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value of 36 deg at 2.0'K and a maximum value of 45
deg at about 9'K. For rubidium, 0 has aminimum
value of 50 deg at 3.3'K and a maximum value of 56
deg at about 9'K. Manchester4 has reported 0values for
rubidium between 1.2' and 4.2'K. He Ands an approxi-
mately constant 0 below 1.6'K and a minimum value
of 51.2 deg at 2.8'K. His results were not corrected for
the electronic contribution. The subtraction of an
electronic term from the specific heat would make 0 rise
at lower temperatures and might shift the location of
the minimum to a slightly higher temperature, but it
could not account for the difference in absolute values
of 0 minimum found in these experiments.

Dauphinee et al. ' found 0values of 61 deg for rubidium
at 25'K and 44 deg for cesium at 20'K. These results
suggest the existence of at least one more minimum in

4 F. D. Manchester, Can. J. Phys. 37, 525 (1959).
5T. M. Dauphinee, Douglas L. Martin, and H. Preston-

Thomas, Proc. Roy. Soc. (London) A233, 214 (1955).

the 0 vs temperature curve for each metal between 12'
and 20' or 25'K.

Bauer and Bhatia have calculated the vibrational
spectra of body-centered cubic lattices, using the elastic
constants of sodium. Their results are expressed in
terms of 0 vs temperature curves which typically show
a high 0 at O'K with a minimum at low temperatures
followed by an approximately constant 0 at higher
temperatures. These curves are similar to, but less
complicated than, those from the experiments on
rubidium and cesium.
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Effect of Quadrupolar Polarizability upon Field Gradient in Tetragonal Lattices*
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In the course of investigating sources of electric 6eld gradient in the body-centered tetragonal structure
of indium, a study of the eAect of quadrupole moments induced in the ions themselves has been made. An
eight-6gure table covering a wide range of c/a values and giving the axial 6eld gradient per unit axial
quadrupole moment in a tetragonal lattice of quadrupolarly polarized ions has been constructed. The
effects of the ions at (—,', —',,—',) and those at (0,0,0) have been listed separately in the interest of versatility.

Using a rough estimate of the quadrupolar polarizability of the indium ion, the net effect of the induced
moments in this material is shown to be small. Larger effects could be expected in other substances.

I. INTRODUCTION
' 'N a recent article, ' R. R. Hewitt and the author
~ ~ investigated nuclear quadrupole resonance and
possible sources of the electric field gradient (EFG) in
metallic indium. One possible source, however, was
made the subject of a separate investigation and is
reported in the present article. That source is the
effect of the quadrupole moments induced in the ions
themselves.

The principal result of the present work is a detailed
table (Table I) of the axial EFG per unit axial quad-
rupole moment generated in a tetragonal lattice of
quadrupolarly polarized ions. This table, which sepa-
rates the effects of the ions at (rs, rs, rs) from those at
(0,0,0) and which covers the range 0.50~&c/a&~3. 20,
is intended to apply not only to indium but to a variety
of tetragonal structures including compounds as well
as elements. The extensive numerical work involved in

the construction of this table and in other calculations
discussed in this article was performed on an IBM 1620
automatic digital computer maintained by the Bio-
metrical Laboratory of the Citrus Research Center and
Agricultural Experiment Station located at this campus
of the University of California. '

Since the quadrupole moment induced in the ions
depends upon the total EFG present and at the same
time helps to determine this quantity, the total EFG
must be found by solving a simple algebraic equation
containing the quantity F@ given in Table I, the
quadrupolar polarizability, and the EFG due to primary
sources, e.g., the monopole moments of the ions and the
electron density in the interionic space. The only in-
formation presently available on the quadrupolar
polarizability of the In'+ ion is, unfortunately, in the
form of a rough estimate. On the basis of this estimate,
it is found that the effect of the induced quadrupole

* Supported in part by the National Science Foundation.' R. R. Hewitt and T. T. Taylor, Phys. Rev. 125, 524 (1962).
This laboratory is under the direction of Dr. Morris J. Garber,
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moments in indium is such as to make the total EFG
exceed the primary EFG by about 1%.As long as it is
small, this percentage figure is roughly proportional to
the polarizability and will have to be revised if the
latter is revised. The effect could easily be greater in
substances having more fortunate c/a ratios, as Table
I shows. It could also be greater in compounds in which
the ions at (—',, 's, s~) are of a different species from those
at (o,o,o).

Gaussian units are used throughout this article.

