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A model is developed to describe nuclear relaxation and spin pumping caused by sparsely distributed
electronic spins. It is assumed that the nuclei which are outside the interaction sphere of the paramagnetic
centers are influenced indirectly via a fast diffusion process. Nuclei close to the electron spins are assumed
to combine with these to form spin pairs of finite lifetime 7. Spin pumping and relaxation in these pairs is
described phenomenologically. The coupling with a radio-frequency power source is described in terms of a
spectral distribution function with Lorentzian shape. Simultaneous spin flips, made possible by the static
part of the spin-spin interaction, are included. The equations for two-spin relaxation are generalized to
account for the fluid motion and electron spin relaxation as two independent sources of randomness. The
results for relaxation and spin pumping are adapted to various special cases and compared with experiments.
In particular, qualitative changes in the pumping process are shown to take place when the constant external

magnetic field is changed from low to high values.

I. INTRODUCTION

PIN pumping has, on occasion,’~® been used to
investigate nonuniform systems in which the (elec-
tronic) pumping centers are far outnumbered by the
nuclei, of which the polarization is measured. The process
involved can be presented in reasonable approximation
by a set of equations describing spin flips induced by
pumping and by relaxation in neighboring electronic
and nuclear spins and describing relaxation and diffusion
of spin polarization for the remaining nuclei. These
equations are coupled by the condition that the flux
of spin polarization is continuous. Bloembergen’ has
used a similar model for calculating the nuclear relaxa-
tion in solids. In this paper, we use this approach to
calculate wall effects on nuclear relaxation in fluids and
to derive expressions for the nuclear polarization ob-
tained by spin pumping as a function of the power level.
A simplified treatment of this problem has been pub-
lished elsewhere.? Our model, though quite general, is
subject to the following assumptions:

(1) All nuclear spins which are under the direct in-
fluence of the pumping centers are equivalent.

(2) The diffusion, if it is an important factor at all,
is fast, i.e., it spans the average distance between pump-
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ing centers in a time short compared with the relaxation
time of the spins to be polarized. This assumption leads
to a steady-state polarization which is practically uni-
form over the sample and independent of the geometri-
cal arrangement of the pumping centers.

(3) The quanta exchanged with the power source and
also those exchanged with the lattice in relaxation proc-
esses are equal to electronic and nuclear quanta in the
external field #y.H, and #vy,H,, or linear combinations
thereof, %(yev.)Ho.

In Sec. I1, we develop and solve the general equations,
treating the various transition rates as arbitrary param-
eters. In Sec. III, we derive expressions for the transition
rates which we expect to be applicable in the case that
there are two simultaneous sources of randomness in the
spin-spin interaction, one due to motion, the other due
to independent mechanisms of relaxation for the elec-
tronic spins. In Sec. IV, explicit expressions are derived
for several cases of interest that give qualitatively
different results. In Sec. V, the physical content of these
expressions is discussed and compared with experimental
evidence.

II. BASIC EQUATIONS

The nuclear spins in the sample are divided into two
groups: (1) those belonging to the pumping centers, and
(2) those which can be polarized only indirectly by
diffusion. The nuclei in group (1) are combined with the
electron spins of the pumping centers to form spin pairs
to which we apply equations describing the relaxation
and the transitions induced by the radio-frequency
source. For the nuclei in group (2), there is only a
relaxation term. The coupling between the two groups
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is expressed by a spin transfer term, with characteristic
time, 7. In applications, 7 will be interpreted as charac-
terizing the exchange of molecules between the pumping
centers and other parts of the system.

Recently Leifson and Jeffries® have treated the “solid-
state’”” dynamic polarization by a simple model in which
the effect of diffusion is assumed to be equivalent to all
nuclei sharing the electrons which are the source of
their polarizations. This model leads to rate equations
resembling Eq. (1) but in which population ratios and
average transition rates appear. In contrast, we treat
a general two-spin system with definite transition rates
to give the polarization of nuclei at the pumping sites.
We then consider (in Sec. I12) the transport of such
polarization to other regions under the assumptions
stated in Sec. I.

