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Parametric Amplification in Spatially Extended Media and Application to the
Design of Tuneable Oscillators at Optical Frequencies
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A theory of traveling wave and backward wave variable-parameter amplification appropriate to the
amplification of a light beam is developed. It is an extension of the theory of Tien and Suhl for one-di-
mensional propagation to the case in which the pump wave, signal wave, and idler waves have different di-
rections of propagation. The theory is then applied to the design of a tuneable oscillator at optical
wavelengths. The device is tuned by changing the orientation of a parallel mirror system. It appears that
currently available pulsed laser powers are sufficient to drive such devices and that a continuous tuning
range over a three-to-one interval in frequency is possible.

I. INTRODUCTION

l
'HE existence of mixing of light beams in nonlinear

dielectric media has now been demonstrated by
numerous workers. Both the appearance of second
harmonic in a single laser beam' and the appearance of
a sum frequency for overlapping beams have been
demonstrated. ' Furthermore, the relevance of electro-
magnetic momentum conservation for the realization of
large coherence volumes has been pointed out and the
importance of the effect demonstrated experimentally. ' 4

An important application of these phenomena would
appear to be traveling wave and backward wave
variable-parameter amplification. As we shall show in
the next two sections, it appears that this process can
be used in the design of tunable oscillators at optical
frequencies, and that with currently available laser
power levels and dielectric media, quite wide range
tunability should be achievable.

II. TRAVELING WAVE AND BACKWARD WAVE
VARIABLE-PARAMETER AMPLIFICATION

In this section we develop variable-parameter

amplification theory in a form suited to the problem at
hand. What is required is an extension of the theory
of Tien and Suhl~ to more than one dimension. To avoid
uninteresting complications we shall consider the two-
dimensional isotropic case, with polarizations selected
in the simplest way.

We consider first an infinite homogeneous dielectric
medium whose dielectric constant is modulated by a
wave of the form cos(~„t q~ r) In ac—cordanc. e with
the usual terminology, co~ will be referred to as the pump
frequency and q„as the pump wave vector. For reasons
which will become clear in the next section, we assume
no special relation between ~„' and q„'. Maxwell's
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equations then take their usual form:

VX E= —(1/c)aB/at,

V XB= (1/c) aD/at.

The relation between E and D, however, we write in
the form

D(r, t) = g(t —t') E(r,t')dt'+2c cos(e&„t q„r)E—(r, t),

(2)

(t—t')=—E( ) '" ' "d E-( )=E*(—)
27r

The erst term is the unmodulated part of the dielectric
constant expressed in a form which takes dispersion
into account. The second term is just the modulated
dielectric constant. 5' We assume that ~ is small com-
pared to E(ce).

Equations (1) and (2) have solutions of the form

oo

K— Re g &+i(capt—qp. r) n~&(&lt—qi. r)

rn=—oo

C3)

In (3) we regard &ot as the signal frequency and choose
it to be real and less than co„. If Eo is regarded as a free
parameter, the remaining complex coefficients are
determined by (1) and (2). Since we have assumed e

small, only those terms for which

(eq„+q,)'—L(mn)„+n»)'/c']E(ties„+co&) =0 (4)

will be important. Equations (1) and (2) impose certain
restrictions on qi (it may even be complex) which will

always lead to (4) being satisfied for at least one term.
Under certain conditions, to be discussed in more detail
later, it may hold for two terms, but will except in some
rare circumstances, which are ignored, not hold for
more than two terms. The interesting case is, of course,
the well-known one for which (4) holds for the signal

"We have exhibited the dispersion of the unmodulated dielec-
tric constant explicitly because of its significance in (4). The
modulated part of the dielectric constant is, of course, also fre-
quency dependent, and for quantitative application of the theory
its dispersion should also be taken into account.
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frequency co», and the so-called idler frequency ~„—m»,

which we shall denote by co2. Hence, an appropriate
approximate solution will take the form )changing
notation slightly from (3)j

E—Re(jg tui(&ult —ql r)++2&i(turt —qr" r))tu

with «01+«02 ——(0„and ql+q2 ——q~. Substitution of (5)
into (1) and (2) then yields

+lt71 /kl k1E1+1+«kl+2 t ki t)i/tt j Ei E (tt)t)r"
(6)

A2 tt2 /k2 k2E2 E2 +.«k2Elt

(9) and (10). q10', q20' are, of course, uniquely deter-
mined by the requirements

q'0'XR = q'0Xn, q»0"—&»'E» =0,

q;0' n (0, q20"—k2'E2*= 0.

