t' an—d
(E E,) '*, respe—ctively.

subject to the energy conservation relation

E E,= kP ———~+
2 m m,*) m m, *

(59)

The electron momentum k„' has been integrated over,
as described above, with the constant state density
factor being absorbed in the proportionality sign. In
Eq. (59), m2* has its (negative) algebraic sign. The
emitted electron has its maximum kinetic energy when
k„=0.The parameter no~* can be determined from Eq.
(59) by measuring this maximum energy at any angle
not normal to the surface. The total and differential
yields are easily found by integrating over dk„dk„ in
Eq. (58) using Eq. (59) and Eq. (10)

I ~ (E—E~)~

d F~ e cosOdQde/(E E,—e)~—
e—= eL1—(m/m2*) sin'0),

&max= + +i~

e is the kinetic energy of the emitted electron.

(60)

3. Huutimgtort Apker Xode-
Huntington and Apker' have demonstrated that for a

nondegenerate valence band with maximum at k =0 the
electrons close to k=0 will have a node at the surface.
They show this by calculating the ratio of incident and
refiected amplitudes using matching conditions at the
surface. The incident BLoch wave is u~(r)e'~' and the
reflected wave is au~ (r)e'~", where k„'= —k„, k,'=k,
which results from the requirements of transverse mo-
mentum and energy conservation. They find that they
are unable to match at the surface (except for an
unusual special case) unless a —+ —1 as k —+ 0, which

gives a node at the surface. The reason this occurs is that
u~(r)e'~'~u~ (r)e'"" as k —+0 so that one is at-
tempting to satisfy two matching conditions with a

Ape " f', (61)

where x is normal to the surface. The matrix elements
for optical transitions are then easily seen to be pro-
portional to

instead of being proportional to a 5 function of the total
momentum change.

If Eq. (62) could be trusted a long way in the
"wings, " the calculation would be quite analogous to
the case of "specular" surface transitions as treated in
Sec. II. This conclusion is almost certainly wrong.
Equation (61) is of classical origin. It may be derived
semiclassically by considering a wave packet moving
with the group velocity and decaying with a Weisskopf-
Wigner factor t.'"' where m is the rate of making ab-
sorptive transitions. This formulation suggests the
"energy broadening" approach which yields the energy
nonconservation factor

1/4 (AE/h)'+ w2. (63)

Equations (63) and (62) are very similar. Equation (63)
is known from more accurate considerations to give fa,r
too much amplitude in the "wings, " hence it appears
that Eq (62) shou. ld likewise be mistrusted. The true
effect is no doubt to give a slight fuzzing of the "direct"
yield characteristic. One might hope to study the
"fuzzing" effect with the use of expansions similar to
Eq. (13).The results are seen to diverge which could be

4. Effect of Light Attertuatiort

In all calculations so far we have ignored the k vector
of the light. Even if this were not done, no qualitative
change would result. When we consider the effect of the
attenuation of the light, however, the situation is
qualitatively different because of the "fuzzing out" of
momentum conservation.

We assume the light attenuates according to
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corrected by more accurate expressions for B(k) but
more likely necessitates the use of an improvement on
Eq. (62).

B. Transitions from Surface States

the condition that kd( is a threshold. This then requires
k, dr ——0. Linear terms in o.2(kb kbdr) are allowed since
this quantity has only negative values for states which
are initially occupied.

The yield integral is

We now consider rather briefly a variety of processes
in which the hole is left behind in a surface state. The
first four processes assume a perfect surface so that the
surface states possess well defined bands and tangential
momenta, k q, k,. The normal momentum of the excited
electron has been integrated out, leaving strict energy
conservation.

I' dkgdk,

subject to energy conservation

Ak AkgdP
+ -")

2m m

(69)

1. Direct Transitions; Threshold&
I

h p
I

We assume for this case that the threshold point lies
below the Fermi level and that tangential momentum which integrates to
is conserved. The appropriate energy band expansions
are P'~(E

I
br I)k (7l)

&2

X (kb —kgb )+ —p )k.', (70)2'

e) = 52(k 2+kb2+k 2)/2m

52k 2

E el e2 +pb(kb kbds)
2m

+p. (k. k.ds)'—+Eds

3. Indirect Transitions; Threshold&
I
Br

I

In this case the surface band maximum, —E,q,
located at k~, k, must lie below the Fermi level. The
appropriate expansions are

e& is the energy of the electron in vacuum, c2 is the
energy of the hole. Equation (65) is energy conserva-
tion. Threshold occurs at kds, Eds. The absence of linear
terms in k b

—k bds, k.—k,ds is arequirement for irdsto be
a threshold. The yield F, is proportional to

t' 5
by=

I (k '+kb2+k. '),
&2m

e2 —— E,s+pb(k—b' kb )'+p.—(k,' k, )'—
The yield integral is

(72)

+dS (66)

Y dk6dk, dkb'dk, ',

y'~ (E—E,e) ~

(73)

This case is quite analogous to the case of direct volume
transitions. One difference is that the maximum normal
energy, (h'k„'/2m) is equal to E Eds rather than-
diRering from it by a constant factor.

4. Indirect Transitions; Threshold=
I
hrI

In this case, the energy band expansions are very
similar to those of Sec. II.

2. Direct Transitions; Threshold=
I BrI k2

e) —— (k„'+kb'+k, b),
21S

(74)

I
~r

I
+c(2(kb kbdr)+p2(ke kcdr)' (75).

I
hr I+a2(kb kbdr)+p2k—,', (67)

The yield integral is
ph'

(k„'+k;+k. )
&2m V dkt, dk, dkg'dk, ',

(76)

In this case the threshold point lies at the Fermi level,
We use the expansion

fh
(k.'+2kbdr(kb —kbd F)+k.').

&2m
(68)

P'~ (E—
I

h r I )4

We have chosen the axis k~ normal to the constant
energy contour of the hole. Linear terms in k,—k, dI; are
absent for e2 by this construction. Linear terms in
(k,—k.dr) must be absent from e) —e2, hence from e), by

5. Distribbtted Imperfection States

We consider here the case where a variety of imper-
fections gives rise to a distribution of localized states
with a constant density per unit energy in the vicinity
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of the Fermi level. We write

A2

ei= (k„'+kbs+k, '),
2m

F dkbdk, p(es)des

~ (E—Er)s

6. Discrete Imperfection States

If the imperfection states are localized in energy at
the value EI—.below the Fermi level, the yield will be

rl- (E El,).—
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The spectral dependence of saturation photoelectric emission has been studied for atomically-clean
(111) silicon surfaces which were prepared by cleavage in high vacuum. The observed spectra, and their
dependence on sample doping, are interpreted as being due to a volume excitation process which is modified

by space charge band bending efI.'ects. Both direct and indirect optical excitation thresholds are observed,
at 5.45 eV and 5.15 eV, respectively, with the latter being equal to the electron amenity, x, plus the energy

gap, EG. The spectral dependence of the direct excitation process is in agreement with the theoretical model
developed by Kane, in which there is a complete absence of scattering either in the bulk or at the surface
for those excited electrons which are emitted. The indirect process is also in agreement with Kane's theory.
The dependence of the yield on sample doping, in conjunction with the theoretical model, may be used to
determine a direct-flight escape depth for excited electrons of 25 A+5 A for electron energies about 5.5 eV
above the valence-band maximum.

I. INTRODUCTION

PHOTOELECTRIC emission from metals has been
studied extensively, and it is usually assumed that

light absorption leading to photoelectric emission takes
place only at the surface of the metal where the elec-
trons are subject to the surface effect. Some recent work
on alkali metals, ' ' however, has indicated that photo-
electrons can originate at depths below the surface of
several hundreds of angstroms. Such observations
indicate rather that a volume effect dominates the
emission.

The theory that photoelectric emission from semi-

conductors is a volume eRect is generally accepted. The
eRect of band bending at the surface4 ' and the energy
distribution of valence-band density of states' ' have
been discussed theoretically. Recently, some work on
cesium-coated silicon surfaces' has substantiated the
theoretical expectation that p-type samples should

exhibit a higher photoelectric quantum e%ciency than

' H. Thomas, Z. Physik 147, 395 (1959}.' H. Meyers and H. Thomas, Z. Physik 147, 419 (1959).' S. Methfessel, Z. Physik 147, 442 (1959).' W. E. Spicer, J. Appl. Phys. 31, 2077 (1960);R. C. A. Review
19, 555 (1958).' L. Apker, E. Taft, and J. Dickey, Phys. Rev. 74, 1462 (1948).

6 D. Red6eld, Phys. Rev. 124, 1809 (1961).' H. B.Huntington and L. Apker, Phys. Rev. 89, 352 (1953).' J. J. Scheer, Philips Research Repts. 15, 584 (1960).

z-type samples. Work on alkali antimonides also indi-
cates that photoelectrons can originate at depths well
beneath the surface. ' These results again indicate that
the volume eRect must be considered.

Optical excitation leading to photoelectron emission
in a volume eRect would be subject to the optical
absorption selection rules of the lattice and would
therefore consist, in general, of an indirect or phonon-
assisted transition and a direct transition in which the
initial and final electron states differ in k vector only
by the photon k vector.

This paper discusses experimental measurements of
photoelectric emission from atomically clean silicon
surfaces prepared by cleavage in high vacuum, as a
function of the sample doping. The results confirm the
dominance of the volume photoelectric eRect. As
expected, p-type samples have a higher yield than n
types samples. In addition, the spectral yields from
certain resistivity ranges show distinct structure, which
is interpreted as the onset of an eKcient direct excitation
mechanism about 0.3 eV above the lower-energy in-
direct excitation threshold. The spectral dependence of
these two components is determined and the inQuence
of the profile of the space-charge region and the mean
free path of the excited photoelectrons is examined.

' W. E. Spicer, Phys. Rev. 112, 114 (1958),