1. Equations of Motion for the Pumping Centers

The spin pairs are described in the representation
applicable when the spin—spin interaction is either un-
resolved or small compared with y,H,. For simplicity
we assume that both spins have magnitude %. For the
purpose of definition, the four resulting states are given
in Fig. 1 for the case that the magnetic dipole moments
have opposite sign. Let #; be the occupation probability
of level 7, and #.2=¢;/3 €;, the occupation at thermal
equilibrium, where e;=exp(—E;/kT). The time de-
pendence of #; under omission of diffusion is given by:

dni/dt=3"1 Wir(ni/ex—ni/ €)+ 2 An(m—ns). (1)

Wik is the relaxation matrix, W=W;; the symmetric
matrix A4, describes the transitions induced by the
power source. In view of our assumption (3), we have
Wia=Wss, Wis=W3s. We will use an alternative nota-
tion, p, g, 7, s, for the remaining four elements, as indi-
cated in Fig. 1. For A, we take, in line with our
phenomenological approach, functions of the frequency
o of the form corresponding to a Lorentzian line shape

1 ~42HsT
Ap=Au=A4=- —
2 (w—w,)*+I?

1 a2762H12F+
A= B+=— )
2 (w—we—wy)2+T,2

1 oy HT
A 23= B_=- .
2 (w—wetw,)?+T2

2

Here, H, is half the amplitude of the radio-frequency
field; w its frequency; we="v.Ho; wa=vaHo; I and T'y are
the half-widths of the transition, usually denoted as
1/T,. In using Eq. (2) in conjunction with Eq. (1) for
all values of Hy, we disregard saturational effects other
than those arising through the differences in the popula-
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tion of the levels. If the line is inhomogeneously
broadened, I is the half-width of any of its homogeneous
components. ‘

a? gives the probability of double spin absorption,
which is known to produce the polarization effects first
reported in references 1 and 10.1:1® We will refer to this
effect as the “double effect.” o measures the mixing of
states caused by the ‘“static”’ part of the spin-spin
interaction. It is calculated in Sec. III. We take
A 2= A3=0 because the frequency w is supposed to be
near the electron resonance frequency w.

Defining

Xi= n,;/é.;— n,-"/ei,

applying the transformation
Vi=—X1+Xo— X3+ Xy,
YVo=X1+X—X5—X,,
Vi=X,—Xo— X3+ X,
Vi= X1+ X+ X34+ Xy,

and neglecting the Boltzmann factors in the resulting
relaxation terms, Eq. (1) becomes

dY,/dt= =T,V —TsV,—V}, (32)
dYg/dt= —T3V 1 —TV,— Vs, (3b)
dYs/dt=—2T,YV;s— Vs, (3c)
where

T1=2¢+r+s,

P2=2P+r+s)

I‘a‘—‘—S-f,

I‘4=P+q.

The terms V; are linear expressions in 4, By, containing
Boltzmann factors. In the usual high-temperature ap-
proximation, we have

V1=B1Y1"‘Bz(Y2_SO)7
Vo= B:Y s+ (244 B1)(Y2—S0), )
V=247,

Here B;=B,=%B_ and Si=3(—ea—etestes). So s,
therefore, in the approximation that the nuclear Boltz-
mann factors are put equal to unity, equal to the elec-

10 A, Abragam and G. Proctor, Compt. rend. 246, 2253 (1958).
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tron spin polarization in thermal equilibrium. Our
assumption about the relaxation matrix, i.e., Wis=Wg4
and Wy3=Wg4, is thus a sufficient and necessary condi-
tion that in the high temperature approximation the
variable V3 disappears from the equations for ¥; and
Y,. Vi and ¥, are, in the same approximation as above,
the deviations of the nuclear and electronic spin
polarizations from their equilibrium values. The term
neglected in Eq. (4), though finite at extremely high
power, are of no practical importance.

2. Transport of Spin Polarization

The coupling of Eqs. (3) with equations describing
the relaxation of group (2) nuclei are discussed for a
general model, from which cases of interest can be ob-
tained by specialization. We assume that the para-
magnetic centers are confined to a region, such as a
surface layer on a solid-liquid interface, which contains
many nuclei outside the pumping centers. We will refer
to the remaining nuclei, outside this region, as those in
“bulk.” The migration within the “surface layer” is
described by a transition time or correlation time 7,
the transition from the surface layer to the bulk by a
time 7. T,® denotes the thermal relaxation time in the
layer for nuclei outside pumping centers; 7'1° is the bulk
relaxation time. A distinction between 7° and T,° is
necessary because 7, will differ from o, the bulk correla-
tion time, thus changing the relaxation due to nuclear
interaction, possibly by several orders of magnitude;
also T, can have contributions from magnetic sites
other than the pumping centers.