For the loss free case, (i.e., E, real), there will

typically. exist a frequency range for which the relation
$20

—k2 E2=0 can be satisfied exactly for an appro-
priately selected angle between q»p and q„. In this
case (10) takes the form

which has nonzero solutions only if

(ql' —k 1'El) (q2' —k 2'E2*)—«'kl'k2'= 0. (7)

7—+21
(q10 8 q20. )t1)'(2

(12)

In accordance with a previous comment we note that
(7) implies that at least one of the factors (qP —kPE, )
be small. Amplification occurs, however, only when
both of the factors are small. Equation (7) has, of
course, many solutions, the q; which actually occur in
a given situation being determined by boundary condi-
tions. To illustrate what is involved we consider a wave
of frequency co», wave vector q»0, with q»p =k» E»
propagating in unmodulated dielectric impinging upon
a plane interface between unmodulated and modulated
dielectric. This will, in general, generate two wave pairs
in the modulated region both with frequencies cv», cv2 and
wave vectors q», q2=q„—q» and q»', q2' ——q„—q»', re-
spectively. In addition, reflected waves of frequency

and wave vectors q10', q20' satisfying (q20"—k2'E2*) =0 (note: q20 need not equal q, —qlo'), will

appear in the unmodulated region. The various vectors
are determined by the boundary conditions and Eq. (7)
in the following way. In order that the continuity
conditions on R and B be satisflable at all points on the
interface it is necessary that

~X q»0 nX q»= nX q»'= nX q10',

nX q2= n Xq2'= nX q.20',

where n is the interface normal, directed into the
modulated region. Hence, ql, q2 (and ql', q2') must be
expressible in the form

ql q10+Y~ q20 q q10

q2= q20 —pn.

We assume both 7 and F20' —k2'E2* small and apply
Fq. (7), obtaining

$20 ~2 +2
7=

4q20 'n

~2/ 2P 2 —I/22 $2+8 2

20'~ 4qlp ~ q20'~-
(10)

The unprimed and primed wave vectors correspond,
respectively, to the use of the upper and lower signs in

For the case q» n)0, one notes the exponential gain
characteristic of traveling wave amplifiers (F10 R)0
always, of course, by definition of n) It is th. en reason-
ably apparent that (q20 k2 E2)/4q20. n plays the role
of determining an effective bandwidth in both fre-
quency and angle, since, for large enough values of this
quantity, p becomes real. On the other hand, for
q2p n(0, 7 is always real. Nevertheless, amplification
is still possible, the behavior now being characteristic
of a backward wave amplifier. To fully exhibit these
features it is necessary to solve a complete amplifier
boundary value problem. That is, one introduces a
second interface a distance L from the first one, separat-
ing the modulated region from a second unmodulated
region. In this second region one again assumes waves
of frequency ~»,co2 with wave vectors q»p, q2p, q2p"
differing from q2p only in the sign of its normal com-
ponent. One must also assume additional reflected
waves in the modulated region )satisfying Eq. (7) with
only one of the factors (qP —kPE, ) small]. Continuity
conditions on E and B at both interfaces and both fre-
quencies then determine all of the relative amplitudes.

The problem outlined above can be greatly simplified
by recognizing that the reflected waves in the modulated
region and the reflected wave with wave vector qp»' are
always small. In the traveling wave case the wave with
wave vector qp2' is also small, while in the backward
wave case, that with q02" is small. The problem is
simplified by neglecting all of the small amplitudes and
applying continuity conditions to the electric fields
only. (We are assuming from this point on that the
electric polarization vector e has been chosen parallel
to the interfaces. ) The tangential components of the
magnetic field will then contain discontinuities of order
e. The removal of these discontinuities would require
the inclusion of the neglected waves which are also of
order e. Such inclusion would also lead to order
corrections to the approximately determined ampli-
tudes. Since the waves to be neglected with q2p n
positive are not the same as those to be neglected with
q20 8 negative, the question of the transition from one
sign to the other arises. More detailed examination
shows that the proposed approximation depends upon
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E2*+E2'*——0,

E erL+E ~c rL—
(13)

where E; is the incident amplitude, Eo the output
amplitude, and

I —
(I/2 P)1/2

with

2/= &44/2 [qio &q2o. & j'", 8=q2o' —&2'K2*/4q2o. & (14)

Delning the power gain by G= ~Ep/E;~~, one finds
easily that

G=1+ slnh2[($2 h2)1/2L j.

For the backward wave case we have the conditions

the assumption: y/q2p. l/l((1. Hence, within a narrow
region about q20 6=0 the approximation is invalid.

