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The exchange of energy between nuclear spin system and lattice
has been theoretically and experimentally studied for circum-
stances in which the nuclear Zeeman energy levels are not neces-
sarily equally spaced. Starting from the master rate equations for
the nuclear energy level populations, expressions are found for the
population difference of an adjacent pair of energy levels as a func-
tion of time. For nuclear spin I, this population difference in
general returns to thermal equilibrium with the lattice as a sum
of (2I) exponential terms. Under certain conditions, exact solu-
tions of the rate equations may be obtained. As an example, de-
tailed exact solutions are found for an artificial physical situation,
in which the nuclear spins (I=5/2) are presumed to interact, inde-
pendently of each other, with a rapidly fluctuating paramagnetic
ion (the lattice). From the solutions to this model system, some
conclusions are drawn which are consistent with more sophisti-
cated statistical arguments. First, in the limiting case of equally
spaced energy levels, these solutions reduce to a single exponential
term; a unique spin-lattice relaxation time T& may then be defined.
Second, it is found that even for unequally spaced levels, any pair
of level populations recovers to thermal equilibrium asymptotically
as an exponential with this same time constant T1.

The methods illustrated in the foregoing example are extended
to include the eBects of nuclear dipole-dipole interactions. Approxi-
mate solutions to the rate equations are found, for I=5/2, in terms

of a slight extension of previous descriptions of nuclear spin-lattice
relaxation in dilute paramagnetic solids formulated by Bloem-
bergen, de Gennes, and Khutsishvi]i. These solutions are applied
to the particular example of the Al spins in AlsOs. 0.035% Cr'+,
in order to predict the results of experimental measurements of
transient nuclear magnetization made during this research. For
the limiting case of equally spaced energy levels, our solution pre-
dicts that the Al spins should relax exponentially, with estimated
time constant T1=0.6 sec at 80'K, for an external Geld of 9 kG.
Experimentally, we observe the Al spin relaxation proceed
asymptotically as an exponential with (T&) r o =0.78 sec at 80'K.
The slight discrepancy is accounted for by introducing, in a
qualitative manner, the effect of second-order quadrupole splitting
of the nuclear Zeeman levels. Further measurements of the tran-
sient magnetization associated with an adjacent pair of nuclear
energy levels are performed when the energy levels are far from
equal spacing; the results of all measurements convincingly demon-
strate the validity of the normal modes description of nuclear
spin-lattice relaxation employed here. All experimental observa-
tions agree quantitatively with the estimated spin temperature
time constant T&=0.6 sec. A slight anisotropy in T& as a function
of crystal orientation in the Geld Ho is reported. It is believed that
this anisotropy reflects anisotropy of the spin di6'usion process in
the noncubic. sapphire lattice.

I. INTRODVCTION Bloembergen' first performed a series of experiments
which outlined the main features of the paramagnetic
relaxation mechanism. In brief, the dipolar interaction
between the paramagnetic ion moment and the nuclear
moment gives rise to a transition probability for the
nuclear spin proportional to r ', where r represents the
distance between paramagnetic ion and nucleus. Those
nuclear spins lying close to the impurity are, therefore,
rapidly relaxed. Nuclear spins far from the impurity ion
do not "feel" this direct dipolar interaction; neverthe-
less, by an exchange of energy through mutual Qips with

neighboring nuclei via the nuclear dipole-dipole inter-
action, nuclear magnetization can travel by a random
walk process through the crystal toward the impurity
ion. The bulk nuclear magnetization thus relaxes toward
its equilibrium value in accordance with the "spin
diffusion" equation,

HE problem of the exchange of energy between a
nuclear spin system and its surroundings has been

of continuing interest for a number of years. Nuclear
spin-lattice relaxation is, in general, described by solu-
tions to a family of differential rate equations involving
the populations of the various nuclear spin energy levels
and the coupling between the nuclear spins and the
"lattice". For nuclear spin I, the number of nonde-
generate single-spin energy levels is (2I+1); in this
case, there are a total of (2I) independent, linear,
coupled rate equations to be solved.

To our knowledge, these rate equations have not been
examined in detail. Indeed, for most physical systems
studied heretofore, the rate equations are found to have
a degenerate solution, which describes an exponential
recovery of the nuclear spin system toward thermal
equilibrium with the lattice with a single time con-
stant T~.

In the present work, we shall be concerned with
physical systems for which the single exponential solu-
tion to the rate equations does not apply. In particular,
we shall consider a nuclear spin system for which the
(2I+1) energy levels are unequally spaced. We shall
restrict ourselves to nuclear relaxation in dilute para-
magnetic crystals. The numerical results obtained will

be compared with the results of experiments on a single
ruby crystal performed during this research.

BM/itt=DV'M C(M Mo)P„~r——r
~

—'. (1)

In this equation, D represents the spin diffusion coeffi-
cient, C the strength of the dipole-dipole interaction be-
tween paramagnetic ion moment and nuclear moment,
and Mo the equilibrium value of the nuclear
magnetization.

The diffusion equation has been solved independently

by de Gennes' and by Khutsishvili, ' making use of

*Now at Clauser Technology, Inc., Torrance, California.

r N. Bloembergen, Physica 15, 386 (1949).' P-G de Gennes, J. Phys. Chem. Solids 7, 345 (1958).
G. R. Khutsishvili, Proc. Inst. Phys. Acad. Sci. Georgia

(U.S.S.R.) 4, 3 (1956).
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boundary conditions applicable to dilute paramagnetic
impurities. Their solution predicts that the magnetiza-
tion relaxes exponentially toward its equilibrium value
Mp with a time constant given by 1/Ti=8. 5/pC D"',
where Eo represents the number of paramagnetic ions
per cubic centimeter. This conclusion has been con-
firmed experimentally for a number of substances.