Let N,, N, and N be the number of nuclei in the
pumping centers, in other parts of the surface layer, and
in the bulk, respectively, and let ¥, and ¥ be the devia-
tion of the average nuclear polarization from the thermal
equilibrium value in the surface and the bulk, respec-
tively. When it is now assumed that the diffusion in the
surface layer as well as in the bulk is fast in the sense of
condition (2) of the introduction, and that N ,&KN&KN,
one has

dV/dt=—(Y/T)+(N,/N,)

XL(Y1—=Y)/r]=(Y,=T)/7, (5a)
dY/di=—(Y/T\")+N./N)[(Y.—Y)/7]
+,/N)(Y1—Y)/7], (Sb)

while a term —(V1—Y,)/7.—(V1—Y)/7 is added to
the right-hand member of Eq. (3a). With the notation
_bs: (I/Tao)+(Np/Ns)/Ts+(1/7)y
b=(1/T1")+WN+N,)/N7, (6)
I‘1,= P1+(1/T)+(1/Ta)a
we therefore have
dYy/dt=— T+ B)Y1—(Ts—B) Yo+ (Vs/74)

+(Y/T)—SOB2, (78.)
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de/dt= - (Fa—Bz) Yl— (2A +Bl+ Fz) Y2

+S0(24+B1), (7b)
dY,/dt=(No/N.)(¥1/7)—bY o+ (¥/7), (7c)
dY/di=(N,/N)(Y1/7)—=bY+(N./N)(¥,/7).  (7d)

The Egs. (7) can now be used to calculate the steady
state values of ¥; for a given power level. These are
obtained by equating d¥;/d: to zero. We are particularly
interested in the bulk polarization ¥ which is most
easily observed. One can also calculate the relaxation
rates of the system; these are obtained by equating 4,
By, and B, to zero and taking dY;/di=—rY; This
gives four roots 7;- - -7s. When a single relaxation rate
is observed, as is commonly the case, it may be identified
with the lowest of the roots, r;=1/T;, which must
then be much smaller than the other roots.

In order to obtain ¥, we bring Egs. (7¢c) and (7d) for
the steady state into the form

Y.=CY, V=CY,

where
Co= [(N/N,)(T/'r,)b-l-(1/1’)]/[6.+(1/’r,)], (8)
C=(N/Np)tb—(Ns/N)Cs.
Eliminating ¥, ¥, V3, one has
S()Fl (w)
V= , (9a)
C—Ty/(Ts*r")+Fa(w)/ (Ts*")
where
Fi(w)=[T3Bs+T3(24+B1)]/D(w), (9b)
Fy(w)=[(24+B1)T32+(24+4T3) BiI'2+2T:I';Be
+(B2—B:)T;]/D(w), (9¢c)
D(w)=(24+B1+T2)(TyY+By)— (T's—Bs)?,
I?=T,T,— T, (9d)

1/7'=(Cs/7s)+(1/7).

Equations (9) apply to a homogeneously broadened
electron resonance line. For an inhomogeneously
broadened line, one should use the following averaging
procedure: Let the resonance frequencies of the pumping
centers have a distribution g(w,—&,) around the average
value @,.. Each center has its own ¥ and Y, obeying
equations of the form (7a) and (7b), but there is only
one ¥, and one ¥, and in Egs. (7c) and (7d), ¥; must
be replaced by its average value ¥;. This is obtained
from the equations replacing (7a) and (7b) by elimi-
nating Vs, solving for ¥, as a function of ¥, and ¥,
and averaging. The solution of Egs. (7¢) and (7d) is
then of the form of Eq. (9a), but with F; and F; being
replaced by their average value

F1,2(‘°)=‘/‘g(we—d’e)F1,2(w—Qe)dwe-
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The “observable” relaxation rates r;- - -4 are easily
obtained in the limiting case that T'y° is very long com-
pared with all other times, and that I'/To>>T'32 The
latter inequality would hold, e.g., when the electronic
relaxation is fast, or the time 7 short. One of the rates
is then