For the traveling wave case we have the conditions

E,+E, =E,

which must be used, if efFicient amplification without
excessive broadening is to be achieved. One can readily
show that for an amplifier with a specified gain and
specified relation among the q„, q, o and co;, the product
WL'22, where L'=L/jip 8, is the beam length in the
modulated region, has a fixed value, and is, in particular,
independent of the direction denoted by n. On the other
hand, W/L', which might be thought of as defining an
optimum shape for the interaction region, is inde-
pendent of p and proportional to

~
alp n/j2o &~.

It is interesting also to consider solutions of the form

(5) with the q, real and in which the direction of ql
and q2 are fixed, say, by a pair of Fabry-Perot mirror
systems. Under these conditions q& and q2 are both com-
pletely determined by the additional requirement
ql+q2 ——q„. In this case the interesting solutions will

have complex ol so that &v2 in (5) should be replaced
by o/2*. Equations (6) and (7) then hold unchanged and
(7) is an equation determining oil and o/2 ——o&—o/I. On the
assumption that the q; which have been determined
satisfy the restriction A~&(co, where

with

El+El —E,.

E,2«- r LyE, I*&+'r I, 0)

E c /rl L+E ~c/r—' I —E
(16)

Ao/= o/, —(qlC/K, '") (q2C/—K2'/')

one easily determines

o/I gl/Kll/2+ 2Ao/+ 22 (22oplo/2/KIK2 +o/2)1/2

(20)
o/2* —

/t2/K2 /2+ Apl~ 2 j(o2o11o/2/KIK2 Qol2)1/2

from which we compute

( ~2
G=1

~

1— sin'Lot'+5')'&'I]) (17)

corresponding to an oscillation frequency and rate of
buildup. Oscillation threshold conditions can easily be
deduced by relating the buildup rate to a rate of energy
gain and equating it to the reQection loss rate.

In the traveling wave case 6 peaks at 8=0; for the
backward wave case this is also true provided that
2/L&2r/2. The peak gain is evidently controlled by

2/L=o44L/2lqlo & q2o &I'" (1g)

The angular factors in the denominator require some
comment. This formula suggests that one can reduce
modulation or length requirements simply by arranging
for small values of either qM n, q20 n, or both. In order
to better understand the role played by these directional
factors it is necessary to consider an incident beam of
finite width. We continue to treat the modulated region
as an infinite plane slab but it is clear that it need, in
fact, be present only in the region traversed by the
beam. In order for a beam to be amplified in accordance
with the theory given above it is necessary that it be
broader than some minimum value. The point is that
a beam of finite width can be thought of as a super-
position of in6nite beams incident over a narrow range
of angles centered about the beam angle. The wider the
beam the narrower the angular spread. If the extreme
components in the angular distribution are amplified
less than the central components, the beam will, of
course, broaden as it is ampli6ed. For a given gain and
amplifier design there is a minimum beam width 8'

III. TUNABLE OPTICAL FREQUENCY OSCILLATORS

Apart from the evident application to amplification,
one of the most interesting applications of the process
described in the preceding section would appear to be
to the design of tunable oscillators operating in the
infrared and optical regions.

I.et us assume that one has succeeded in modulating
a dielectric constant with frequency cv„and wave vector
q„or, better, with wave vector —q„as well. Suppose
further that an interesting frequency range for co&

exists such that ~qip~+~q2p~) ~q„~. Then over this
range there will exist a unique relation between angle
and frequency satisfying the relation qlo+q20 q, . &y
providing a Fabry-Perot mirror system oriented so as
to provide a resonant circuit for a particular direction
q&0, one can make oscillation at the frequencies co& and
cu2 take place. It is only necessary that the beam ampli-
fication on each pass through the ampli6er exceed the
reQection and transmission losses. If both q„and —q„
are present in the dielectric modulation, then ampli-
fication takes place for both directions of signal beam
traversal. Since the magnitudes of co~ and ~2 depend
upon the orientation of the mirror system, the device
can be tuned by varying the orientation.
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Fro. 1. Schematic arrangement for tunable optical oscillator.
The 3f; are mirror reflecting surfaces. The optic axis of the
potassium dihydrogen phosphate (KDP) is in the plane of the
paper and perpendicular to the direction of the ruby laser beam.
The $1107 crystal axis is perpendicular to the plane of the paper.
The laser beam is the extraordinary way. The device is tuned by
varying the mirror angle, P.

' With reference to infrared absorption it may be worth noting
that the effect of a small but not negligible absorption upon the
gain is considerably less if it occurs in the idler circuit rather than
in the signal circuit.

