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of the energy difference between interacting levels,
i.e., the energy denominator in the perturbation theory
treatment of the quadratic Stark effect Lsee Eq. (5)j.
The largest terms are due to interactions between E
levels and G levels. As mentioned earlier, two of the
pertinent G levels are known (with uncertain accuracy)
and four others must be estimated. Effects due to error
in the energy denominator are not simply related to
linewidth, but any reasonable estimate of the energies
of the G levels leads to differences of 20% at very most.
The over-all inaccuracy is then probably about 20'Po.

In light of the errors involved, the experimental and
theoretical agreement is quite good. The average ratio

of experimental to theoretical width of 0.99&0.18 is
well within either the experimental or theoretical error.
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The e6'ect of electric fields on the nuclear magnetic resonance dipolar hyperfine spectrum of a liquid with
correlation-time narrowing is examined. A first-order molecular quadrupole effect and a second-order
molecular electric dipole effect (Stark eEect) of observable magnitude are predicted. The results are dis-
cussed with reference to the proton magnetic resonance in water.

INTRODUCTION

'N an experiment for measuring the radio-frequency
& - resonance of nuclear magnetic moments in a liquid,
one observes that which is known as a strong narrowing
in the limit of short correlation time. ' The eGect is
simply that the time domain, the radio-frequency Geld,
sees only the average frequency of the nuclear magnetic
resonance (NMR) signal as perturbed by molecular
motion. Any orientation-dependent hyperGne structure
such as a dipolar hyperGne structure will thus be
averaged in time by molecular motion when the correla-
tion time of that motion ~, is short enough so that the
hyperfine frequency yhhH is much less than v, '. The
time-averaging process is dificult to imagine, but we

may conveniently predict the effect of this time aver-
aging by carrying out an ensemble average at an
instant of time. Such an av'erage will properly weight
angular positions of the molecule to give a result
equivalent to a time average. This point is a bit subtle,
but it should be noted that it is necessary to make a
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distinction between a time average, which the NMR
calculations require, and an ensemble average, which
allows the ready evaluation of this time average but is
not otherwise physically signiGcant.

The import of this paper is to point out that two
simple molecular parameters, the molecular electric
dipole moment and the molecular electric quadrupole
moment, are of fundamental importance in determining
the orientation statistical weights and, since they are
known for many molecules, the observation of the cor-
relation-time-narrowed NMR spectra of nuclei having
dipolar hyperfine structure in these molecules will

allow a partial description of the electric Gelds that the
molecule "sees," or conversely, if the Gelds are known,
the possibility of the determination of the first two
electric moments of the molecule.

Take, for example, the water molecule H~O". The
nuclear spin of 0" being zero, and the spins of H'
being 1/2, we have only the interaction terms, because of
the proton moment that arises from the spin-spin iso-
tropic and anisotropic coupling, the spin-molecular
rotation coupling and the spin-Zeeman term measuring
the nuclear coupling with the applied external magnetic
field.

In a series of beautiful experiments the splittings in
the NMR spectra of the proton and the deuteron in
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the water molecule in a crystalline environment have
been observed and attributed to a nonuniform prob-
ability distribution for the orientation of the water
molecule. ' In our discussion we relate this nonuniformity
in probability to the interaction of internal crystal-
line electric fields with molecular electric moments and
predict a new and seemingly paradoxical effect, the
Stark effect in NMR dipolar hyperfine-structure reso-
nance caused by the molecular electric dipole moment
interacting with an external electric field. To this end,
we add to the conventional NMR Hamiltonian cited
above the molecular rotational energy terms, and the
terms that measure the interaction of the molecular
electric moments with the external electric fields, either
externally applied or gratuitously supplied by the
matrix, lattice, or material containing the molecules
whose NMR resonance is being observed. It is the
explicit introduction of these terms and the examination
of their consequences that is the contribution of this
paper.

KE, is well understood. The direct coupling of electric
fields is only with the molecular motion. Hence, Kg
cannot affect the NMR spectrum directly, but only
through its effect on the statistical weight used in the
ensemble average over the molecular motion of the
molecule, i.e., through its effect on the mean value of
K, , There is another possible indirect interaction of
3'.E with the NMR spectrum through the chemical
effect symbolized by K, „&.However, we shall find the
effect of KE to be a small perturbation and, since the
chemical effect is already a small perturbation, we
leave an interaction through this term for consideration
elsewhere.

In a representation in which the total spin angular
momentum I= It+Is, the sum of the spins of the two
hydrogen nuclei, and with quantization along the ex-
ternal static magnetic field axis Hs, the main terms of
interest in 3C (leaving the complication of isotropic
coupling, chemical shift, and so on to be added in the
usual fashion) are written

THEORY
50 -.= (ttr'/ris') pritr' —I(I+1)j(3 cos'His —1),

Zeeman 2Py~l+0We have said that we shall be making ensemble
averages with appropriate statistical weights. We note
now that the average that we obtain will be classical,
but we may rely on the spectroscopic stability of our
quantum-mechanical system' to make our classical
averages valid. Since the magnetic energies are so
small compared with the electrostatic energies and com-
pared with the mean rotational energies, or, that which
is the same thing, to (3/2)kT, we shall concern our-
selves only with the inliuence of the electrostatic terms
on the statistical weights.

Since the electrostatic potential must satisfy I aplace's
equation, we may write the electrostatic terms as
irreducible operators by using spherical harmonics. The
result is an expansion in a scalar product of molecular
electric multipole moments and the corresponding elec-
tric field factors. In exact analogy to the development
for the nuclear electric moment we have4

These terms contain the usual physical quantities,
and 8~2 is the angle between the vector ri2 joining the
two protons in a water molecule and the static mag-
netic field Ho. Whether or not the spins are identical
does not change our conclusions, however.

Recognizing that the principal axes of p and G, can
be coplanar but need not be collinear with r~~, we
establish the molecular geometry, at t=o, as follows:
Choose r» ——r»k, then p and + are determined by
giving p=tt, s+p, „j+tt,k while + is given by

where x;, y;, s; are the coordinates in the molecular
framework for the molecular charge q,.

As the time evolves, ris moves away from k through
Euler angles 8 and @, and hence, in time, since the
molecule is rigid, we write

where p is the molecular dipole moment, Zl is the
molecular electric quadrupole moment tensor, 5 is the
electric field, and VN is the electric field gradient tensor.

Now, we write the rotational, electrostatic, Zeeman,
spin-spin, spin-rotation, etc., energies as We must express the operator p cos'gis(t) —1j with

respect to a fixed reference frame, that of the electric
field, for the analyses to follow. This is done, of
course, simply by using the spherical harmonic addi-
tion theorem. There is a large probability of making
errors in sign and in the identification of angular
variables if this is carried out in too cavalier a fashion,
so we develop the relation from first principles. ' We
note that in terms of finite rotation operators, the
rotation operator, S"&(to), for the rotation of a tensor

5 See, for example, A. R. Edmonds, Angular Jfomentum in
Quantum M'echanics (Princeton University Press, Princeton,
New Jersey, 1957), Chap. IV, p. 125.

~rot+XE++Zeemsn+Xs-s+Xs-rot++ y

with the contributions ordered as to magnitude, assum-

ing a case in which the electric term KE is greater than
Kz„,„,but less than the mean value of the rotational
energy K„&, since this Hamiltonian, in the absence of

' P. Averbuch, P. Ducros, and X. Pare, Compt. rend. 250, 322
(1960);Y. Ayant, P. Ducros, X.Pard, and M. Soutif, ibid 252, 550.
(1961};P. Ducros, Bull. soc. franc. mineral. et crist. 83, 85—112
(1960); these, Paris, 1960 (unpublished).' J. H. Van Vleck, Phys. Rev. 29, 727 (1927).

4 M. W. P. Strandberg, Microwave Spectroscopy (Methuen and
Company, Ltd. , London, 1954).
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~= (S-')-'
0 0

sin8 exp ( E(gg)/k T)dgd8dg, —

where E is the eigenenergy of BC. It is apparent, or it

of order 1 through Euler angles n, p, y—= (p, can be
written as a succession of two rotations ni, p(, yi =—p)i,
and then ap, pp, yp—=(pp.

("(~)=E--& --")(~p)&--- ")(~().

Now we note that when m=m'=0 and 1=2 we ha, ve

Spp(" ((p) = 1/2 (3 cos'P —1)= Spp(" (OPO)

thus,

(3 cosPP —1)=2 g ~ K)p "(P)((Pp)$ "p( )((Pi).

Now, if the Euler angles of the rotation that takes the
Z axis of the intermediate reference frame into r&2 are
Gp pp 'yp=cop then we must identify ni, pi, 'r&=p)& with
the inverse Euler rotation that takes the Z axis of the
intermediate reference frame into the magnetic field
direction. Thus, if (t, 8, P are the rotation angles with
respect to a axed reference frame, we have

[3 cos 8)p(/) —17
=2m. ~.. («~)~.. (-~-8'-~),

where P', O', P' are the magnetic field spherical coordi-
nates with respect to the space-fixed X, F, and Z
coordinates having unit vectors i, j, and k, and p, 8, P
are the spherical coordinates of r~2 with respect to the
same reference frame. Since quantization is assumed
along Hp Xz„, is invariant in time. We now must
represent the time development of KE, knowing the
time development of p, 8, and f for rip.

First, we write y. l% in terms of irreducible operators

pp IJ;, p+iW——()p,.+i@„)/V2,

Sp=@z,' @~i=+ (Sx+imr)/K2,
so that

s@=Z~A *

Since 8 is time-invariant with respect to molecular
rotation, we need only the rotational transformation of

y for a rotational transformation of the molecular frame-
work through the Euler angles @, 8, f. This is formally
represented as

D(«e)~ =Z~ & ~ ")(«e).
Similarly, we take the field gradients as time-invariant
with respect to molecular rotation, that is, as a property
of the molecular environment. Since the Q's form an
irreducible representation of order 2, we have

D(«4) &-=2 &- &- -'~" («4)
Finally, the statistical weighting fa,ctor for the

angular variables for the ensemble average is

P (QP) = (Sw Z) ' sin8 exp[—E((tg)/k T7,
with

21r g 2'

2' 7r 2n1

4X2 0

1
X 1+ [(5 *)) "& - "'(«y)

kT

+(«~- *)Q--~--. "(«~)7
1+-——[Q (g,„pb,p'p „p Q „,(&)Q „(&)

2k2T2

+(&5 -*V'8 ~)Q "Q X)„"„(P)S„„"(P)

+(«--'~- *)..-Q-~.-."'~.-- 7+

)&sin8dyd8dg.

Angular bra, ckets ha, ve been added to the electric
held opera, tors to indicate a spatial average, since an
average must be made not only over the angular
variables, which involve the molecular operators, but
also over the spatial variation of the electric fields
available to the molecular translational motion.

Since the S's form ari orthogonal, normalized set of
functions' with respect to integrations over the Euler
angles, the integrals over the first term in the expansion
of the exponential, 1=Spp(0', equals zero, a well-known
result.

The term linear in KE, a,rising from the electric
dipole moment, also yields a zero integral, because of
the inequality, 1 and 2, of the order of the two S's
involved. However, the quadrupole contribution is
finite and yields a, term

E ~-.")(-S'-8'-~')0 ~.*)Q'
SkT

will be assumed, that the only nontrivial dependence
of the energy with orientation arises from BcE. Thus,
we assert that the averages over rotational states
implied in this integral can be ignored, or rather re-
placed by classical averages. This is certainly so in the
absence of KE, since one knows that the observation
of a single NMR line in the presence of dipolar hyper-
fine structure is consistent with averaging the rotation
with the simple weighting factor of (Spr') ' sin8dgd8df.
That is, the spectra are consistent with averaging E„t,
classically. We make the same assumption, retaining
only the rotation-dependent term XE.Thus, we have

p(«&) = (Spr') ' exp( —Xa/kT) sin8.

Ke expand the exponent, since to be consistent with our
assumption of the validity of a classical averaging of
E,.t we must have KE«kT. Thus, we have the time
average of (3 cos'8ip —1) represented by the ensemble
average

(3 cos 8(p —1)g
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For the terms quadratic in 3'.z, we have

1 (2 1 1)( 2 1 1
Z &-o"' %-"*@-*)--~-I

k'T' EO m" re E—e, m' rN"

(2 2 2l(2 2 2) (2 1 2 2 1 2)+«~-'~~. *)Q.-Q.I, II, , i+(~. *~~.*)..-Q.I

(0 re' m) k —m m' re"1 EO m" m —m m'~ m'I

Here, the usual 3—j symbol is in brackets; for this
Kdmondss has given convenient expressions. Obviously,
higher terms are available with the use of this method,
but the new information that they yield is negligible.

Explicit evaluation of these terms can be readily
made. In general,

+Sp z Vzz +5+1 (Vxz&i Vrz),

&mg2= (Vxx —Vrr+»Vrx)
2+6

0

{(3 cos'8' —1)(Vzz)
10kT

+4 sin8' cos8'((Vzx) co&'+(Vzr) sing')

+sin'8'$(Vxx —Vrr) cos2$'+2(Vxr) sin2&'j)

and, on the mean symmetry axes,

{(3 cos'8' —1)(Vzz)+sin'8' cos2$'(Vxx —Vrr)) .
10kT

The second-order terms are
Stark.

(2~ 2 p 2 ~ 2)((P2)
(3 cos'7 —1),

30k'T'

where p is the angle between 5 and Hp.
Stark-qladrN pole.

)piQ, —p, iQi]{(sin'8' sin2$')
30ik'T'

&(((Vxx—Vrr) Sz)+pe sin8' cos8' sing

X(Vzz —j(Vxx —Vrr) (Sx'+Sr')')).

QNadrl pole. It is unimportant, since first-order quad-
rupole terms will dominate, if this term is nonvanishing.

Choose as the reference axis the principal axes of the
mean electric-field gradient operator with the maximum
gradient magnitudes ordered with Z largest, X next,
and I' smallest. If the gradients all vanish, the choice
is immaterial. The hrst-order term is then, in general,

DISCUSSION

Several generalities can be stated from inspection of
the results.

(a) A molecule with an electric quadrupole moment
placed in an electric held with lower than cubic sym-
metry should have with correlation-time narrowing
an NMR proton resonance split by an amount propor-
tional to the field gradients, if a nuclear dipolar hyper-
fine structure exists.

(b) This quadrupole splitting should vary as T ', in
addition to any implicit temperature dependence of the
electric field.

(c) If uniform electric fields of sufhcient magnitude
are applied to a polarizable sys' tem that otherwise
possesses statistically, spherical symmetry such as a
liquid, a splitting arising from a dipolar hyperfine
structive should be observable in the absence of nar-
rowing by chemical exchange. In other words, a mole-
cule possessing a permanent electric moment, for which
isotropic exchange hyperhne structure of a few cycles
per second has been observed, can exhibit a second-
order Stark splitting of this fine structure if a dipolar
hyperhne-structure term exists. This eGect is propor-
tional to T ', in addition to any implicit temperature
dependence of the electric Geld.

As an example: If one applies an electric held of
10 kV/cm to a liquid water sample at 300'K, parallel
to EIp, a splitting of 0.005'7 cps results. This splitting
varies as @'ymT-2 and can be increased by (1) increasing
5, (2) choosing a molecule with a larger 1It, and (3) a
lower freezing point to use a lower T. Thus, a change
of each of these factors by 2 yields a splitting of 2'
greater, or approximately 0.5 cps which should be
readily measurable with some precision. In any case,
such a splitting may not be observable because of
chemical exchange.

Note that a linear Stark e6ect exists in molecules
having high electrical asymmetry placed in a region of
high-held gradients so that a Grst-order quadrupole
splitting exists. In this case the second-order quadrupole-
dipole cross terms give a term that is linear in 5 which
can be many orders of magnitude greater than the
second-order pure dipole terms if the quadrupole
energy is of the order of kT.

The disadvantages of this Stark-e6ect method of
measuring electric dipole moments are numerous and
apparent. Not the least is the magnitude of the electric
field required. However, the advantages are obvious
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also, since the dipole moment may be measured inde-
pendently of the purity of the sample, and in liquids at a
single temperature, if its orientation is known; or its
orientation in the molecule can be determined if the
magnitude of the moment is known.

But to the experimentalist the greatest advantage is,
undoubtedly, that we have, apparently, a new probe-
the electric Geld—with which to investigate molecular
and nuclear properties.
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APPENDIX A

From the considerations above, one can understand
the variation of the splitting observed in zeolite' with
the number of water molecules in the "cage" as the
effect of the electric susceptibility of the water molecule
on the internal, crystalline fields. This must certainly
be so, since the only other factor, the molecular quad-
rupole moment, is a molecular constant sensibly in-
variant with its surroundings; that is, the electronic
and nuclear distributions involve energies of the order
of electron volts. To consider this shielding problem
with all analytical rigor is not appropriate here because
it would certainly lead us too far afield; for the solution
depends too intimately on the specific details of the
situation. Instead, we shall present an approach to an
understanding of the effect in a handwaving fashion,
and without apology.

We note that the density of water in the zeolites with
full hydration is approximately that of liquid water.
Thus, the possible variation of molecular density is
from that of water to 10%%uq of this density. Since water
is a polar molecule, we are plagued, in determining total
fields, with the necessity of considering not only the
modification of the applied field by the molecular
polarizability but also the additional fields contributed
by the other molecular water dipole fields. For a sphere
of material having cubic lattice symmetry in a uniform
electric field, these factors give no difhculty. The dipole
sum is zero and the internal Geld is simply calculated
with the depolarization factor, 47r/3, for the sphere.
But the zeolite cage does not have cubic symmetry,
the fields supplied by the gross lattice are not uniform,
and the short-range symmetry of liquid water, or of
liquids in general, is not cubic because the molecules
have more complicated shapes than that of a sphere.
A masterful discussion of these factors for liquids of

great extension has been given by Mueller. ' The reader
seeking edification is urged to search there and elsewhere.

For enlightenment we assume a uniform medium,
having other than spherical symmetry. We assume that
the dielectric properties of water are given, and merely
scale the susceptibility with density. A large fraction
of the susceptibility (z—gs')/s, where tr is the dielectric
constant, and e is the index of refraction, arises from
dipolar orientation which is temperature-dependent.
We must take the empirical temperature dependence
of the electrical susceptibility as given also, that is, a
decrease of 0.5%/'K. r

From the definition of the Lorentz lattice factor L,
we have

N
Lg~g= @applied g @int g=Lg (e 1)@i&tg

Np

and Pg L, =47r. Here we have written the polarization
I", in terms of the electric susceptibility of water e—1

with the density scaled, and the internal field com-
ponent 5;„» g in the direction g.

The resultant internal field is thus

N ——1

8 tg=@.ppi. d g 1+L. (e—1)
Np

and it is dependent upon the field direction and cavity
shape through L„on the molecular density through E',
and on the temperature through the temperature de-
pendence of e. Note also that I., includes the lattice
fields, as well as the cage-shape factor, and hence is not,
in general, equal to the depolarizing factor. Mueller'
gives calculations of the useful values of I.„and we

only note here that, for example, I.z, in a hexagonal
lattice with c/u(1 is Lz~ (4+/9) (a/c)s.

In any case, since, as we have said, 1V/1Vs is approxi-
mately the number of molecules in the zeolite cage n
and since Lz is approximately 1, we expect the internal
fields to vary inversely with e and nearly directly with
T. From this point of view, the implicit temperature
dependence of the internal fields can be strong enough
to cancel the explicit temperature dependence of the
first-order quadrupole splitting term.

We have said that this discussion is inadequate and
we must now make a more careful study of these
mutual interactions terms, quite possibly including in

FACE, from the start, electric dipole-dipole interaction
terms. We are investigating this matter, but the
success of this effort is still unpredictable.

APPENDIX B

Application to Water Molecules

The water molecule is a symmetrical triangular
molecule with an H—0—H angle of 104' and the H—0

t H. Mneller, Phys. Rev. 50, 547 (1936).
Dielectric Materials and Applications, edited by A. H. vop

Hippel Qohn Wiley @Sons, Inc. , New York, 1954),
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distance crudely 10 cm. From symmetry,

p= p, l~

Q+~= Q+s= o

Qp
——s P, (3z, —rP)q/0.

If we assume, for example, an a +e/2 charge at each
proton and a —e charge at the oxygen, we find

Qp ——2er' sin' 52'~4.8X 10 "esu,

p= «co»2' 2.4X10 "esu.

This is obviously crude, since p, =1.85X10 ".We note
that Qp is approximately 10" that of the deuteron, or
approximately 10' that of a large nuclear quadrupole
moment. Since the available internal crystalline fields
will be the same, we conclude that the molecular
quadrupole coupling energy for water can be approxi-
mately 10' times that of typical nuclear coupling
energies. If we take, as typical of nuclear coupling
energies, 10' cps or 10 kT at room temperature, then
the water-molecular coupling energy can, under favor-
able conditions, be of the order of kT. The experiments
for measuring the splitting of the proton resonance in
zeolite, if indeed, as it seems likely, the splitting is to
be described by the analysis presented here, can be
used: (a) If the splitting is due to the molecular quadru-
pole moment, to define the mean electric field symmetry,
that is, (Vxx—Vry)/(Vzz), or to measure the mean
electric field gradients, since the electric quadrupole
moment of water is reasonably well known, ' and to
measure the spatial variation of the electric field
gradients from the observed linewidth, since the line-
width will be proportional within a constant, to
factors such as (Vzz') —(Uzz)', (Vxr )—(Vxr) and
((Vxx—Vrr)') —(Uxx —Vrr)', or (b) If the splitting
is the result of the dipole terms, to measure the mean-

' W. W. Smith and R. Howard, Phys. Rev. 79, 132 (1950).

squared electric field, since the electric dipole moment is
well known, to define the mean direction of the electric
field, and to measure the spatial variation of the
electric field, since the linewidth will depend upon
(m') —(m')'.

For example, one finds, by using conventional theory, '
that the linewidth should vary as

8(p =nr, L(~')—(~)'1,

where n is a constant of the order of unity, 7, is the cor-
relation time, and ~ is the nuclear resonance frequency.

For a first-order quadrupole term, one finds, by
using the general expression for co, and with mean axial
symmetry so that (Vxx—Vrr)=0=(VxrVrz), that
the expression for the linewidth is

7Q (v
8(p=n—$yg+]' (3 cos'8 —1)s

16 -«-)'
sin48

+ Leos'2$((Vxx —Vrr)')+4(Vxr') sin'2P)
(Vzz)'

(Uxz')
+16 sin'8 cos'8

(Vzz)'

where hH is the maximum total observed splitting in
gauss, and y is the nuclear magnetic resonance factor
in radians or cps per gauss.

Note that a variation of linewidth with ~ requires a,n
electric field with symmetry such that (VS~,VS~(,))
be nonvanishing, since the dependence of linewidth on
angle is of the form

(V@g,VCg(~, ))F'~p"'(8,$)V~(~p) "(8,y).

The term Y (')(8,$) is the spherical harmonic of order l.
This means, for example, that an angular dependence
of 3p can be observed only for angles 8 not equal to
0 or z-/2.