V= P P Bi~r &'+'&Pi~~~ (cos8) exp(imP). (2.1)
lM m=l

The Bl coefFicients are related to, or may simply be
regarded as, the multipole moments of the source. If
the latter has density p„ then the following can be
shown to be consistent with (2.1):

(l lml)!—
p,r'Pi~~~ (cos8) exp( —img)dr. (2.2)

(~+I~I) t

g m-
l

In the same system of nomenclature, a potential which
is Laplacian and regular in a neighborhood of the origin
is represented as follows:

l=o m=—l

Ci"r'Pi~~~ (cos8) exp(imp). (2.3)

From the usual definitions of the axial quadrupole

II. CALCULATION OF THE ELECTRIC
FIELD GRADIENT IN A LATTICE

OF QUADRUPOLAR SOURCES

Since the object of this section is to calculate the
EFG at a given ion site due to quadrupole moments in
all the other ions, the model employed will consist of
an in6nite lattice of identical nonoverlapping charge
aggregations or sources each of which produces an
external potential having only an axial quadrupole
component. It is important to realize that the charge
density distribution of a source is not fully determined
by the multipolar composition of its external potential,
therefore there exists some latitude within which one
may vary the model for the charge density within the
confines of a given source without changing the essential
character of that source as manifested by its external
effects. The model actually used consists of a surface
density proportional to P&(cos8) upon a small sphere
whose radius s~ is adjustable within limits; the deri-
vation of the Fourier series representation for a lattice
of such spheres is detailed in Appendix A. The ordinary
point charge cluster model is unsatisfactory because it
has, in addition to the intended moment, a whole series
of higher moments which disappear only as the limit
of infinite charges and zero relative displacements is
reached.

According to the nomenclature of reference 1, the
external potential of a source is represented in spherical
harmonics as follows:

moment and the EFG, it is evident that eQp=2Bp
and that eqo ——2C2', respectively. Here, the zero sub-
scripts are used to emphasize that eQp is the quadrupole
moment externally induced in the ion, not the nuclear
quadrupole moment and that eqo is the EFG in which
the ion as a whole is situated, not the EFG at the site
of the nucleus. In the immediate problem, the 82'
moment of the ions is regarded as given and the con-
tribution which it makes to the total C2' coefficient is
the quantity sought. To avoid cumbersome nomen-
clature, this contribution is simply called C20 in what
follows.

The method of reference 1 gives the EFG contri-
bution in terms of a sum over reciprocal lattice vectors
h. From Eq. (A16) in that reference, one has:

C,'= —BpPr (-,')„/I!
——,vr Q 2 (h)A„+, (2m.hri)Pp(cos8h). (2.4)

h

Here, the first term on the right-hand side, in which 820
appears explicitly, is included only if an ion belonging
to the lattice being summed is present at the origin.
Thus, this term is included in calculating the effects
of the ions at (0,0,0) but is omitted in calculating the
effects of those at (-'„-,',2). The purpose of this term is
to subtract the self-field of the ion at the origin. The
notation (s)„means F(e+s)/F(s) and the function
A„(s) is related to the Bessel function of the first kind
as follows:

A„(s)=r (1+v) (2/s) "J„(s). (2.5)

The quantity I in (2.4) may in principle be set equal
to any non-negative integer but, for practical reasons,
small values are not suitable. Most of the calculations
were performed with v=31. The distance parameter r~
must be chosen so that a sphere of this radius contains
all the charge belonging to the ion at the origin and
none of the charge belonging to any other ion.

For a tetragonal lattice, the reciprocal lattice vector
h has the rectangular components pi/a, pp/a, and pp/c,
where the p, are integers. From Appendix A, the
Fourier coeS.cients for a lattice of quadrupolar sources
located at the (0,0,0) positions become:

A (h) = —(4rsh'BpP/3a'c)A;(2s. hsi)Pp(cos8h). (2.6)

For a lattice of similar sources located at the (~„—', i2)

positions,

g (h) = —(—1)»+»+»(4r&h2Bpp/3g&c)

)(A~I(2s'hsi)Pp(cos8h). (2.7)

When these expressions are used in conjunction with
(2.4), ri and si must be chosen so that si(ri( (rp —si)
where ro is the nearest-neighbor distance. Actually it
was found most convenient to take s~&0 but yet so
small that A;(2~hs&) could be set equal to unity for all
h values used in the calculation; there is no practical
difference between choosing s& in this way and setting
it equal to zero but there are theoretical advantages
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TABLE I. Calculated values of a5 times the axial electric field
gradient per unit axial quadrupole moment in a tetragonal lattice
of quadrupolarly polarized ions. Lattice parameters are u, u, c.