74=1/T1,=To,

i.e., Ty, is the electronic thermal relaxation time. The
three other rates can in this approximation be attributed
to the three groups of protons. They will be denoted
rn=1/Ty, r.=1/T,, and r,=1/T,, respectively. They
are the modifications due to spin transport of the corre-
sponding quantities 1/74° 1/T,° and 1/T,'=T;. We
still differentiate between two cases: (a) 7.7 and
(b) 7+<r, and find for T;:

@) UTi=1/T\)+V/N)/(T+1)
+(NP/N)/(TpO+T),
(b) 1/Tl: (1/T10)+[(Ns‘!‘Np)NJ/(THp"‘ ),

where

(10a)
(10b)

1/T8+p= (1/T80)+(NP/NS)/(TPO+ 7'8)-

Due to the assumption, N &N, we find for the other
rates in both cases:

l/T,=b,E (1/T80)+(NP/NS)/TS+(1/T))
YT,=T1/=1/T,")+1/7:)+(1/7).

Equations (9) can be simplified somewhat in these
two cases.

In the following, we will give special results only for
case (a). The solutions given in Egs. (9) and (10) can
also be used to describe the properties of an adsorbed
layer without any bulk fluid present. This case is ob-
tained by first taking 7,= 0, N,=0, and then replacing
7 by 74, N by N,, T° by T',°. The case that the entire
system is made up of pumping centers is described by
Egs. (9) with the replacement C=1, 7'= o,

(10¢)

III. EVALUATION OF TRANSITION RATES
AND MIXING PARAMETER

The transition rates p, g, 7, and s and the mixing
parameter «, introduced in Sec. II, can be evaluated
from the spin-spin intreaction, if the random perturba-
tions are described in terms of correlation times.
Solomon!! calculated the relaxation matrix for a two-
spin system under conditions typical for a liquid, in the
case that the spin—spin interaction, modulated by ran-
dom relative motion, is the only source of relaxation for
both spins. Abragam!? has dealt with the effect typical
for a solid, in which the only source of randomness is the
electron spin relaxation. He!® has also shown that this
leads to the double effect. In the case, which is of interest
to us, both relative motion and electron spin relaxation
are present, e.g., when the nuclei belong to fluid layers

117, Solomon, Phys. Rev. 99, 559 (1955).
12 A, Abragam, Phys. Rev. 98, 1729 (1955).
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on a solid surface which contains paramagnetic centers,
these results must be combined. We will not attempt to
derive complete expressions in this paper. We will limit
the discussion to the case that the two spins have
only a dipole interaction, and make some further
simplifications.

Recently, Bloembergen and Morgan!® have given a
generalization as indicated above for the case of nuclear
relaxation in paramagnetic ion solutions. These authors
obtained the Hamiltonian for the nuclear spin system
by inserting, for the electron spin operators appearing
in the interaction, random variables with a correlation
time equal to the electron spin relaxation time T,
assuming T'.= T's..!* These appear thus multiplied with
the random coefficients involving the motional correla-
tion time 7. Assuming statistical independence, this
gives an over-all variation with a correlation time
(1/7c4+1/T.)~1. This correlation time then replaces r.
in the usual expressions for the nuclear relaxation times.
However, one does not obtain ¢, r, and s separately,
but only 2¢g-+7-+s. Dohnanyils investigated the general
case that the nuclear motion is anisotropic, and 7"1.# T2,
which is more appropriate for the present problem.
He used the theory of Kubo and Tomita'® with dipole-
dipole interaction only, and obtained the first terms of
an expansion of the relaxation rates valid when the
effects of electron spin relaxation are small corrections
to the effects of liquid motion. The result for the total
nuclear relaxation is in agreement with reference 13,
but in addition separate contributions from g, 7, and s to
2¢+r—+s can be identified. Expressions in closed form
cannot easily be inferred from his result, however. As a
reasonable compromise, pending a more complete theo-
retical evaluation, we will use the following expressions:

3 1 T12
=K (1)
20 7, 14w,.2r?
r=r'+r", s=s"+s", (12a)
with
S, 1 T2
r=—=—K- , (12b)
6 10 14wr2rs?
3 1 72
t'=s'=—K————, (12¢)
20 Ty 14w2r?
where
=T
7'2—1= Tc—1+ T2e_1y (13)

K= h2762'7n2/<7>6'

( 1~"N). Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 842
1961).

4 Throughout this paper, T, and T, are the electronic relaxa-
tion times neglecting the contribution from the electron-nuclear
interaction.

16 J, S. Dohnanyi, Phys. Rev. 125, 1824 (1962).

16 R. Kubo and K. Tomita, J. Phys. Soc. (Japan) 9, 888 (1954)
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This gives for the relaxation time of the nucleus:

371
14+ w.2r?

7T2
+ ) (1)
14wlrs?

which is an obvious generalization of the expression in
reference 13.

The varous terms appearing in ¢, r, and s can be
made plausible in the following way: The expression for
g describes a process where only the proton flips, ex-
changing its energy with the liquid motion (as indicated
by the factor 1/7.) but under influence of a frequency
spectrum characterized by 7. Other terms in ¢, which
are the result of a double flip, “followed” by an electron
flip in opposite direction, and contain w, in the de-
nominator, are indicated by Dohnanyi’s work, but could
not be obtained unambiguously. In 7’ and s’ the fre-
quency spectrum is modified, and the energy is trans-
ferred in part to the liquid motion, in part to the solid
lattice via the electrons. The terms 7"/ and s/, which
vanish when 7'j.— o, describe transitions in which
the energy is entirely transferred to the electron system.
These terms are the cause of ambiguity in the decom-
position of Dohnanyi’s results. They represent a modifi-
cation of the double effect under influence of the random
motion, and can be derived independently in the
following manner:

In the limit 7.— o the states are mixed due to
the static interaction between the spins. If ap is the
coefficient of the static mixing (due to dipole interaction
in our model), an electron spin flip is, with a probability
|| 2, accompanied by a nuclear flip. This gives equal
contributions to 7 and to s of the amount |ay|2/27T., as
was first observed by Abragam. Under the influence of
the two kinds of random motion, the spins are de-
coupled. This gives

| 2= oo | 2[wn?r1?/ (1+-wa?ri®) ]. (15)

lag| has a value of the order of magnitude unity in
weak fields; in “strong” fields one finds, using perturba-
tion theory and averaging over-all directions:

1
= 2q+r+s=—K(
10

|to| 2= &5 Koo, 2 (16)
Inserting this in the equation
r'=s5"=\|a|/2T1e, 17)

one obtains Eq. (12c). For the discussion in the following
section it is important that the denominator in 7’/ and
s’ contains w,, and not w,, as in #’ and s'.

The value of |a|? of Eq. (15) should also be used
in Eq. (2).

Finally, in the equation for p, as given by

1 3 Te
+—K———,
2Ty 20 14wlr?

P= (18)
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the second term will be modified, but the first term
dominates strongly and remains unaltered.

IV. APPLICATION TO SPECIAL CASES
1. The Liquid Effect

When I';5#£0 (r5£5) and when its value is of the same
order of magnitude as the other relaxation rates, the
term 2I's4 in the numerator of F; in Eq. (9b) dominates,
and all terms in B can be neglected. This situation arises
when 7"/ =s5"<(7',s"). Under this condition the polariza-
tion produced in the pumping centers is due to the
Overhauser effect. As mentioned above, we only consider
the dipole-dipole case. In order to see under what con-
ditions this inequality is satisfied, we note that from
Egs. (13) and (14) and the above discussion of the value
of |ay|, it follows that #”//7’ is a monotonically increas-
ing function of the external field strength H,, beginning
with the value zero for Hy=~0. In the high-field limit
we have from Eq. (15)

"1 = (1¢/ T1e)(Ve/Yn)%

Therefore, if 7./T1:&L(yx/v:)? we have #/<#’ for all
values of Hy. If, on the other hand, 7./71:>(v./v.)?
there will be a field strength H,, such that #"/<<7’ for
Hy<H, but 7> for Ho>>H.,.

When the inequality 7’<<#’ is obeyed, we have

(19)

T's

Fl(w) =F2(w)/F3=—————.
Ts?2+24TY

(20)

Inserting this in Eq. (9a) we find, for a homogeneously
broadened line:

Yi=Sof(Ts/T1)A/(A+N). (21)

The factor f is at most equal to one, and is given by
f=o/N)(T1I')/(1+Tu7)], (22)

where T, is obtained from Eq. (10a) and is therefore
equal to the observable nuclear relaxation time in the
case that 7,>>7. Furthermore, we have

A=3(Ty—AT'$/Ty) (23)
with

h=(f+Ty)/(14T)<L1.

In most cases of interest, Eq. (23) can be approxi-
mated by

(24)

>\=%P2= 1/2T15.

When we assume furthermore that 7,>>r we find, with
use of Egs. (10a)-(10d)

P

Y}.=—SQG 5
14+ P4 (w—we)?/T?

(25)
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where P is the power in dimensionless units

P=v2H?/TyT, (26)

and where

a= fT's/T1=(Np/N)(Tp/7)T1Ts. (27)

Thus, we find that the polarization is proportional to
N,/N, ie., the concentration of pumping centers, as
was to be expected. The proportionality to 71T, i.e., to
the ratio of the rate of production by pumping to the
rate of relaxation in the bulk, and to T',/7, i.e., to the
ratio of the rate of transfer between pumping sites and
bulk to the rate of relaxation in the pumping sites, is
also plausible. A relation equivalent to (25) with this
approximate value for ¢ was obtained previously from
a simplified treatment of the model.®

When the line is inhomogeneously broadened, the
average values F; and F, should be inserted in (9a).
However, F'; in (9a) is negligible with respect to the
first term in the denominator for all values of H;. This
follows from the relation Fo=T3F; and from the fact
that, without the first term, which accounts for the
reduction due to diffusion and relaxation, the formula
gives a result even larger than the unreduced effect.
Therefore, the result Yi, for an inhomogeneously
broadened line can be obtained directly from (25) by
averaging:
A(w—w,)

dw,. (28)

Vin=Y,=—5 a/ (We— @)
' “)s A(w—we)+Ty/2 ¢

We assume a Gaussian distribution
g(we—ae)= (k/+/7)exp[ — kX (w.—@.)%],
and define as usual

7g(0)=kv/m=T5*=(y.AH) .

Vielw=wetw,) =215

and

SEEVERS,

Vap=Sof

{1+ P+ (0—0o)/T2]} {14+-hP+[ (0—w,)¥/T?])

For an inhomogeneous line, F is again negligible.

F, is an odd function of (w—&,). For large inhomo-

geneous broadening one can use the approximation

+o0
Fl(w_&e) =6—“g(w_(:’e) (w—'we)F1(w—we)dw,

—00

as long as one does not saturate the entire inhomo-
geneous line. One obtains for case (a), for low and inter-

mediate power, defined by P<<(I'y//T'1)(w.2/T2):

S rwnI‘ (Fl/l’l’)P 6 = 33
0J[1+1/2 (Pl/PlI)lelz ng(w wc); ( a)

in,a™

AND TORREY

With the frequency at resonance w=,, one finds

I‘z&'\/ﬂ'

§°=(T*/m)(1+P)/(y.AH)*
For “low” power, one has §<1, and Eq. (29) gives
Via=—Soa(T/v AH)[P/(14+P)¥2], (8&1). (30)

For high power, if one completely saturates the inhomo-
geneous line so that $>1, Eq. (29) becomes

Yin=—3S, (>1).

[1—erf(8)],

Hl 2 T 652
) (29)

Yin = S oa(—-——
AH
where

&Y

2.The Double Effect

We now consider the case that p>>(r,s)>(s—7, ).
This case is realized when, e.g., T:1:Z7., i.e., when the
electron relaxation is the dominant source of randomness.
Then the inequality 7o/T15>(va/v6)? is @ fortior: satis-
fied, and we have 7”>>¢ for not too weak fields. The situ-
ation in the pumping centers is now the same as specified
by Abragam!? and gives rise to a polarization effect as
reported by Uebersfeld® on benzene in a char and by
Abragam!® in nuclear spin pairs in LiF. Under these
conditions we neglect T'; in (9), and also B;2— B?,
which is always small. Furthermore, Iy is neglected
with respect to I's where permissible. We assume that
the width of all three lines is equal, i.e., I'=T,=T_.
Finally, from Sec. ITI3 we have, with the above in-
equality |a|2=Ty/T,.

Besides distinguishing between a homogeneous and an
inhomogeneous line, we must now also specify whether
a homogeneous component is resolved or not, i.e.,
whether

(@): w>T or (B): w.LT.
We find from Eq. (9) for a homogeneous line
7 P
’ 1+(P/2)[(Ty/Ty)+h+ (/20,2 ]+ (chpz/gwnz)’ (320)
ZPwn(w—we)/P2
(328)

and for higher power, P>>(I'y//T'1)(w,%/T?2):

2w, T (I'y/Ty)PV2 §
Yin,azsof _g(w—a’e)' (34&)
[1+ (Pl/r1/)1/2] dc

For case (8) one has, for any reasonable power level:
, 270, L' (T'1/TY) P

0

T4y r[1+(0y/1y) P

Yin,p=S

8
><5—g (@=we). (346)
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For the intermediate case that #”>>¢' but still 7.<T%,
similar expressions could be developed without much
difficulty, From Egs. (25)-(33) the effects without
diffusion are obtained by taking f=1, k=1, and r= o,

V. DISCUSSION

Some systems to which the above analysis could be
applied are: (a) fluids contained in the pores of powders,
gels or fiber mats; (b) stable colloidal suspensions. We
will now examine some of the predictions of the theory
and compare them with some of the experimental re-
sults for such systems.

1. Nuclear Thermal Relaxation Rates

In Sec. II, we derive some formulas for the observed
nuclear thermal relaxation rate 1/7 for a fluid as in-
fluenced by “wall effects.” Equation (10a), which is
applicable for the case where there is negligible mixing
n the surface la yer, i.e., 7,°>7, can be written as

i(1/T)—@1/T\%)=(N./N)
X[fs/(T80+T)+fp/(Tp0+T)]: (35)

where

Na=Na+Nm f3=N8/NG) fl’:NP/N“’

From Eq. (14), we have

1 1 31‘1 71‘ 2
St)
T 10 | 14w.?r? 14wir?
If we assume for the sake of discussion the simple

“local field” model of relaxation for the nuclei, N, in
the surface layer, then

1 Te
G, (36)
TS  14wir2

where G=v,2H1,2. Hio® is the mean square of the
local field. ‘

Let us now consider formula (35) in terms of three
experimental variables: (1) concentration, N,/N, (2)
magnetic field strength, Ho, and (3) temperature, 7.

Concentration Dependence

(1/Ty)—(1/T®) «N,/N. @3n

This relationship is shown to be valid by the experi-
ments of Winkler!” on water in the pores of Al;O;
powder and by Poindexter* for a colloidal suspension of
asphaltene in xylene. In these experiments the observed
rate, 1/T, decreased linearly with increasing amount of
liquid over a wide range.

17 H. Winkler, Kolloid-Z. 161, 127 (1958).
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Magnetic Field Dependence
(1/T) =1/ T1°) « fo/ [TX(Ho)+7]
+ 1o/ [T (Ho)+7]. (38)

The local surface relaxation times T,°(H,) and
T,°(H,) are functions of the applied magnetic field H,.
This is seen in Egs. (14) and (36) by the dependence on
w, and w,. As can be easily seen, a detailed study of field
dependence of the rate (1/71)—(1/T:°) results in in-
formation which can be interpreted in terms of the
correlation times, 7., 71, and 74, and the relative numbers
of nuclei f, and f, in the two kinds of surface sites. An
example of the former is an analysis of the field-depend-
ence data as reported by Brown!8 for a system of quartz
powder and water. At a temperature of 100°C, and
magnetic fields of 0.6, 36, 75, and 1500 G, (1/T4)
—(1/T+%)=0.66, 0.29, 0.24, and 0.24 sec™?, respectively.
If one assumes proton—proton interaction for the con-
tribution that vanishes at high field, and that r<T,°
for, H,<0.6 G, (the validity of assuming this inequality
will be discussed in the next section), then w,?r.2~1 for
Hy=15 G and 7,~3X10~¢ sec. This would indicate an
almost icelike structure for the interfacial water. One
can test the validity of the assumption of the proton—
proton interaction by diluting the water with D.O.

Temperature Dependence

Let us consider again only one of the possible kinds
of surface relaxing steps, i.e., one not associated with
pumping centers. With H, adjusted so that w,2r.2<1,
then Eq. (36) becomes

1/T=Gr,,
and by use of Eq. (35)
(1/T)—Q1/T1°) = Gre/(14+Gr.7). (39a)

We assume that both 7, and 7 vary with temperature
according to an Arrhenius law of the form exp(E/kT).
Then for “low” temperatures:

Gr.K1,

and
(1/T1)—(1/T10) o« 1/T. (39b)
For “high” temperatures:
Gr1,
and
(1/T)—(1/T,") = 7. (39¢)

An example of data to which we can apply this
analysis is again that reported by Brown!® for quartz
powder and water. For H,=0.6 G, (1/T:)—(1/T:°%)
=0.47, 0.60, 0.66, and 0.66 sec™! at temperatures of
1.5, 20, 51, and 100°C, respectively. At low temperatures
the rate is interpreted as being controlled by the resi-

18 R. J. S. Brown, Bull. Am. Phys. Soc. 3, 23 (1958).
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dence time, i.e., 7>T,% and at about 80°C, r=T,".
For temperatures greater than 80°C, r<T\°.

One of us!® is making a detailed study of a colloidal
suspension of monohydrated alumina in water to test
quantitatively this relaxation theory.

2. Enhancement of Nuclear Spin Polarization

In Sec. IV, we derive some formulas for the enhance-
ment of nuclear polarization ¥ by the spin pumping
of electrons which are coupled to the nuclei through
dipole-dipole forces. Let us consider these formulas in
terms of four experimental variables: (1) concentration,
N,/N, (2) pumping power, P, (3) magnetic field
strength, Hy, and (4) temperature, T

Concentration Dependence

For all of the cases considered of the general equation
(9) we see that
V=, (40)

where

=W/ N)/ (T + 7)1/ T1°)+(No/N)/(To+7)
+(N./N)/(T 1) ]

Thus, the enhancement decreases with an increase of the
fluid phase. This is in agreement with the observation
of Poindexter* for a colloidal asphalt system, showing
that the enhanced polarization is for the solvent protons
and not the protons in the colloid.

Pumping Power

For both the liquid effect and the double effect we see
that the functional form of the power dependence of
the enhancement of nuclear polarization depends on
whether the electron resonance is homogeneously or
inhomogeneously broadened. For the case of the liquid
effect, we see from Eqgs. (25) and (30) that for v=w,

Yy=P/(14+P), (41a)

Vine P/(14P)12, (41b)

For a power dependence study it is important to prevent
the sample from heating with increased power input
because of the sensitivity of the enhancement to tem-
perature which will be discussed below. In Poindexter’s*

19D, 0. Seevers (to be published).

and

KORRINGA, SEEVERS, AND TORREY

experiment the temperature was not controlled,?® so
we cannot compare the theory directly with the data.
This work has been repeated,?® and the enhancement
observed can be described by Eq. (41b) showing that the
asphalt resonance is inhomogeneously broadened.

Magnetic Field Strength

In Sec. IV, we show that for a system in which the
relation (7¢/T16)(ve/vn)2>1 is satisfied there should be
some critical magnetic field strength H, such that "<’
for Hy<<H, and #"">>r for Hy>>H,. These inequalities
describe the conditions necessary for the liquid effect
and the double effect, respectively. One sees that the
same system could exhibit the liquid effect at low mag-
netic fields and the double effect at high fields. Such a
system has been reported. A natural crude oil which
contains paramagnetic colloids of asphaltene was
studied by Poindexter? at 18 G and the liquid effect was
observed. Anderson® studied a crude oil at 3000 G and
observed a double effect. Poindexter and Uebersfeld??
have repeated the experiment, each using the same
asphalt solution, and have also found the liquid effect
at low field and double effect at high fields in agreement
with the prediction.

Temperature Dependence

We have seen above that molecular correlation times
are very important in determining the critical field H,
for the transiton from the liquid effect to the double
effect and also the magnitude of the ultimate enhance-
ment as governed by the factor f [Eq. (22)]. Since in
general molecular correlation times are sensitive func-
tions of temperature, we can expect strong temperature
dependence. Poindexter (as mentioned above) has re-
ported an increase in the enhancement with increasing
temperature for the liquid effect and Anderson® re-
ported “‘strong dependence” for the double effect.
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