We now brieQy discuss the problem of producing the
required dielectric-constant modulation. Basically, the
modulation is accomplished by passing intense laser
beams through the medium. The fact that observations
of optical harmonic production have up to now been
confined to crystals lacking an inversion point calls
attention to the fact that such materials are especially
well suited to such applications. Since the dielectric
constant of such materials contains terms linear in the
electric field, it is reasonable to suppose that a given
small dielectric constant modulation can be achieved at
lower power levels in such materials than in ordinary
materials, for which the dependence is quadratic. The
triangle inequality q„(q&+ps then typically requires
that the medium be doubly refracting, the faster wave
being used for the pump, the slower wave for q», q2. For
potassium dihydrogen phosphate (KDP), the material
which has been used in this context for second harmonic
production, ' 4 the ordinary and extraordinary indices
diGer by about 2.5% so that the triangle inequality is
only weakly satisfied. Normal dispersion will further
weaken it. This has the consequence that the angles
between vectors are very small except for the case of
large inequalities between or» and or&. In this latter case
one may have difficulty with infrared absorption of the
smaller component. ' For or» ——or2 the angle required
between the pump wave and, say, the direction for or»

is of the order of 10'. As the angle is increased, or» will

then decrease. The pump power requirements tend to
increase as or» and or& become unequal due to the
(~&&es)'I' factor in F. Furthermore, as ce, is decreased,
infrared absorption will eventually make further in-
crease in pump power necessary. Nevertheless, the
arrangement indicated in Fig. 1 appears to be a satis-
factory one. A rectangular prism of KDP with optically
Rat ends could be incorporated into a ruby laser circuit.
The angle to be regenerated is then selected by varying
the mirror angles. The minimum angle at which the
beam need leave the end of the crystal is of the order
of 15' so that interference between the various com-

ponents appears to be easily avoidable. A tuning range
from (1/4)~~ to (3/4)&o„appears to be quite feasible.
An increase in the minimum angle required and a less

rapid variation of frequency with angle could be
achieved by the use of piezoelectric materials more

birefringent than KDP.
In the theory developed in the preceding sections the

assumption of optical isotropy was made. In order to
discuss the general case of an anisotropic medium with

anisotropic modulation some straightforward modifica-

tions would be required. For the most useful applica-
tions, however, the theory can be applied unchanged.
For the arrangements like those described in Fig. 1 it is
most convenient to have the laser beam polarized' in
the plane of the wave vectors q„,g», and q2. The crystal
should be oriented with its principal axis of least
dielectric constant along the electric vector of the pump
wave. Then for the case in which q», q2 are polarized
perpendicular to the wave vector plane (case I), the
theory of Sec. II applies unchanged. The triangle
inequality can generally not be satisfied for g», q2 both
polarized in the wave vector plane. For sufficiently

anisotropic materials, however, it may be satisfied for
one in the wave vector plane and the other perpendicular
to it (case II), in which case two (possibly three) fre-

quencies )with two (three) distinct idler directions)
would be possible for a given mirror position. It is

possible to favor one case over the other by properly
choosing the remaining degree of freedom in the crystal
orientation. It is also possible to choose one by inserting

a polarizer in the signal circuit or by adding a mirror

system to the idler circuit to empahsize one of the idler

directions.
It is simplest to make general statements about the

case of negative uniaxial crystals (such as KDP). In
this case the optic is fixed along the laser beam polariza-
tion direction and q» and q2 are then independent of
the remaining degree of freedom (the orientation about
the optic axis). It is always possible to choose this
orientation to optimize case I, which leads to case II
being completely forbidden. In some cases crystal
symmetry' (in spite of the absence of an inversion

point) forbids both cases (classes 12, 18, 19, 22, 24). For
class 11 (KDP) it determines the orientation uniquely,
while for class 9 the optimum orientation must be de-

termined experimentally and may be somewhat fre-

quency dependent. For the remaining classes all orien-

tations are optimum.

' We use the convention in which the polarization direction is
that of the electric field.

'The Von Groth class numbering is used. The remarks about
limitations imposed by crystal symmetry are all easily deducible
from the table of third rank tensors for the crystal classes, to be
found, for example, in W. P. Mason, Piezoelectri Crystals and
Their Applications in Ultrasonics (D. Van Nostrand Company,
Princeton, New Jersey, 1950), pp. 41—44. They hold to the extent
that the dipole approximation is valid and to the extent that dis-
persion in the modulation coefficients can be neglected in the
frequency range between co& and co2.
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For the positive uniaxial crystals the orientation
which maximizes the triangle inequality (optic axis
perpendicular to the wave vector plane) forbids case I.
This means that the triangle equality must be weakened
either by employing case II (with two frequencies often
possible) or changing the orientation of the optic axis
leading to case I as well as case II being allowed with
the possibility of three frequencies. It appears therefore
that positive uniaxial crystals are less suitable for this
application than negative ones.