small, of the form:
eQs= neqp, (3 1)

0.50
0.60
0.70
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.S6
1.58
1.60
1.70
1.80
1.90
2.00
2.20
2.40
2.60
2.80
3.00
3.20

~Q, 0,0,0

398.42502
160.89894
76.013832
46.181511
41.348966
37.233091
33.718776
30.711170
28.131761
25.915290
24.007291
22.362143
20.941498
19.713021
18.649360
17.727321
16.927180
16.232124
15.627792
15.101891
14.643877
14.244691
13.896538
13.592700
13.327377
13.095558
12.892907
12.715668
12.560583
12.424825
12.305939
12.201787
12.110512
12.030495
11.960325
11.898772
11.844763
11.797362
11.755748
11.719207
11.687114
11.658920
11.634148
11.612378
11.593243
11.527118
11.492278
11.473869
11.464121
11.456204
11.453966
11.453333
11.453153
11.453101
11.453087

—11.43216—21.95906—31.129064—35.958563—36.768814—37.422443—37.923710—38.278198—38.492561—38.574277—38.531444—38.372583—38.106476—37.742025—37.288123—36.753556—36.146915—35.476527—34.750396—33.976161—33.161067—32.311938—31.435164—30.536695—29.622039—28.696269—27.764026—26.829537—25.896625—24.968730—24.048924—23.139930—22.244147—21.363666—20.500290—19.655560—18.830770—18.026988—17.245075—16.485705—15.749378—15.036442—14.347102—13.681443—13.039433—10.176897—7.857261—6.012958—4.568268—2.592416—1.446676—0.797810—0.436258—0.237088—0.128264

PQ, total

386.99286
138.93988
44.884768
10.222948
4.580152—0.189352—4.204934—7.567028—10.360800—12.658987—14.5241S3—16.010440—17.164978—18.029004—18.638763—19.026235—19.219735—19.244403—19.122604—18.874270—18.517190—18.067247—17.538626—16.943995—16.294662—15.600711—14.871119—14.113869—13.336042

—12.543905
—11.742985—10.938143—10.133635—9.333171
—8.539965—7.756788
—6.986007—6.229626—5.489327—4.766498—4.062264—3.377522—2.712954—2.069065—1.446190

1.350221
3.635017
5.460911
6.895853
8.863788

10,007290
10.655523
11.016895
11.216013
11.324823

where o., whose dimensions are J5, is the quadrupolar
polarizability and ego is the total EFG in the environ-

ment of the ion due to all causes. If ego~ represents the
EFG due to primary sources such as those mentioned
in the introduction and discussed in reference 1, one

may say that:
eqp=eqp„+a 'Fqneqp, (3 2)

where the second term represents the eQect considered
here, namely the EFG due to the quadrupole moments
of the ions. Note that the second term is related,
through the polarizability, to the total EFG present.
By simple algebra, one obtains:

eqs ——(1—u—'Fun) 'eqp„ (3.3)

70 I
ii

I l l l

and it is seen that the eQect of quadrupolar polariza-
bility takes the form of a numerical factor which

multiplies the primary EFG to yield the total EFG.
It is interesting to estimate this factor for metallic

indium since this article was inspired by an investi-
gation of that material. In a private communication,
E. G. Wikner has suggested a value of —1 A ' for the
quadrupolar polarizability of the In'+ ion; this is
quite reasonable since the same quantity for a perfectly
conducting sphere of radius R is —R'. Using a =3.25 A,
c/a= 1.52, and Fo —4.06 f——rom Table I, one finds that
(1 a'F@n)—is approximately equal to 0.99 and there-
fore, in indium the total EFG is greater than the
primary EFG by about 1%. If the various sources of
primary EFG ever become accurately calculable (as
the eRect of the monopole moments of the ions now is),
then the result just obtained, although small, will come
within the scope of experimental verifiability.

An inspection of TaMes I and II (Table II is dis-
cussed in Appendix 3) shows that for both monopole
and quadrupole sources of EFG, the ions at (—'„-', ,—',) are
opposed in their effects to the ions at (0,0,0). More-
over, the c/a ratio of indium is not well suited to the

related to the convergence properties of the Fourier
series.

The dimensionless quantity FQ —(l Cs/Bs was cal-
culated' with the aid of (2.4), (2.6), and (2.7) for a
large number of c/a ratios; it is tabulated in Table I
and presented graphically in Fig. 1.
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FIG. 1.Graphical pres-
entation of the data of
Table I as a function of
c/a ratio.