It is the purpose of this work to examine the problem
of nuclear spin-lattice relaxation from the point of view
of the relaxation rate dependence on the nuclear spin I.
When I= 1/2, nuclear relaxation proceeds according to the
solutions of de Gennes, Khutsishvili, and Bloembergen.
For spin I)1/2, a description of the relaxation process
can be obtained from solutions of the master rate equa-
tions for the populations of the (2I+1) energy levels.
These equations will be solved in considerable detail
for various special circumstances. Explicit attention
will be devoted to the case I=5/2, both because the
equations admit solutions without undue labor, and
because the results are subject to the experimental
demonstration to be described. In particular, interest is
centered on (1) the case of equally spaced energy levels,
and (2) the case of unequally spaced energy levels. In
the former case one would expect that the concept of a
local spin temperature would be applicable; in this
situation, the recovery of the total magnetization may
be shown to follow a single exponential, characteristic
of the constants C and D when suitably modified by
their dependence on I. In the second case, the mag-
netization recovery of an adjacent pair of levels is de-
scribed by a linear combination of (2I) exponential
functions, whose individual characteristic times are
related to C and D.

An experiment has been performed on the aluminum
nuclei (I=5/2) in dilute ruby (0.035%Cr'+ in AlsOs)
which does indeed demonstrate the validity of the ob-
tained solutions. The A120& lattice produces an axially
symmetric quadrupolar coupling between the Al nucleus
and the crystalline electric 6eld gradient. This inter-
action provides an additional splitting of the nuclear
energy levels, over the Zeeman splitting due to the
applied magnetic 6eld Ho. First-order perturbation
theory gives one the magnetic resonance frequencies'

v~+i ~——vp+(3A/h)[(3/2) cos'8——',g(2m+1), (2)

where vp= —yHp/(2m) is the resonance frequency
in the absence of the quadrupolar perturbation,
A =e'qQ[4I(2I —1)) ' is the quadrupolar coupling con-
stant, and 8 is the angle between the crystalline axis
of symmetry and Ho. The resonance spectrum of the Al
nuclei thus consists of a central line (1/2~ —1/2)
and two symmetric satellite pairs. Temporarily neglect-
ing second-order quadrupole sects, it is seen that for
the angle 8= 8p ——cos '(1/VS) all five frequencies overlap;
this condition corresponds to the case (1) of equally
spaced energy levels mentioned previously. For orienta-

'R. V. Pound, Phys. Rev. 79, 685 (1950).

tion angles far from 80, that is, for unequally spaced
energy levels, the experimental situation corresponds
to case (2).

By means of pulsed riuclear magnetic resonance tech-
niques, the spin energy level populations are disturbed
from their equilibrium values. Subsequently, the mag-
netization is examined after it has relaxed toward
thermal equilibrium. Experimental details will be de-
scribed more fully in Sec. III.

In order to make a true test of the theory of spin-
lattice relaxation via dilute paramagnetic impurities,
one usually performs experiments wherein the depend-
ence of the relaxation upon temperature, magnetic 6eld,
and impurity concentration is examined. The experi-
ments to be described here do not fall into this category.
We shall be concerned principally with the dynamic
properties of the spin system under the conditions
specified. It is nevertheless interesting to notice the
close agreement between our order-of-magnitude calcu-
lations and the experimental results obtained in ruby.

II. THEORY

I. Direct Interaction

Consider a nuclear spin I possessing a quadrupole
moment (eQ), situated in a large magnetic field Hp and
in an axially symmetric electric field gradient (eq) in-
clined at an angle 8 with respect to Hp. The energy
eigenvalues obtained by straightforward perturbation
theory, assuming the quadrupolar interaction to be
much smaller than the Zeeman energy, are to first
order, 4

e'qQ (3 cos'8 —1)E„= yAHpm+—
4I(2I 1)—

X [3m' —I(I+1)j. (3)

%hen, in addition, the nuclear spin is a distance r
from a paramagnetic ion with magnetic moment y,AS,
there is a dipolar interaction of the form

Hg;v ——A y,yr [S I—3r (S r)(I ~ r)j.

In a crystal at a Gnite temperature, lattice vibrations
produce a fluctuating crystalline electric field, which in
turn perturbs the orbital motion of the outer paramag-
netic ion electrons. Fluctuations in spin-orbit coupling
then induce transitions of the paramagnetic spin among
its Zeeman energy levels in the field Hp. Bloembergen'
has shown how, under these conditions, Hg;~ may be
treated as a time dependent perturbation on the nuclear
spin system. Assuming that the electron spin resonance
is.described by a Debye function with correlation time v

(representing the mean lifetime of the electron spin in
one of its states), and that the nuclear resonance fre-
quency is suKciently low to allow one to neglect the
effect of the nonsecular part of the electron spin Hamil-
tonian, the result of his calculation of the nuclear transi-
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W pr „——W(I&m)(I+m+1), (6)
where

W= (1/10)h'y 'y'S(S+1)r PrL~(1+r'vp')] '= Cr '

tion probability per unit time is

W~+r ~ ——(9/4)r ' sin'P cos'p(2a) '

XA'y, 'y'(S, ')„r(I&m)(I&m+1)
= (3/4)h'7, 'y'$(S+ 1)r ' sin'P

Xcos'p I a(1+r'vo')] '(I&m)(I&m+1), (5)

where vp is the nuclear resonance frequency and g is the
angle between r and Hp.

We consider the rate equations and their solutions,
when I)1/2, for an idealized model, in which all nuclei
are at the same distance r from a single paramagnetic
impurity, and when spin diffusion is neglected. For our
purposes it is sufficient to average Eq. (5) over the
angle p and write

model, one has 2I degrees of freedom. Using Eq. (6)
for the 8" „,and defining the quantity u by
a =(I —e r), one obtains the set of (2I) coupled
equations

(9)(1/W)(da„/dt) =Qe A„pap,

a =P, a„;exp(—X,t), (10)

where the 2I values of X; are obtained from the secular
determinant

A /,
——LI(I+1)—(m+1)m]8 +r, p

2[I(—I+1)—m(m —1)]8„,/,

+)I(I+1) (m— 1—)(m —2) ]b

m=I, I 1, —
, —(I 1).—The additional constraint

on the system is the conservation of the total number
of spins:

(d/dt)P e =0

The solution is of the form

For those nuclear spins a distance r from a single im-

purity, the family of rate equations may be written
~A /,

—X8 kl =0.

dN„/dt =+„X„W„„„E„P„W—For our simple model, Eq. (11) is easily factored. One

(7) obtains the roots'

where E is the total number of spins in state m. De-
6ning X as the equilibrium number of spins in state
m, and taking account of detailed balancing, Eq. (7)
may be cast into the general form

dn /dt=+„W „(I„n),— (g)

where n =(E —1V p)/p E is the departure of the
fractional relative population of the mth state from its
thermal equilibrium value.

