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Fission Fragment Angular Distributions by Exact Power Series*
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A method is illustrated for computing exactly the various terms of the power series for fission fragment
angular distributions. No semiclassical approximation to the wave functions is made. The results are there-
fore accurate even for small angular momenta. The angular distributions are calculated explicitly to second
order, including perturbative eft'ects of spin and of angular-momentum-dependent 6ssionability. Results
are compared with exact numerical ca]culations to illustrate the adequacy of the first- and second-order
approximations under various circumstances.

I. INTRODUCTION

HE anisotropies of fission fragments' emitted
from compound nuclei was first considered in the

semiclassical approximation, ' ' with such small effects
as target and projectile spin and the possible angular
momentum dependence of fissionability omitted. More
recently these effects have been incorporated into the
semiclassical framework. ' Exact calculations4 of the
full angular distributions, including these effects' and
utilizing realistic neutron penetration probabilities,
have also been made on digital computers.

We show here how the semiclassical restriction to
large angular momenta can be obviated, with the result
that calculations of the full angular distributions
analogous to those of reference 3 become precise even
for small angular momenta, while the numerical effort
involved in using realistic penetration probabilities is

reduced to the evaluation of a single sum. '

II. FISSION FRAGMENT ANGULAR
DISTRIBUTIONS

M is then given, for a fixed I. and j, by

P(L,j;IM)=fP~ (2L+1)Tz, ICe trt ' I'ICo
&&L(2Iv+1)(25+1)gt,(2L+1)Tzj '. (1)

We have chosen the s axis along the projectile beam,
thereby guaranteeing L,—=O. Tz, (E) is the penetration
coefficient for a projectile of angular momentum I.and
energy K

The compound nucleus is assumed subsequently to
6ssion through barrier states' with various projections,
E, of angular momentum on the nuclear symmetry
axis. The probability of fission with a given value of E
is assumed proportional to the statistical (Gaussian)
probability of barrier states with that value of E. The
angular distribution of the fragments emitted from a
compound nucleus (I,M), fissioning through a barrier
state E, is assumed proportional to the square of the
corresponding symmetric top wave function. ' Then
the normalized angular distribution from a given
compound nuclear state (I,M) is given by

Consider an energetic projectile of spin (S,o) incident
on an unpolarized target nucleus of spin (Is,tt). These
spins combine to various channel spins (j,m) which in

turn add to the projectile's orbital angular momentum

(I) to give the compound nuclear angular momenta

(I,M). The total probability of forming a compound
nucleus with angular momentum I and s component

8'(t'I, I,M) =( g expL —pIt'jIDttrrr(tJ, t'tp) I'}

X I P e p( —PE') I-'. (2)

The functions, D~&, are normalized to unity for
integration over the angles describing the nuclear
orientation. P is a function of the internal excitation
energy, E*—Ef, at the fission barrier deformation.

In the case where the fission probability is inde-
pendent of angular momentum, the full expression for
the angular distribution from a compound nuclear
process is obtained by combining (1) and (2):

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'A. Bohr, Proceedings of the International Conference on the
Peaceful Uses Atomic Energy, Geneva, 1955 (United Nations,
New York, 1956), Vol. 2, p. 151.

I. Halpern and V. Strutinskii, Proceedings of the Second United
IVations International Conference on the Peaceful Uses Atomic
Energy, Geneva, 1958' (United Nations, Geneva, 1958), Vol. 15,
p. 408.' R. Leachman and E. Sanman, Ann. Phys. (New York) (
be published).

4 J. Griffin, Phys. Rev. 116, 107 (1959).
L. Blumberg, thesis, Columbia University, 1962 (unpublished

6A similar treatment has been developed by V. Strutinsk
(J. Exptl. Theoret. Phys. (U.S.S.R.) 39, 781 (1960); Nncle
Phys. 27, 348 (1961)g from a somewhat different viewpoin
Comparison of our results with those of the latter reference
hampered by numerous typographical errors therein, but see
to indicate disagreement with the P2 terms of Kqs. (7).

W(tt) =2m. Pz P& Pr PM P(L,j;IM)W(t't; I,M). (3)

The coeKcient 2m. arises from integration over the
irrelevant angle which specifies the degree of rotation
of the nucleus about its symmetry axis.

ll
One may also wish to include the dependence of

Qssionability on angular momentum. This dependence
arises in the liquid drop picture from the modification
of the fission threshold as a result of the centrifugal
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force of rotation, ' ' or in a statistical picture from the
difference in the moments of inertia for the nuclei
formed in the competing processes of neutron emission
and approach to the fission barrier. ' It can be included
easily by inserting a (normalized) weighting of angular
momentum in the summand of (3). To first order in I
the appropriate function is

v(I) =1+L /(1+vo)lP(I+1) —X(Io,S)j, (4a)

where

&(IoS)= t g; Pz (2L+1)Tr, g rsr
~
&s sr'"

~

sI(I+1)j
XL(2Ip+ 1)(2S+1)QL,(2L+ 1)Tr] i, (4b)

and yo is the ratio of the probabilities of fission and
neutron emission for I=O. Here, e is related to the
moments of inertia and temperatures of the fissioning
nucleus and the nucleus left after neutron emission by

a= (Iss/2) $1/T„F„1/Tf Ff—j. (5)

The function &(I) is appropriately normalized to unity
for summation over L, j, I, and 3f. For simplicity,
this effect is not included in the discussion, although
the result of including it is given in Eqs. (7).

Other more specialized effects such as possible
polarization or orientation of projectile and/or target
nuclide may be treated by the methods used here. In
this paper, however, we make no attempt to catalog and
compute the numerous possibilities they present.

III. ACCURATE CALCULATION OF LEADING
TERMS OF POWER SERIES

%hen the anisotropy is small, one obtains a good
approximation by expanding (2) in powers of P. The

simplicity of the present calculations stems essentially
from the fact that in spite of the complexity, as a
function of angle, of the component D~~l functions,
sums of the form

Ssr'(8, n) = P E"~Dsrrr'(e)~' (6)

are quite simple for small e, involving at most the eth
power of cos8. Moreover, factorization of the differential
equation for the symmetric top wave functions allows
such sums to be calculated in a rather direct fashion by
means of recursion relations. This calculation is outlined
in the Appendix and the results required to evaluate
(3) are summarized there.

One next carries out the trivial (in the absence of
polarization or orientation of target or projectile) sums
over p, and o, and proceeds to the (I,M) sums of Eq.
(3). These can be completed with the aid of certain
identities involving the vector coupling coeKcients,
C p~~~~. The Appendix lists the identities required
and also indicates how they and similar identities can
conveniently be proven.

At this stage there remain only the sums over j and
L. If one assumes Tl, = j. for L&L, and Tq=O for
L&L, as a crude representation of the neutron case,
the summands involve only low powers of integers or
half-integers. For more general projectile penetration
probabilities, the Anal sum over L may require numer-
ical evaluation.

In this way one obtains, in the former case, the final
result

W(0)/W(90') =1+(1/4)P cos'8 {L (I. +2)}—(1/144)P'cos'8{7L '(L +2)s
+8L (L +2)/Is(Is+1)+S(S+1)j—36L (L +2)}+(1/16)Pscos'tll{L '(L +2)s—3L (L +2)}

+jnP cosset/24(1+ps)j{L s(L +2)s+8Lm(L +2)LIo(Is+1)+S(S+1)]}+'' ' (7a)

or, in the case of more general penetrabilities,

4nrW(t9) = $+ (2L+1)Ti) 'Xgz(2L+1) Tr[1+(1/6)PL(L+1) L3 cosV —1)+(1/2160)P'{69L'(L+1)'
+80L(L+1)LIs (Is+1)+S(S+1)j—189L (L+1)}—(1/72) P' cos't1 {15L'(L+1)'
+8L(L+1)/Is(Is+1)+S(S+1))—36L,(L+1)}+(P'/16) cos'9L3Ls(L+1)' —6L(L+1)j
+LaP/18(1+ps) j{7L(L+1)Ps(Is+1)+S(S+1)j+3L'(L+1)'—3L(L+1)E(IsS)}

X[3 cos tl —1]]+ . (7b)

In both expressions the term in nP arises from the
inclusion of the angular momentum dependent fission-
ability to lowest order by means of the expression (4).

Comparison with Exact Numerical Calculations

Exact numerical calculations have been performed
and compared with Eq. (7a). In the simplest com-

r D. Sperber, thesis, Princeton University, May 1961 (unpub-
lished); Princeton University Report NYO-2961 (unpublished).

J. Hiskes, University of California Radiation Laboratory
Report UCRL-9275 (unpublished).

s I. Halpern, Ann. Rev. Nuclear Sci. 9, 245 (1959).

parisons, target and projectile spins were set equal to
zero and the exact anisotropy was compared with the
power series to first and second order in P. These
results are summarized in Fig. 1.

In other calculations the accuracy of the power series
estimate of the spin effects was tested (without includ-

ing any angular momentum dependence of 6ssion-
ability). These results are tabulated in Table I.

The results plotted in Fig. 1 show that the expansion
(7a) gives a very accurate description of the anisotropy
in the region relevant to most presently available
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TABLE I. This table compares exact and approximate calculations of the difference in anisotropy between situations with both tar-
get and projectile spin equal to zero and those with projectile spin, S, of 1/2 and target spin, I0, as listed in column three. Columns four
and 6ve give the exact results used, and column six lists the ratio of the spin-dependent P term in Eq. (7a) to the corresponding exact
difference. The last column lists the analogous ratio resulting from the use of the heuristic factor, expression (g), to estimate the spin
effect. In all of these calculations the 6ssionability was assumed independent of angular momentum.

[W(0')/W(90') jr, s=o
Exact spin
correction

Approximate/ Heuristic/
Exact Exact

2
8
2
8
2
2
4
8

12
2
2
8
8

2X10 '
2X10 3

4X10 2

4X10-3
8X10-2
8xio-2

2.67xio 2

8X1O-3
3.8X10 3

1.6X10 '
1-6X10 i
1.6X10 e

1.6X1O-'

1/2
1/2
1/2
1/2
1/2
7/2
1/2
1/2
1/2
1/2
7/2
1/2
7/2

1.040548
1.040364
1.082157
1.081412
1.168334
1.168334
1.166049
1.165284
1.165114
1.350603
1.350603
1.338206
1.338206

—2.92X10 4

—2.81X10 '
—1.27X10 '
—1.22X10 4

—5.81X10 '
—6.09X10 2

—1.87X10 3

—5.51X10 4

—2.60X 10-3
—2 82X10 '
—2.18X10 '
—2.53X10 '
—3.43X10 '

0.92
0.95
0.84
0.87
0.73
0.77
0.76
0.77
0.79
0.63
0.86
0.70
0.55

0.96
0.99
0.91
0.95
0.86
0.86
0.88
0.90
0.92
0.83
0.98
0.93
0.88

LIO

IAO

k
CI OX IMATE

PIKS

0.90 i

I.O
l

e.o
I/4 PLff1( Lm+2)

I

3.0

Fro. 1. This gra h corn ares ap~oroximate and exact values of
the quantity 6= W(0') W(90') ~—1. The ratios of the linear
(in P) and quadratic approximations to 6 to the exact value are
shown as functions of the linear approximation for two values
of L which span the range of primary interest in low-energy
neutron-induced Qssion.

experimental data. It is interesting to notice that the
term linear in P can give a fairly good rough approxi-
mation ( 10%) to the exactanisotropy, W(0')/W(90'),
even for anisotropies so large that the expression
including P is quite inaccurate. Of course, the angular
dependence of (7) will not represent the exact results
accurately under these circumstances.

Table I illustrates rather clearly the convergence of
the power series result to the exact result as the ani-
sotropy decreases (column 6). It also indicates that for
large target spins (=7/2) and large anisotropies
()1.30), this first approximation to the spin eKect may
be in error by a factor of 2 or more. The 6nal column
of Table I indicates the advantage for estimates of the
anisotropy of the heuristic replacement of the target
spin term by the following simple factor multiplying
the zero-spin anisotropy:

(1+(P'/18)L (L +2)Ps(Is+1)+S(s+1)$} '. (8)

Note added in proof. The expression (8) was con-
sidered because it is the simplest non-negative algebraic
factor which reduces to the correct power series limit
for small p.
This replacement for anisotropy estimates is, of course,
not extensible to the full angular distribution function
on the basis of the results presented here.

Results

The anisotropy implied by Eq. (7a) differs from the
large angular momentum approximation of earlier
treatments primarily in the replacements

L s-+L (L +2),
I, ~ P,(I,+1)+S(S+1)j.

Of these, the first is the most important for analysis of
neutron 6ssion anisotropies at low energies. For
example, at a neutron energy of 2 MeV where I. =3,
use of the large L approximation leads to a 70%
overestimate of p.

This feature probably accounts for the tendency
towards low inferred values of Eos=(2p) ' at low
neutron bombarding energy in some of the simpler
analyses of this type, '' " in contrast to the results
of exact calculation' "which indicate a linear increase
from the threshold of Eo' with energy. It suggests, there-
fore, that the simplest pairing model viewpoint, without
serious modi6cation of the temperature-energy rela-
tionship it implies, " is consonant with the low-energy
anisotropy data.

One also notes that the eGect of target spin is pre-
dicted to be negative in the direction first suggested
by Bohr, ' but not born out empirically. ""The exact

' J. Simmons and R. Henkel, Phys. Rev. 120, 198 (1960)."L.Blumberg and R. Leachman, Phys. Rev. 116, 102 (1959).
'2 J. Simmons and J. GriKn (to be published)."J. GrifBn, Proceedings of the International Conference on

nuclear Structure, Kingston (University of Toronto Press, Toronto,
1960),
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calculations' reinforce the present perturbative treat-
ment in this respect, as do the results of the semi-
classical analysis. ' Nor can an angular-momentum-
dependent fissionability explain the fact that U2"

(Ie= 5/2) has a larger anisotropy than Pu"' (Ie——1/2),
except in conjunction with the assumption that the
moments of inertia involved are much smaller than the
rigid-body values. Finally, even apart from other
difhculties which it involves, ' it is difficult to give
credence to the suggestion' that the distribution in E'
deviates signi6cantly from the statistical Gaussian form
for values of E' so small as those involved in these
low-energy neutron experiments.

One is therefore forced to consider seriously the
possibility that P=1/2EP depends somewhat on the
particular nucleus involved, and not alone on the
excitation energy in excess of the fission barrier. A
possible basis for such a dependence has been suggested
by Chaudry et aI." from recent theoretical studies" of
the uniformly charged liquid drop by Cohen and
Swiatecki. The suggestion here is that different charge
to mass ratios for different fissioning nuclei lead to
more or less elongation at the fission barrier with
consequent differences in Eo', even at the same value
of E*—Ef. Although this effect is not sufFicient to
explain the U'"—Pu"' anisotropies"" it is probably
comparable in magnitude to the spin and fissionability
effects treated here.

MATHEMATICAL APPENDIX

I. Sums of D Functions

In the expansion of Eq. (3) we have to deal with
sums of the form

5„'(6,n) = Q k"
I
D„i,'(t'l)

I
',

k—j
(10)

where the D~~~ are the normalized symmetric top
eigenfunctions. Their absolute squares are independent
of the angles p and lt, and equal to Id„i'(8) I', where
d && is real and obeys the equation:

1
+cot@——

I
m'+k' —2mk cos8]

dg~ d'g sin'g

+j (j+1) d (~) =o (11)

' R. Chaudhry, R. Vandenbosch, and J. Huizenga, Bull. Am.
Phys. Soc. 6, 419 (1961);Phys. Rev. 126, 220 (1962).

's S. Cohen and W. Swiatecki, Aarhus Universitet, January
1961 (unpublished).
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in which the m index and angular variable, of which the
sum is independent, are sometimes omitted in this
report. The symmetries of the d J,

& functions" also
guarantee at once that

5 (a,n)=as „(a,n), (13)

where the plus sign applies for e even and the minus

sign for n odd.
It develops that for small n the sums 5 '(8,n) are

quite simple in their angular dependence, involving at
most the nth powers of cos8. This circumstance makes
it practical to evaluate several of these sums explicitly
by means of recursion formulas. To simplify the
calculation, we factorize'r Eq. (11). If we define (for
m, k&j):

where

Z +=Ln. (a)~d/da],

tt (8)=m cot6 —k csctl, (15)

then the equations

F +d &' $j (j+1)——m(m+1)]—&d ~t, k& (16)

are equivalent to Eq. (11), as one can verify by oper-
ating with F ~i . The factorization thus provides
recursive identity for the derivative of the d function.

Then consider the expression for the following
derivative, given by

(d/da) LS„(a,n)+S.+, (a,n)]
=2 cottlI ms„s'(6, n) —(m+1)S +is(8,n)]
+2 cscclLS '(0, n+1)—5 '(el, n+1)], (17)

when evaluated by Eqs. (16) above. Direct evaluation,
on the other hand, using the known expression for
5 &'(8,n) yields simply an algebraic function, so that
the above equation becomes a recursion relation in ns

for S s(8, n+1). One need only know one particular
5 '(8, n+1) to obtain from this recursion formula all
the 5 &(ei, n+1). The final step is, therefore, to evaluate

' A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).

'7 Compare P. M. Morse and H. Feshbach, 3IIethods of Theoretical
Physics (McGraw-Hill Book Company, Inc. , New York, 1953),
Part I.

When multiplied by I 87r/(2j+1)]'i', the functions
D ~' become identical to the matrix elements D I,' of
unitary irreducible representations of the group of
rotations in three dimensions. The corresponding
d i, s'(8) represent rotations with @=/=0. This circum-
stance ivUnediately yields the simplest sum of the
type (10):

5„(y,o) =E
I
d-, (e) I'
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S (B, I+1) from

(d/de)$S, '(t'l, l)j=2jcotijS, &(rj e)
—2 csctIS,'(es, e+ 1). (18)

For (v+1) odd, this final process can be replaced by
the simpler observation from Kq. (13) that

Sp'(tI, m+1) =0.
This procedure yields the following results for sums

required in the text:

S J(tI,O) =S'(0) = (2j+1)/8z',

S '(tl, 1)=m costI S'(0),

S-'(+») = l(I:j(j+1)— 'j
—

Lj(j+1)—3m'j cosrj}S'(0), (20c)

S„&(tI,3) =-', m costI{Pj(j+1)—3m' —mj
—Pj(j+1)—Sws' —mj cos'ti}S&(0), (20d)

S-'(~ 4)='(P j'(j+ )' 'j (j+I—)+3~'
—2j(j+1)+5riss]—I 6jp(j+1)s
—36epj(j+1)+30m4—8j(j+1)
+30m 5 cos el+P jP(j+1)s—30msj(j+I)

+35m' —6j(j+1)+25rw'1 cos'9}. (20e)

2. Clebsch-Gordan Identities

In the evaluation of Eqs. (1) and (3) there occur
sums over Clebsch-Gordan coeKcients of the form

F(Lj)=p?MICpsrM~&~I'fp(I+1), Mj. (21)

To evaluate such expressions, consider the equality

(22)

«'.'x-'I fL(1+3) (I+j), (L*+j*))I
c'.'&-')

=grIC„sr 'rI'f[I(I+1), M); (23)

summing (22) over rN, and setting ii=0, one obtains
(20).

The following special choices of the function f(J,M)
give the results listed:

F= (2j+1); (24a)

f=I(I+1), F= (2j+1)IL(L+1)
+j(j+1)j; (24b)

F= s(2j+1)j(j+1); (24c)

f=I'(I+1)', P= (2j+1)LL'(L+1)'
+ (1o/3)L(L+1)j(j+1)

+j'(j+1)'j (24d)

f=M'I(I+1), F= s(2j+1)j(j+1)IL(L+I)
+j(j+1)j' (24e)

Il = (1/15) (2j+1)j(j+1)
XPj(j+1)—13 (24f)

f=M',

f=M',

where L and j are commuting angular momentum
operators whose vector sum is I. Then 4'srr is an
eigenfunction of any function fLI. I, I,J of the operators
I I and I,. Therefore, evaluation of the diagonal matrix
element of the appropriately chosen operator f leads
to the desired result (20). That is,
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Polarization of Protons in Be'(d,p)Be"f
R. G. ALLAS, * R. W. BERCAW, AND F. B. SHUT.L

Wushf'Ngton University, St. Louis, Missouri
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The polarization of protons from the Be'(d,p)Beip reaction has been measured at an incident deuteron

energy of 10 MeV. The measurement has been carried from 13'(lab) to 80'(lab). The polarization is positive
at forward angles but changes sign at about 70'(lab). Elastic scattering of protons from helium and carbon
was used as the analyzing reaction. The axis of quantization is taken as n=kzxk~.

HE experimental study of the deuteron stripping
reaction serves two purposes. It can be used to

obtain information about the spin, parities, and. widths
of the nuclear levels studied, and in addition is a
sensitive "probe" to gain information about the various
interactions involved. A simple Butler-type analysis of
the angular distribution of the product nucleons is very
often sufhcient to determine the angular momentum of

$ This research was supported in part by the Air Force Ofhce
of Scienti6c Research.

*Now at Argonne National Laboratory, Argonne, Illinois,

the captured nucleon. ' In such an analysis both the
incoming deuteron and the outgoing proton are approxi-
mated by plane waves, a simplification which leads to
a prediction of zero polarization for the outgoing proton.
In more sophisticated treatments either or both the
incoming deuteron and outgoing proton waves are
distorted by optical model potentials. Although the

inclusion of spin-orbit terms in the potential is required

' M. H. Macfarlane and J. B. French, Revs. Modern Phys. 32,
567 (1960).