III. EFFECT OF QUADRUPOLAR POLARIZABILITY

In introducing the term "quadrupolar polarizability, "
one postulates a relationship, linear at least in the

'The author is indebted to Mr. Earl H. Hygh for constructing
tables of the A. function of orders 67/2 and 69/2.
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TABLE II. Calculated values of u' times the axial electric field
gradient per unit monopole moment in a tetragonal lattice of ions
in a uniform compensating background. Lattice parameters are
0) 8) C.

c/a

0.50
0.60
0.70
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.70
1.80
1.90
2.00
2.20
2.40
2.60
2.80
3.00
3.20

30.08204082
15.24693343
7.936051229
4.572315066
3.936895536
3.363191029
2.843509001
2.371244875
1.940711609
1.546998772
1.185855494
0.853592830
0.547002004
0.263285682
0,000000000—0.244994492—0.473574480—0.687389343—0.887891423—1.076361928—1.253933164—1.421607637—1.580274525—1.730723889—1.873658972—2.009706855—2.139427699—2.263322791—2.381841537—2.495387570—2.604324077—2.708978454—2.809646388—2.906595433—3.000068143—3.090284827—3.177445979—3.261734410—3.343317130—3.422347008—3.498964245—3.573297666—3.645465876—3.715578277—3.783735971—4.098255858—4.375489784—4.622283483—4.843721519—5.225315673—5.542873718—5.811449939—6.041621446—6.241092822—6.415627220

—8.08765794
—6.17616421—4.415074892—3.088470732—2.770614541—2.459108516—2.154366965—1.856783459—1.566722715—1.284514721—1.010450717—0.744780749—0.487712492—0.239411120

0.000000000
0.230437970
0.451858522
0.664253827
0.867650038
1.062104683
1.247703954
1.424559988
1.592808151
1.752604390
1.904122672
2.047552538
2.183096776
2.310969242
2.431392820
2,544597532
2.650818798
2.750295845
2.843270254
2.929984653
3.010681542
3.085602237
3.154985946
3.219068947
3.278083877
3.332259115
3.381818258
3.426979674
3.467956139
3.504954535
3.538175618
3.654200261
3.702195178
3.700028244
3.661890222
3.519111389
3.333360354
3.136926972
2.945996239
2.767769596
2.604696617

2 1.99438288
9.07076922
3.520976337
1.483844334
1.166280995
0.904082513
0.689142036
0.514461416
0.373988894
0.262484051
0.175404777
0.108812081
0.059289512
0.023874562
0.000000000—0.014556522—0.021715958—0.023135516—0.020241385—0.014257245—0.006229210
0.002952351
0.012533626
0.021880501
0.030463700
0.037845683
0.043669077
0.047646451
0.049551283
0.049209962
0.046494721
0.041317391
0.033623866
0.023389220
0.010613399—0.004682590—0.022460033—0.042665463—0.065233253—0.090087893—0.117145987—0.146317992—0.177509737—0.210623742—0.245560353

-0.444055597—0.673294606—0.922255239—1.181831297—1.706204284—2.209513364—2.674522967—3.095625207—3.473323226—3.810930603

production of a large EFG. It is possible, then, that in
substances other than indium and especially in tetrag-
onal crystals in which the ions at (—',, —,

'
ip) are of a

different species from those at (0,0,0) or in which they
are missing altogether, the eGect considered here could
be appreciably larger than 1%.

APPENDIX A. FOURIER REPRESENTATION OF A
LATTICE OF MULTIPOLAR SOURCES

The summation method used in this article requires
that the charge density configuration associated with

an infinite lattice of axial quadrupolar sources be
expressed as a Fourier series. In the interest of gen-
erality, however, this Appendix treats the problem of
constructing a Fourier representation for a lattice of
identical sources each of which generates an external
potential consisting of any single multipole component.

As discussed earlier, there is some latitude in the
choice of a model for the charge density of the sources.
For convenience, a spherical shell model has been
chosen; the results which follow from this choice are
detailed below.