The solution of this family of rate equations is
formally equivalent to the solution of a normal modes
problem with real coefficients, where, for this simple

X,/W= 2, 6, , (2I+1)!/(2I—1)!. (12)

In the special case I=1/2, Eq. (12) yields the single
time constant X='1/Tr =2W. The spin-lattice relaxation
toward equilibrium is in this case correctly described

by a single exponential recovery time T&.

In any transient magnetization experiment one might
perform, the magnetization of an adjacent pair of levels
is the physically measurable quantity. Since this mag-
netization is directly proportional to u, we propose to
solve Eq. (10) in detail for our idealized situation. We
restrict ourselves to the special case I=S/2. Orthogo-
nalization of the a; gives the matrix relation

1.0
1.0

(a )= 10
1.0
.1.0

1.0
0.5
0

—0.5
—1.0

1.0
0.25

—0.67
—0.25

1.0

1.0
—1.25

0
1.25

—1.0

1.0 ar exp( —2Wt)—2.5 ap exp( —6Wt)
3.33 ap exp( —12Wt)

—2.5 a4 exp( —20Wt)
1.0, ,ap exp( 30Wt)—

(13)

where the a&, ~, us are determined by the initial con-

ditions of the spin system at time t=0.
We shall distinguish between two different physical

situations, first considering the case of unequally spaced
energy levels (for example, 0=0'). Under these circum-

stances, one is able, by means of an intense burst of
radiation at one resonance frequency, to invert the
populations of an adjacent pair of energy levels without
disturbing the others. When, for example, the central
resonance line is inverted at /=0, the initial conditions

are, approximately,

/tp/p(0) =~-»p(0) =0i /rp/p(0) = ~—r/p(0) =P i

/ (o)=-2~;
where P=yAIIp/kT, and where it has been assumed that
the quadrupolar interaction is much smaller than the
Zeeman interaction Ah '«yHo. The numerical solutions
for the various transitions are given below, and are

' R. Sher and H. PrimakoB /Phys. Rev. 119, 178 (1960)j have
obtained A~ for a similar, but more general, physical situation for
the special cases I=1 and I=3/2. Equations (136) and (141) of
their work are equivalent to our Eq. (12).These authors have also
demonstrated, under quite general conditions, the validity of using
the master rate equations as a starting point for a description of
the nuclear relaxation, as we have done here.
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shown in Fig. i.
(1/2 ~ —1/2 inverted);

a»3 ———p/315L18 exp( —2Wt)

+112 exp( —12Wt)+500 exp( —30Wt)];

(3/2 —+ 1/2 inverted);

a3/3 —p/1260L396 exp( —2Wt)

+135 exp( —6Wt)+18 exp( —12Wt)

+1125exp( —20Wt)+675 exp( —30Wt)];

(5/2 ~ 3/2 inverted);

asks ———I8/35[2 exp( —2Wt)

+15 exp( —6Wt)+28 exp( —12Wt)

+20 exp( —20Wt)+5 exp( —30Wt)).

(14)

The qualitative resemblance of these recovery curves
to those obtained experimentally is striking. Although
the order of magnitude of the time scale is quite wrong,
the apparent agreement in curvature is convincing
enough to justify the extension of these methods to
include spin diffusion.

Now consider what happens when the energy levels
are equally spaced (0=8II). It is no longer possible to
invert just one pair of adjacent levels with an rf pulse,
since only a single resonance frequency exists for al/
km= 1 transitions. (Mathematically, the normal modes
problem has become fivefold degenerate. ) If one applies
an rf pulse at vo which inverts the populations of all
levels (180' pulse), the initial conditions are then
a = —2P for all m. Inspection of Eq. (13) with these
initial condtions tells us immediately that

Io.o

7.0

5.0

3.0

& 030

ALL
TRANSITIONS~ OVERLAPPING

~3/2
NSITION

a„(t)~ exp( —2Wt) for all m, (15)

and hence, the total magnetization recovers to its
thermal equilibrium value exponentially with time
constant

1/Ti= 2W. («)
This particular solution was obtained for liquids with

a different method by Bloembergen, ' ' who made the
similar assumption that the difference in population
between two adjacent energy levels is independent of m.
Equation (15) can be very properly called the spin tem-
perature solution, since it can be derived immediately
from the spin temperature assumptions of (1) equally
spaced energy levels, and (2) level populations described
at all times by a single parameter, namely, the Boltz-
mann factor at temperature T,. In fact, if one makes the
assumption that the solution of the rate Eq. (8) is con-
sistent with the existence of a spin temperature, then'

1/Ti ——(1/2)Q, W (E„E„)'/Q„E„',(17—)

and the relation (16) follows immediately.

¹ Bloembergen, ENclear Jtt/Iugnetic Relaxation (M. Nijhoff,
The Hague, 1948).

N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1948).

L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
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FIG. 1.Semilogarithmic plots of the theoretical population differ-
ences between adjacent spin-energy levels as a function of time
following population inversion of the particular level pair. The
curves shown are representative of solutions to the direct inter-
action problem, and are given by Eqs. (13) and (15) in the text.

W. E. Blumberg, Phys. Rev. 119, 79 (1960).

The result (15) is plotted in Fig. 1; for comparison
purposes, all amplitudes at t =0 are made identical. One
notes two features peculiar to the spin temperature
solution; its characteristic decay time is independent of

I, and it is also the slowest mode of decay for the spin
system. Therefore, any pair of level populations pro-
ceeds towards thermal equilibrium asymptotically as an
exponential with Ti 1/(2W), regard——less of whether or
not the energy levels are equally spaced. In other words,
the spin system reaches a sort of internal Boltzmann
equilibrium, before finally recovering to thermal equi-
librium with the lattice. These latter statements are
quite general, and might be expected on the basis of
general statistical mechanics arguments. They will be
used in Sec. III for a qualitative interpretation of certain
observed relaxation rates.