Biaxial crystals are also applicable, of course,
although optimum orientation would typically have to
be determined experimentally. It might be remarked
that there appear to be many materials which could be
regarded as candidates for this application, some of
them considerably more anisotropic than KDP.

We turn now to the question of pump power require-
ments. Reference to Eq. (14) suggests that oscillation
should be achievable with e/E in the range 10 ' to 10 ',
assuming linear dimensions of the order of a few cm.
Such modulations can probably be achieved with field
strengths' "of the order of 10 ' to 10 ' e/a sor power
flux of the order of 10+' to 10 watts/cm'. It should be
noted that there is no advantage, as far as oscillation
conditions are concerned, in large beam height. Beam
heights of the order of a fraction of a millimeter would
not lead to excessive diffraction spreading and would
reduce the total power requirement. Incorporation of
the crystal in the laser circuit as suggested in the
previous paragraph also decreases the required power
level of the laser. The power level required can be fur-
ther reduced by improving the reflection efficiency
(especially by making some provision to avoid reflection
loss at the crystal surfaces) and by adding a pair of
mirrors for the idler circuit as well. The last two items
would be especially effective in conjunction, and while

they might complicate the mechanical arrangements,
could lead to substantial decrease in power requirements.

There are, of course, other methods for achievin & the
required dielectric constant modulation. One such
method, which appears to offer considerable flexibility,
is based upon the use of two pump beams at frequency
co„, and ~», in a medium whose dielectric constant

"Pote added eN proof. More recent estimates, based on measure-
ments, reported by R. W. Terhune, P. D. Maker, and C. M.
Savage, Phys. Rev. Letters 8, 404 (1962), indicate that the re-
quired 6eld strength may be more than a factor 10' greater than
that suggested above.

contains only terms even in the field strength. The
dielectric modulation frequency is then coo=coo,+co».
The magnitude of the pump wave vector q„=

~ q„,+q„, ~

may have any convenient value less than q»+ q„., simply
by choosing the relative directions appropriately. Apart
from the evident flexibility, one can obtain frequencies
in excess of the pump frequency. Such frequencies can,
of course, also be obtained tunably by the coherent
mixing of the output of lower frequency tunable
oscillators. This particular method suffers from the
limitation of requiring, on current estimates of non-
linear terms, excessive pump powers. While the required
powers will probably be achieved eventually they may
very well have destructive effects upon the material. On
the other hand, the quadratic effects have not yet been
observed and may not be so small as estimated. Further-
more, there is the possibility in suitably selected
material, of resonant enhancement at the frequency co„,
which would not affect the propagation at the pumping
beam and signal frequencies.

In this connection one might suggest that the study
of three-beam interaction in such material could yield
useful information about the size of the quadratic terms.
Three beams at frequencies ~&,co2,~3 with wave vectors
qr, q&, q, can interact to produce an output at co4=&o&+a»—cos and q4 ——q&+qs —qs provided q4'= k4sIC4. The con-
ditions are identical with those involved in amplifica-
tion, regarding co~ and A&2 as the pumps, co3 as the signal,
co4 as the idler, the only difference being that production
of the idler wave rather than gain of the signal is the
effect of interest. '

9 The author has estimated the size of this effect for the quantum
electrodynamical nonlinearities of the vacuum, based on the
Lagrangian of Euler and Heisenberg. The method overs several
advantages over others one might consider. The photons to be
detected have a frequency different from those in the sources, and
are produced in a well collimated beam. Furthermore, the beam
polarizations can be selected so as to minimize the effect from
residual gas atoms (a vacuum of the order of 10 "mm would still
be required). While the result still appears to be undetectably
small, it may be of sufhcient interest to be noted, if only to
emphasize how linear the vacuum actually is.

%'e consider three high-energy pulses of duration r, containing
energy p, each, in a plane at relative angles appropriate to coherent
production of a fourth frequency interacting simultaneously in a
region of thickness d normal to the propagation plane. The number
of a4 photons per burst $4 is then given by

ftr 4 F(e'/Ac)4( ——S/mc')'(lt/mc)' (1/X,d'c'r'),
where F is a geometrical factor of order three. In order to get even
a single photon per burst, it is necessary to make very extreme
assumptions about the variables. As an example we mention
8=1 kj, r=1/c, d=X.