Figure 2 illustrates a typical source with density
p, (s) where s is the relative displacement vector from
the point 0' with respect to which the multipolar
composition of the source is to be reckoned. The con-
figuration is shown in relationship to a typical crystal
unit cell defined by the primitive translation vectors
a~, a2, a3. The displacement of 0' with respect to 0 is
indicated by the vector r'. In general, the Fourier
coefficient is given by

A(h)=rp ' p, exp( —2vrih r)dr,
'TO

(A1)

In other words, the Fourier coefficient is simply the
product of a position factor, exp( —2~ih. r'), and the
Fourier transform of the source density with respect
to O'. The latter may be expanded by the use of Eq.
(A5) of reference 1, whereupon:

A (h) = r p
' exp( —2vrih r') P P (—i)'(23+1)

l=o m=l

&&L(i—[m [)!/(l+ [m [)!]Pi' ~(cos8h) exp(imqbh)

pj, (2xhs)P~~ ~(cos8)

)&exp( —imP)s' sin8d8dpds. (A3)

r-
I

I
I

I /

I
/

/ / I
/ I
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PgG. 2. A typical source in a crystal unit cell.

where r p is the volume of the unit cell. Since r=r'+s,
one has

A(h) = rp ' exp( —2vrih r') p, exp( 2vrih—s)dr. (A2)
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The charge density is chosen to reside upon a spherical
shell of radius s& and to be given analytically by:

argument 5, whose numerical value is 1.036927755. It
follows that

p, =((21'+1)Bi '/4m. js &'+'&8(s—st)Pi ~ '~(cose)

Xexp (im'Q). (A4)
Fq, gQt, i —+ Fq, p, p, o

—+ 12.443133(a/c)'. (a3)

For any value of s&, this distribution satisfies the
hypothesis that its external potential shall have but a
single multipolar component and, as substitution in
(2.2) shows, the multipole moment of this source is
simply 8& '. The fact that this distribution is complex
is no cause for concern since, in any practical situation,
it will always appear in superposition with its con-
jugate. When this p, is substituted into (A3), the
summations disappear by orthogonality and the Fourier
coefficient acquires a factor whose angular dependence
in reciprocal space reQects the angular dependence of
the source in real space:

A(h)=Tp ' exp( —2m. ih r')Bi. '(—i)'(2l'+1)
Xsi—' j& (2mhst)Pi ~"'~ (coseh) exp(im'gh). (A5)

In the final form, it will prove convenient to introduce
the A-function notation. The radius s~ remains as an
adjustable parameter, and the Fourier coefficient
becomes

(21'+1)(—2prih) '
A (h) = rp ' exp( —2mih r')Bi

XAi ~;(2vrhsi)Pi '(cosep) exp(im'Pp). (A6)

The results quoted in Eqs. (2.6) and (2.7) follow
immediately.

APPENDIX B. CHECKING PROCEDURES

The results given in Table I were subjected to three
checking procedures. These will be discussed briefly.

(1) Table I was originally calculated with the
arbitrary integer e in (2.4) set equal to 31. The calcu-
lations were repeated with n set equal to 32 for thirteen
representative values of c/a ranging from 0.50 to 3.20.
Disagreements were never greater than unity in the
least significant figure quoted.

(2) The asymptotic forms of the entries in Table I
as c/a tends to zero or to infinity were calculated by
summations in real space. Using (C7) from Appendix C,
Fg may be written as a sum over the coordinates of the
ith ion with the term corresponding to the ion at the
origin delected:

Fq=6+' (a r/, )'P4(c so0)

As c/a tends to zero, the effects of all ions except those
on the s axis become negligible. F@... ,„~tends to zero and

Fq, totai —+ Fqooo —+ 6(a,/,c), P4(1) P'
~

n
~

. (82)

As c/a tends to infinity, on the other hand, only those
ions which lie in the xy plane are important. Again
F@,;,;,; tends to zero and the other two quantities
become asymptotic to a plane sum:

Fq, t.t,.i ~ Fq, o, o, o —& 6P4(0) P' (m'+e') l .(B4)

This plane sum was evaluated by a combined sum-
mation and integration technique which yielded the
value 5.09025821. Since P4(0) = p,

Fq, tatami ~ Fq, o, o, o ~ 11.453081

An inspection of Table I shows that the asymptotic
forms given by (B3) and (B5) are realistic.

(3) It was found that the EFG due to a lattice of
monopoles in a uniform compensating background and
that due to a lattice of quadrupoles could be calculated
at the same time with very little program complication.
This is true because the only substantial modification
required in changing from the quadrupole to the
monopole calculation is the substitution of Pp(cosgh)
for h'$Pp(cosgh)]'. It was therefore decided that
Fpr ao2C p'/B p sh——ould be calculated simultaneously
with F@ in order that the former could be compared
with the published results of deWette. 4 The F~ co™
efficients so calculated are given in Table II. F~,~,t,,i

compares directly with u'Z 'q&,„in the reference cited
whereas Fpr, p, p, p must be compared with 8pra/3c
+apS p p, p and Fpr, ;, ~ with 8pra/3c+a S""~»,*. The
agreement between the corresponding sets of results is
excellent.