This model is applicable to a real dilute paramagnetic
crystal under the conditions investigated by Blumberg.
He postulates that, immediately following a burst of rf
energy which saturates the nuclear spin system, the
gradient of the local magnetization is everywhere zero,
and hence spin diffusion will not occur. For times short
compared with the time necessary to establish a finite
magnetization gradient, the relaxation will be domi-
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nated by the direct interaction. Blumberg then performs
an integral of the local magnetization over the volume
of the crystal, with the result that the magnetization
recovers toward thermal equilibrium proportionally
with the square root of the time. It may be seen from
the above model that his solution remains valid for any
spin value I, provided the energy levels are equally
spaced. If this is not the case, it may still be said that
the population difference of an adjacent pair of levels
recovers initially toward thermal equilibrium as the
sum of (2I) terms, each proportional to the square root
of the time. We do not observe this square-root effect
experimentally, and shall not consider it further here.

2. Spin Diffusion

In this section, we deal with the solution of Eq.
(1) for dilute paramagnetic crystals when I)1/2.
Ke shall first examine the situation of equally spaced
energy levels. The local magnetization M(r, t) at any
point in the crystal is then obtainable from a single
parameter, the local spin temperature T,(r,t) It will .be
convenient to idealize the model by restricting our calcu-
lations to an isotropic lattice. In addition, we shall
assume Gaussian line shapes, and shaB average over all
angles that occur. These restrictions will not aGect the
order of magnitude to be obtained.

The probability per unit time P for a mutual spin
Rip of neighboring nuclei is determined by the strength
of the dipole-dipole interaction. The term of interest in
the dipolar Hamiltonian, which conserves the Zeeman
energy of the pair of spins involved, is

IIr.r= —1/4y'$2r" ~(1—3 cos'g")P ~ +I~ ] (1g)

For mutual Qips of nearest neighbors only, application
of first-order time dependent perturbation theory, with
the above assumptions, gives

P(m ~ m+1 n &n—1—)= {s/10)(2m{6~')) "%'y4a '
)&$(I—m)(I+m+1)(I+n)(I-n+1)), (19)

where a is the nearest-neighbor distance and (AaP) repre-
sents the second moment of the resonance line. For
equally spaced energy levels, the Van Vleck dipolar
second moment for a rigid lattice is"

{A(o')= (3/5) gy'A'a 'I(I+1), (20)

where g is a geometrical factor defined by g r;;—'=ga—6.

Hence

P(m ~ m+1, n —+ n —1)
=Po(I m) (I+—m+1) (I+n)(I n+1),—(21)

where
P,= (1/6g) ('&~{&~2))~~2[I(I+1))

Consider those nuclear spins within a volume v of the
crystal far from an impurity ion, where v has position
coordinates (x,y,s). At a particular time t, the number
of spins within s, in state m, is N (x,y, s,t) We assg. me

the existence of a "local" spin temperature T,(x,y, s,t);
then

N (x,y, s, t) = LN/(2I+1))L1 —mP(x, y, s,t)), (22)

where P(x,y, s, t) =yhIIO/AT, (x,y, s,t)], and where N is
the total number of spid. s in volume v. The number of
spins in any state m wiB change with time, due to mutual
spin Qips with neighboring nuclei. Hence, for transport
of the population of state m in the x direction,

2I+1

2I+1

N„(x,t) —N, (x,o)

1—mP(x) 1—nP(x+ a)—
= —1A LP(m~ m —1, n —+ n+1)+P(m ~ m+1, n —+ n —1))

2I+1 2I+1
1—nP(x+a) (1—(m —1)P(x)

+Nt P P(m —1 -+ m, n ~ n —1)
2I+1

1—(m+1)p(x) )
)
!P(m+1 —+ m, n ~ n+1) +similar terms involving P(x—a). (23)

Performing the sums over the states n, neglecting terms
in p', and collecting, one obtains

N (x,t) N(x,O)—
21APOI(I+ 1)

LP(*+a)+P(x—a) —2P(x))
3(2I+1)

XL(I—m)(I+m+1) —(I+m)(I —m+1)). (24)

This equation may be written

P(x,t) —P(x,O) = (4t/3) POI(I+ 1)
XP(x+a)+P(x —a) —2P(x)). (25)

Expanding the left-hand side in powers of t, the right-
hand side in powers of a, and neglecting higher-order
terms, one has

gp(x, ~)/a&=(4/3)P a I(I+1)[ap(x, ~)/ax ) (26)

Since the local magnetization M(x, t) is proportional to
P(x,t), upon generalizing to three dimensions, one has
the familiar (isotropic) diffusion equation

BM(r, t)/Bt =DV'M(r, t), (27)
where

D= {2a /9g)(-', ~{~~ ))&~2.

' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948)
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The relation D~I(I+1) has been given by Bloem-

bergen. ' If one includes the direct interaction of nuclei
with paramagnetic ions, the result is, again, Eq. (1).

The diffusion equation (1) has been solved by de
Gennes' and Khutsishvili. ' An outline of the pertinent
features of their solution appears here. One assumes the
existence of a sphere of radius b surrounding an impurity
ion. Within this sphere, the nuclear resonance is

broadened beyond observability by the nearby para-
magnetic ion moment. Negligible spin diffusion occurs
across the surface of the sphere, due to the shift in

Larmor frequency of spins within the sphere; hence, b is
referred to as the di6usion barrier radius.

The exact value of b is not essential for the solution
of the diffusion equation, so long as the condition b«R
is satisfied, where R is the average spacing between two
neighboring paramagnetic impurities. With this a,ssump-

tion, a solution to Eq. (1) exists, of the form

M(r, t) =Ms[1+&(r) exp( —Rot)],

where p(r) satisfies the equation

tV„(x,t) N—„(x,0)

tN—„(x)
N +g(x+a)

P(m~ m+1, m+1 —+ m)S
N„g(x+a)

+ P(m +m —-1,m —1-+m)
E

cV„(x+a)
+t [N„+~(x)P(m+1—+ m, m~ m+1)

where

+N ~(x)P(m —1 ~m, m~ m —1)]

+similar terms involving (x—a), (30)

P(m~ m —1, m —1~m)
= (1/5)(2'(h(o~')) "'A'y'a '(I+m)'(I —m+1)'

and (A~ ') is the second moment of the m —+ m —1

transition. This quantity has been calculated for our
conditions" for the central line, neglecting a,ny qua, d-

rupolar broadening, with the result

18(2I+1)

4. 2I'(I+1)'+3I(I+1)+13/8
DrI'0(r) Z. A( )—~rr

—r.
~

'+~o4(r)=0. (28) (Q t 2) — I(I+1)+
27

It is seen that the magnetization recovers exponentially
with time constant ho=1/T, . From the asymptotic
properties of p(r) at large r, and from the boundary
condition M(0, t) =0, de Gennes obtains

ho= 1/T&=4aNoAoD, (29)

r, here Ao is a length parameter, Ao ——0.68(C/D)"',
called by de Gennes the pseudopotential radius. The
quantity Ao may be regarded as the scattering ampli-

tude of a single impurity.

We shall now turn to the situation where the energy
levels are unequally spaced. Some of the mutual spin

Qips generated by the dipolar interaction are no longer

possible, since they do not conserve Zeeman energy. One

anticipates a priori that this reduction in the number of

ways in which spin energy can be transported through
the crystal will result in a decrease in the diffusion con-

stant D. We intend to derive the appropriate diffusion

equation for the population difference of an adjacent
pair of energy levels. We shall again make use of the
idealized model approximations, namely, Gaussian line

shapes, an isotropic lat tice, and averaged angular
dependences,

The change in population of the mth state in a time t,
for transport in the x direction, is

X (9/S)gh'y'a '. (31)

For I=5/2, (d~Uss)=(107/105)(b~')=(Aoo'). In keep-

ing with the spirit of this calculation, we assume that
the second moments of all transitions are approximately
equal:

(~~Vs') = (~~s/- ) (~~Us') = (~~'). (32)

This approximation is not strictly valid, even for our

simple model, a fact that can be demonstrated by an
explicit second-moment calculation for (hoostss) and

(A~gs'). However, the assumption will have little quanti-
tative eEect on the results to be obtained presently. In
experimental practice, measured linewidths should be
used.

Expansion of Eq. (30), by the same methods pre-
viously used, gives the family of coupled equations

Including the direct interaction, we obtain

da. ,(r, t)/Bt= Qi, A.,„~ak(r), (34)

"K. Kambe and J.F.Ollom, J. Phys. Soc. Japan 11, 50 (1956).

ai„(r,t) Pou'
((I—m)'(I+m+1)'V'[e (r) —rt„+,(r)]

Bt 2I+1

+(I+m)'(I m+1)'V'[(rt (r) ——I g(r)]}. (33)
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where

A„i,——(W[I(I+1)—(m+1)m]
+[Poa2/(2I+1)][I (I+1)—(m+1)m] V' }b~~i, y,

—2(W[I(I+1)—m(m —1)]
+[Pog'/(2I+1) ][I(I+1)—m(m —1)]'i7'}8

+ (W[I(I+ 1)—(m —1)(m —2)]+[Poa'/(2I+ 1)]
XP(I+1)—(m —1)(m—2)]'V'}B. i,z.

A solution to Eq. (34) exists, of the form

g (r,t)=g;n, p (r) exp( —X,t), (35)

where the P;(r) and l~, are determined by the solution
of the secular determinant. For I=5/2, this secular
determinant can be approximated by the following
(factored) equation:

(X+145/(r)+20W) (X+33)(r)+6W)
X (X+13$(r)+12W) (X+253)(r)+30W)

X (X+75/(r)+12W) =0, (36)
where

and where
W= —C Q„lr—r„l—'.

It is evident that each of the factors in Eq. (36) is of
the form

D,~'4, (r) —2- Cil r—r-
l 'ei(r)+~xi(r) =o (37)

The solution of these equations for the X, may therefore
be taken over from the previous work of de Gennes. '
The results for the (2I)=5 values of X, are given below,
to two significant figures, in terms of the previously
obtained solution Xp for equally spaced energy levels

[Eq (29)]:

Xy =0.33K,p, X2=0.88hp, X3=2.0Ap ',

(38)
P 4=3.6P p) P g=6.13p.

The experimentally measurable quantity a (t) is given
by the integral over the crystal volume:

u„(t)= u (r,])dr=+ n„,exp( —X,t) p, (r)dr (39).

The initial conditions of the experiment prescribe the
values of the terms n, jp, (r)dr='a;; one therefore
must solve the family of equations

a (t) =P, a, exp( —),t), (4o)

in order to predict the characteristic decay toward
thermal equilibrium of any adjacent pair of energy
level populations. This has been done for various initial
conditions. The results of these calculations are shown
in Figs. 3 through 7, where they may be compared
quantitatively with the experiments described in the
next section.

One notes that A, p no longer represents the slowest
mode of decay of the system, due to the appearance of
additional off-diagonal terms in the rate equation matrix
as the lines begin to overlap. In practice, solution (40)
goes smoothly into the single exponential rate given by
solution (29). We shall see that, insofar as we are able
to perform the experiments, this is indeed the case.

III. EXPERIMENT

1. Methods

Pulsed nuclear magnetic resonance methods have
been used to disturb the nuclear spin system from
thermal equilibrium and to measure the rate at which
this system recovers, under conditions similar to those
defined in previous sections. The nuclear spin system
for these experiments is comprised of Al nuclei (I=5/2)
in an A1203 single crystal containing approximately
0.035% Cr203." This concentration of Cr'+ spins is
suKciently low to allow us to neglect the interactions of
the Cr'+ spins upon each other (hence, we may use the
term "dilute paramagnetism"), and yet sufficiently high
to render relaxation of the nuclear spins by quadrupolar
interactions negligible. The sapphire lattice provides an
axial electric field gradient at the Al sites; the interaction
of this static field gradient with the nuclear quadrupole
moment yields the expression (2), correct to first order,
for the observed frequencies of the nuclear resonance
lines in a large field Hp.

The ruby crystal was cut in the form of a cylinder,
0.25 in. in diameter and 1.5 in. in length, in a manner
such that the crystalline axis of symmetry (c axis) was
perpendicular to the cylinder axis. The radio frequency
coil was close-wound about the cylindrical sample, and
the assembly was mounted between the pole faces of a
12-in. Varian magnet, with the cylinder axis orthogonal
to the field direction. The sample itself could be rotated
about its cylinder axis, allowing adjustment of the angle
between the c axis and Ho to approximately 1/4 degree.

The pulsed rf equipment operated at the fixed fre-
quency vo ——9.86 Mc/sec, and utilized phase coherent
detection of the nuclear signals. Details of the unit are
very similar to those of a previously described system. "
The transition of interest was selected by adjusting
the field Hp.

All relaxation recovery data were taken by means
of a two-pulse sequence. The first pulse (180') approxi-
mately inverted the populations of a pair of levels; after
a time t, a (90') pulse tipped the remanent magnetiza-
tion into the plane of the rf coil; the amplitude of the
ensuing Bloch decay was then measured as a function
of time t. %e define the amplitude of the nuclear Bloch
decay signal immediately following the number 2 pulse
applied to the (m —+ m —1) transition to be S (t) We.
may then use the relation [S (t) S(~)]~ —a (t) as the

' R. D. Olt, Appl. Optics 1, 25 (1962)."J.J. Spokas and C. P. Slichter, Phys. Rev. 113, 1462 (1959).
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basis for the comparisons to be made between theory
and experiment in the following sections.

Adjustment of the pulse lengths was somewhat com-
plicated by the rather complex resonance line shapes
inherent in sapphire. ""For these measurements, how-
ever, exact pulse lengths were not critical, so long as the
lengths actually used did not change in the course of a
relaxation measurement. Typical 180' inverting pulses
used in these experiments were of the order of 10 psec in
length. The frequency spread of the rf inverting pulse is
therefore of the order 100 kc/sec; satellite lines lying
within roughly +50 kc/sec of the resonance under
observation will find their relative populations some-
what perturbed from thermal equilibrium by this pulse.
The technique of adiabatic fast passage would avoid
this difFiculty, but it is not easily applied for relaxation
times shorter than a few seconds. Fortunately, the effect
is negligible for the angles 0=0' and 0=90'. It is ignored
in interpretation of the results reported here.

Temperature was not a crucial parameter in these
experiments. Data were taken at room temperature and
at the temperature of liquid nitrogen, but no attempt
was made to control T with precision. The liquid nitro-
gen Dewar used was standard in form. Unless stated
otherwise, data reported here were taken at 80'K, in
order to take full advantage of the available signal-to-
noise ratio.

2. Relaxation at e=ep

If one neglects the effects of second-order quadrupole
splitting, all nuclear transitions occur at the same fre-
quency. Hence, one expects to observe exponential
relaxation of the spin system toward thermal equi-
librium with the time constant given by Eq. (29);
Xs ——1/Tr=8. 5XsC'"Ds '. It is of interest to calculate
T& for our ruby crystal at 8=8p. This value for T&

represents the limiting case of fastest spin system re-
covery for an ideal crystal. We shall retain the simplify-
ing approximations in Sec. II, i.e., an isotropic diffusion
coefIicient D derived on the basis of mutual spin fhps
between nearest neighbors only, and an isotropic direct
interaction between Cr'+ spin and nuclear spin, even
though we are applying the calculation to a single
crystal.

We take the values" v=4.4X10 ' sec at 80'K, 5=3/2
for the Cr'+ ion, vs

——9.86 Mc/sec; from Eq. (6), we
obtain C=0.47X10 4' cm%ec. From Eq. (27), for
assumed Gaussian line shapes, D= a'/(18gTs), where Ts
is the spin-spin relaxation time. From the experimental
Sloch decays observed during the course of this research,
Ts=40 psec. We take a=3 A, g=3, and obtain D=4.2
X10 "cm'/sec. The impurity concentration of 0.035%

' C. M. Verber, H. P. Mahon, and W. H. Tanttila, Phys. Rev.
125, 1149 (1962).

"A. H. Silver, T. Kushida, and J.Lambe, Phys. Rev. 125, 1147
(1962).

's J. H. Pace, D. F. Sampson, and J. S. Thorp, Phys. Rev.
Lqtters 4, 18 (1960).

Cr'+ indicates that Ep ——1.65)&10"cm '. Hence

Tr 1/X——s=0.6 sec. (41)

'7 Blumberg (see reference 9) has given a different result for the
spin-lattice relaxation rate when the experimental conditions are
such that 2 0 (b. He argues that, physically, this condition implies
the spin dift'usion mechanism carries nuclear Zeeman energy to the
paramagnetic ion more rapidly than the paramagnetic ion can
transmit it to the lattice. He then shows that, if this is true, nuclear
spin-lattice relaxation should take place exponentially with a time
constant given by 1/TI=(47f. ./3)Ã0Cb '. Using previously com-
puted values for E0, C, and b, we obtain T1=50 sec for our ruby
gr jstal. This result is jngompafibfe ~jth our experimenty. ) dg, &a,

The pseudopotential radius is then A, = 2.2 A, roughly

equal to the lattice parameter u. We can estimate the
diffusion barrier radius by using Bloembergen's cri-
terion, b = fy, sHs/(p„k T))'"a, from which we get
b=10 A. It is seen that the lengths a, b, and As are all

much less than the mean distance R between impurities,
since R=Ep ' '= 50 A. Therefore we expect de Gennes'

type of solution to be valid. „Accordingly, we take
Eq. (41) to be the representative numerical value on
which comparison is made between theory and
experiment. "

In practice, second-order quadrupole splitting in
ruby4 is large enough to be important for angles very
near to ep. The effect of this interaction is to introduce
an additional splitting of the energy levels, so that com-

plete overlapping of all five resonance lines can never
be obtained. In view of our admittedly crude assump-
tions concerning line shapes and widths, there is no way
to take this nonideal situation into account in a quanti-
tative manner.

Nevertheless, a qualitative guess can be made about
the recovery rate of the spin system at the angle of
maximum overlap. Consider the following hypothetical
situation: the five observable resonance lines are suffi-

ciently close together in frequency so that the initial
180' rf burst inverts the populations of a/l the energy
levels, and yet sufIiciently far apart so that there is no
appreciable overlapping of any of these resonance lines.
Under these circumstances, one wouM expect from the
discussion in Sec. II that spin-lattice relaxation would

proceed according to a sum of five exponential terms,
with time constants given by Eq. (38).Due to the initial
conditions that prevail immediately following the in-

verting pulse, the four shortest relaxation modes

(gs, gs, X4, 'As) are largely suppressed, with the result that
the spin system for the most dart relaxes exponentially
toward thermal equilibrium with a characteristic re-
covery time 1/X, = Tr 1.8 sec. ——

Our experimental conditions at 0=Op fall somewhere
between these two extremes, since second-order quad-
rupole splitting is just of the order of the characteristic
width of the resonance lines. Hence, we should observe
a relaxation process which is rapid at first, but which

quickly beomes exponential with a time constant having
a value intermediate between 0.6 and 1.8 sec. This dis-
cussion is summarized in Fig. 2, which shows a semi-
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logarithmic plot of nuclear resonance signal height vs
time. The heavy line represents the best straight line
through the asymptotic part of the recovery curve. The
slope of this line gives T~=0.78 sec.

In view of the many approximations made in these
calculations, this sort of agreement between theory and
experiment must be regarded as somewhat fortuitous.
In particular, the assumptions of Gaussian line shapes,
and line widths independent of the angle 0, are incorrect
from a detailed standpoint. ""Nevertheless, the general
principles underlying the calculations are apparently
valid.

3. Relaxation for 8 far from 80

%e now consider the relaxation process for angles 8
such that the five resonance frequencies are well sepa-
rated. The data presented in Figs. 3 and 4 were taken
at liquid nitrogen temperature. The experimental points
shown are averages over several measurements for the
particular angles 8=0' and 8=90'; the scatter in the
points has been omitted for the sake of clarity. Signal-
to-noise ratios were approximately 50/1 for the
(1/2 —+ —1/2) transition, and 30/1 for the (5/2 —+ 3/2)
transition. The maximum signal LS(0)—S(~ )j has been
normalized to the value 2 in each instance. It should be
mentioned that agreement between theoretical curves
and experiment is equally good for the 3/2 —+1/2
transition.

The theoretical curves shown in Figs. 3 and 4 have
been calculated from Eqs. (38) and (40), using the
appropriate initial conditions to determine the u, .
They have been expressed in terms of the previously
estimated spin temperature time constant 1/) p

——0.6 sec
LEq. (41)j. It is seen that quantitative agreement be-
tween theoretical description and experimental results
is excellent.

One notes the systematic difference between the
experimental relaxation curves for 8=0' and 8=90'. It
is bt;lievt,'d that this difft, rence is the res@it gf the ani-

TIME IN SECONDS

FIG. 2. Aluminum nuclear spin-lattice relaxation in 0.035/&
ruby at the orientation angle of maximum resonance overlap
8=cos '(1/v3). Temperature=80'K. (T|) „pas calculated in
the text should lie between the limits 0.6 and 1.8 sec.

sotropy inherent in the diffusion constant. D. This
anisotropy has been considered in the original work of
Bloembergen. ' He observed spin-lattice relaxation of the
F" nuclei in CaF2 for various magnetic field directions
with respect to the single crystal axes, and found that
T&, and hence D, were isotropic. However, the sapphire
lattice possesses axial rather than cubic symmetry.
Hence it is not difFicult to argue that spin diffusion
proceeds with a different rate parallel to the c axis than
it does in a direction perpendicular to the c axis. It
follows that T& will vary as one rotates the crystal in the
field Hp. When D„=D„this variation in Ti will be
slight. Evidently this condition holds for sapphire.

For the (1/2 ~ —1/2) transition, the population
difference recovers as a sum of only three exponentials.
Of these three, only the two fastest relaxation modes
are observable with the signal-to-noise ratios presently
available. It would be easy to misinterpret the magni-
tude of the nuclear relaxation mechanism by an observa-
tion of one transition alone. For instance, if one defines
the relaxation time constant T& as the time involved
for LS(t) —S(~)j to decay to (1/e) of its initial value

LS(0)—S(~)j, one would obtain the answer Ti 120——
msec for the (1/2 —+ —1/2) transition. It is clear that
this is neither a complete nor an accurate description
of the relaxation process.

Experiments somewhat similar to those we have de-
scribed here have been performed by Tanttila and
Jennings" on alkali halides. They have shown that for
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Fio. 3. Aluminum nuclear spin-lattice relaxation (1/2 —+ —1/2
transition) in 0.035% ruby at orientation angles 8 far from
cos '(1/W3). The theoretical curve is plotted from the equation
a1/2 (t) =0.025 exp (—t/1. 8)+0.35 exp (—t/0. 3)+1.62 exp (—t/0. 1);
the individual terms in this equation are also shown for easy
visualization. Temperature =80'K.

's W. H. Tanttila and D. A. Jennings, Bu11. Am. Phys. Soc. 5
598 (1960),
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spins I greater than 1/2, the relaxation time Tt is in-
creased when one strains the crystals sufficiently to
broaden the satellite lines (via the quadrupolar inter-
action) beyond observability by grinding them into a
powder. They attribute this increase in T& to a decrease
in the diffusion constant D, which comes about due to
the decrease in the number of ways in which energy-
conserving nuclear spin Aips can occur in pairs. One
effectively accomplishes the same end in the present
experiment in ruby, by rotation of the crystalline axis
away from the angle 00. The difference in the two experi-
ments lies in the fact that in the present experiment, the
satellite lines are not wiped out, but merely removed
from resonance; hence, the relaxation problem must be
treated in a different manner.

TIME IN SECONDS

FIG. 4. Aluminum nuclear spin-lattice relaxation (5/2 -+ 3/2
transition) in 0.035/0 ruby at orientation angles 0 far from
cos '(1/v3). The theoretical curve is plotted from the equation
a6qs(t) =.0.1 exp( —t/1. 8)+0.5 exp( —t/0. 7)+0.8 exp( —t/0. 3)+0.5
Xexp( —t/0. 17)+0.1 exp( —t/0. 1); the individual terms in this
equation are also shown. Temperature=80 K.

bandwidth of the power amplifier was sufhcient to
deliver pulses of either frequency without appreciable
attenuation. By simultaneous tuning of f, and Hs, the
desired initial configuration of the energy level popula-
tions could be obtained. As in previous experiments, the
nuclear Bloch decay amplitude of the resonance at fs
immediately following the number 2 pulse was measured
as a function of time between the number 1 and number
2 pulses.

Two experiments of this nature have been performed.
The first of these experiments consists of inverting the
(3/2 ~ 1/2) transition, and then observing the (1/2 —&

—1/2) transition. The first pulse doubles the population
difference between the 1/2 and —1/2 energy levels at
time t =0. The result is a nuclear signal that is enhanced
by a factor of two, "as shown in Fig. 5. Relaxation of the
1/2 and —1/2 level populations now proceeds initially
in a more rapid manner than one might expect from the
preceding data. This effect may be understood from the
following rather loose argument, in which the concept
of a spin temperature ascribed to a pair of levels is
employed.

We arbitrarily associate a "temperature" T with
each adjacent pair of energy levels (m, rrt —1). Before
the initial (180') pulse, T„=Tr, for all trt. The result of
an inverting pulse applied to, say, the (3/2, 1/2) pair of
levels will be a "heating up" of the spins originally in
the (3/2) and (1/2) states to a negative temperature
T3/2

———TL, , and simultaneously a "cooling" of the
(5/2, 3/2) and (1/2, —1/2) spins to a temperature Tr,/2.
It will be recalled from Sec. II that the spin system as a
whole, if perturbed from thermal equilibrium with the
lattice, will first recover to some sort of internal Boltz-

.~a a

4. Further Experiments

In addition to the foregoing experiments, a further
test of the normal modes description of the relaxation
process may be made. One inverts the populations of
one adjacent pair of levels, and then observes the
transient population difference corresponding to a
different transition.

The rf power unit was modified to deliver the number
1 rf pulse at a frequency f,, and the number 2 pulse at a
frequency f&. In the particular arrangement employed,
the broad-band class C power amplifier was driven by a
Tektronics type 190A variable frequency signal genera-
tor for f,, and by a 9.8643-Mc/sec crystal-controlled
oscillator, of the electron coupled variety, for f,. The

::?:'

FIG. 5. Superimposed photographs of the Bloch decay of the
(1/2 —+ 1/2) transition. The lower trace is the normal Bloch decay
S(~ ) corresponding to Boltzmann equilibrium of the level popu-
lations; the upper trace is the (enhanced) Bloch decay of the
(1/2 —+ —.1/2) transition 1 msec after inversion of the populations
of the 3/2 and 1/2 energy levels (S(t= 1 msec)g. Orientation it =0',
T=80 K. The 340-kc/sec beat note appearing on the trace is
spurious pickup generated at the detector by the 9.86-Mc/sec and
10.20-Mc/sec cw oscillators. Total sweep from left to right is
300 gsec.

' Enhancement of the nuclear Al signal in ruby has also been
obtained by other methods, notably by microwave pumping of
the Cr'+ electron spin resonance LR. D. Spence and J. A. Cowen,
J. Chem. Phys. 32, 624 (1960)g. In this case, polarization of the
nuclear spins is accomplished by an electron spin Qip-nuclear spin
flip mechanism described by A. Abragam and W. G. Proctor
)Compt. rend. 246, 2253 (1958)g.
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Fro. 7. Aluminum nuclear spin-lattice relaxation (—1/2 ~ —3/2
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Xexp( —t/0. 3)+0.95 exp( —t/0. 17)—0.84 exp( —t 0.1). Tempera-
ture =80'K.
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mann equilibrium (characterized by a temperature Tn),
and then proceed exponentially toward thermal equi-
librium with the lattice. Since the inverting pulse has
supplied energy to the spin system as a whole, T& must
be larger than T~. Therefore, the temperature T~~2

associated with the population difference of the
(1/2, —1/2) sta, tes must rise from its initial value Tr/2,
through the temperature Tl., to the temperature T~) Ti.,
before finally returning to TJ..

This behavior is, in fact, what the normal modes
solution describes. Unfortunately, experimental signal-
to-noise limitations did not allow us to observe the
(1/2 —+ —1/2) transition recovery all the way through
the population difference corresponding to TI,. Never-
theless, the experimental points shown in Fig. 6 demon-
strate most of the features described. The experiment
has the additional feature that it agrees quantitatively
with the normal modes solution for 1/), =0.6 sec. Note
that the time scale is more rapid, by a factor of 5, than
the time scales of Figs. 2, 3, and 4.

For the second experiment of this same nature, 0 and
Hs were varied until ft and fs corresponded, respec-
tively, to the (3/2 —+ 1/2) and (—1/2 ~ —3/2) transi-
tions. After the inverting pulse at ft, the departure and
subsequent return of the (—1/2, —3/2) populations to

TIME IN SECONDS

FIG. 6. Aluminum nuclear spin-lattice relaxation (1/2 —+ —1/2
transition) in 0.035/c) ruby at 0=0', following inversion of the 3/2
and 1/2 populations. The theoretical curve is plotted from
the equation ag/Q(t) = 1.2

ex'(
—t/0. 1)—0.16exp( —t/0. 3)—0.04

Xexp (—t/1. 8). Temperature =80'K.

thermal equilibrium was observed at fs The re.sults of
this experiment are shown in Fig. 7. The limits on the
experimental accuracy in this graph represent confidence
estimates, rather than a scatter average of the experi-
mental points. Nevertheless, reasonable agreement with
the calculated curve for 1/) II

——0.6 sec is found. The
behavior of the populations of this pair of levels is,
again, consistent with the qualitative thermodynamic
arguments given previously.

The relaxation of this pair of levels bears a striking
resemblance to the relaxation process described by
Solomon' in liquid hydrofluoric acid. In his experiment,
he applied a 180' pulse to one kind of spin (protons),
and observed the motion of the longitudinal component
of magnetization of the other kind (fluorine nuclei).
This is quite analogous to what we have done here.
There is a difference in the two experiments, which
arises from the extra degrees of freedom inherent in
our problem; namely, our population difference departs
from its thermal equilibrium value in the "wrong" sense,
and must later go back through this difference value as
the entire system recovers to inte'mal 8oltzmann
equilibrium.
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