APPENDIX C. RELATIONSHIPS AMONG
LATTICE SUMS

Tara P. Das has pointed out in a private communi-
cation that Fg, the quantity calculated here, is equiva-
lent within a multiplying factor to the axial hexadeca-
polar term in an expansion of the potential at the origin
due to a lattice of monopoles; it is similarly equivalent
to the potential at the origin due to a lattice of hexa-
decapolarly polarized ions. It will be interesting to
derive the general relationship of which these are
specific cases.

Figure 3 illustrates an axial multipole source of
moment B~ located at 0' and an observer located at O.
It is desired to investigate at the origin the C~ com-
ponent of the potential produced by the source. If this
potential can be found as a function of s with x and y
set to zero, it will be a simple matter to fiod C~", since

The sum is twice |(5), the Riemann zeta function of 4 P. W. de Wette, Phys. Rev. 123, 103 (1961).
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FrG. 3.An axial multi-
pole source at 0' shown
in relationship to an ob-
server at O.

0

space sum with the term corresponding to the ion at the
origin deleted:

Ct' pl'+l~= (—1)'! !
P' r, i'+'+"Pt +t(cosg;). (C7)

8,' kli'
This sum converges absolutely' for all cases in which
l'+l)&3, although the rapidity of convergence is not
always satisfactory from a computational point of
view. In these cases, Cto/Bt' is rigorously given by
(C7) and many interesting relationships among lattice

y sums are immediately deducible. The following, for
instance, are particularly relevant to the present article:

the latter is simply the Maclaurin coefficient in the
expansion of V(0,0,s) at O. The relationship, '

(—1)' 8' 1)
r "+"Pt(cosg)=

l! Bs' ri
(C1)

will be very useful here. One has:

V(0,0,s) =Bt 't "+"Pt (cosg');

(—1)' 8' ]1~
V(0,0,s) =8,'

l'! Bs'kt i
It follows that

( 1)l' —gt'+t (1)—
Cg'= Br'

l'!l! 8s'+' kt i

(C2)

(C3)

(C4)

Ct' il'+1 i
(—1)'I Ir "'+'+'&P, ,+,(cosg),

8,' hali (C6)

l'+l1 .
where ! indicates the lth binomial coefficient in

i
an expansion of order l'+l.

When one has an infinite lattice of identical sources,
the quantity Cto/Bt o can frequently be related to a real

5 't!vv. Magnus and F. Oberhettinger, Special FNnctions of
Ãathemattcat Physics (Chelsea Publishing Company, New York,
1949), p. 50.

Equation (C1) may now be invoked again and,

(—1)'(—1)™(l'+l)!
Co—g 0

p
—(l'+i+1)

P tel

)&Pt+t(cosLsr —8]). (C5)
Finally

C 0 4mEg= —2 Q' r,—sPs (cosg;)—
+]. i, large 37'p

sphere

(C9)

where E~ is the number of dipole sources per unit cell
in the crystal and 7 p is the volume of the unit cell. The
set of relationships for l'+l= 2 becomes

C2o —1 C~o 4~Ã~ Cpo

Bpo 2 Bio 37-p 82p
(C10)

When the quantities Coo/Bo', CP/Bi', and Coo/Boo are
calculated by the method of reference 1 using the
Fourier coefficients derived in Appendix A of this
article, the results are in agreement with (C10), hence
there is no need to "correct" the CP/BP so calculated
for the Lorentz field. Only when one attempts to
calculate CP/BP by a real space sum must the cor-
rection for the Lorentz Geld be applied.

' The result is independent of the order in which the terms are
summed.

C4'/Bo'= Cs'/48—g' Cs'/68——s' CP/——48so-
=Co'/84'. (CS)

When l'+l=2, the convergence is not absolute and
an especially interesting situation arises. Tolerably
satisfactory results can be obtained from (C7) by
making sure to stop the summation at a spherical
boundary concentric with the origin, provided that the
sources are either monopoles or quadrupoles. When the
sources are dipoles, however, the bound surface density
due to the unsummed dipoles just beyond the sphere
where summation stops creates the familiar Lorentz
field which is independent of the size of the sphere.
Since C~' ———E„ the Lorentz field contributes nega-
tively to CP/BP and the latter may be written:


