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It is shpwn frpm a Bo]tzmann equation treatment, that in the presence of a dc electric field it is possible
fpr an acoustic wave to gain energy from the conduction electrons in a material. The criterion for such an
amplification of an acoustic wave to take place is that the drift velocity given to the conduction electrons
in the direction of propagation by the dc field must exceed the velocity of sound. In metals dc fields of such
a magnitude cannot be maintained, but in semiconductors the necessary conditions can be satisfied and an
amplification of the acoustic wave can take place.

I. INTRODUCTION

" 'N the past few years, much work, both theoretical'-'
' and experimental~' has been done on the absorption

of ultrasonic waves via an interaction with the conduc-

tion electrons in metals, semimetals, and semiconductors.

However, only recently was it discovered by Hutson,

McFee, and%hite' that amplification of ultrasonic waves

occurred in CdS via the same interaction in the presence

of a dc field. Weinreich has shown, using aphenomenolog-

ical treatment, " that when there is a dc electric field

which gives the conduction electrons a drift velocity

the direction of propagation greater than in the velocity

of sound, the wave is amplified instead of absorbed. It
has been pointed out, however, that the phenomenolog-

ical approach is on1y valid when the sound wavelength

is longer than the mean free path, i.e., q/(2, A more

general approach must be made through the use of the

Boltzmann equation. 4 Since the electronic contribution

to the absorption of ultrasound in materials at low
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IL CONSTITUTIVE EQUATION

The conduction electrons are replaced by the model

of a free electron gas of density Xo. The sound wave of

wave number q and frequency co manifests itself as a

velocity field u(r, t) ~ expLi(qs —&ot)$ in the positive

background which has the same density as the electron

gas. The interaction between the acoustic wave and the

electrons can be represented partly through the means

of a self-consistent internal electromagnetic field and

partly by means of a deformation potential. The self-

consistent electromagnetic field induced by the passage

of the sound wave is derived from Maxwell's equations.

In our case, the latter can be written in the form

Ji+1Vpeu= —trpa- S, (2.1)

temperatures can be quite large when ql& 2, it is, there-
fore, of interest to examine the whole problem of the
electron-acoustic wave interaction in the presence of a
dc electric field using the Boltzmann equation treatment.

In Sec. II, we will use the model of a free electron
gas developed by Cohen, Harrison, and Harrison for
the conduction electrons in a metal2 and, in general,

adopt the formalism developed by them. This model

has also been used for semimetals' and semiconductors. '
In Secs. III and IV we shall consider the cases of the
dc field parallel and transverse to the direction of pro-

pagation, respectively. In Sec. V we give a discussion

of the results of our calculations.
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J=—e dv vf, (2.2)

where J is the total electronic current. The Boltzmann
equation from which the distribution function is deter-
mined has previously been derived for the case of the
sound wave in the absence of an external dc electric
field."In the presence of an external dc electric field,

the Boltzmann equation becomes

where 8 and Ji are the electric field and electronic
currents accompanying the sound wave and B is a
diagonal tensor with components B =B» iP——, B„

i—p H. ere, op is the dc conductivity, y=co/&p„'r,

P=(e/e, )'y, and pi„ is the plasma frequency of the
electrons.

The electronic current can be obtained from the dis-
tribution function in the usual manner:

Bf Bf e ( qq ~ Bf—+v ——
i 8+ Cu+Ei-

ai ar mk e~ ) av
(2.3)

=—(1/r) f & fp—+ (Bf,/BE) (mu v+ *, (N, /-N p)EI,)],

0 1 1) (2.4)

where fp is the unperturbed distribution function, fi'
is that part of the perturbed distribution function which
is constant in space and time, and fi' is that part of
the perturbed distribution function which varies as
exp(i(qs —p~t)]. Thus, we obtain

where E is the external dc field and C the deformation
potential tensor. The extra terms on the right-hand side
of (2.3) arise because the impurities on which the elec-
trons scatter are moving with velocity u and because
the electrons are nonuniformly distributed in the pres-
ence of the acoustic wave. Expanding f to first order in
E, u and quantities proportional to u, and keeping
terms that are first order in both E and u, we have

fi'= —mve vafp/BE, vp= —(er/m)E,

Bfp/BE tt' Cu mu 2 Ni t|' Cu
fi'= er~ 8+qq ——v —— Ei, er~ —8+qq—. Ue

1 ippr+iq. vr- ei&v er 3 Np eicos

(2.5a)

er(8+qq C u/eiv, mu/er) —ve

1 ipir+iq —vr

iq verger(8+qq C u/eire mu/er)v —p2(N, /Np—)Ei,] mve Ua'fp/BE'

(1—i&pr+iq vr)' 1—zMr+2q U7'

qq C u)
X e«+

~
v+er

eicos

(8+qq C u/eipp mu/er) —v ', (Ni/Np)E—p—

1—i&or+iq vr
(2.5b)

where ve is the drift velocity of the conduction electrons in the external field E. From (2.2), we see that (2.5a)
gives rise to a current that is constant in space and time and is just that current which would arise from the ex-
ternal field alone. It is (2.5b) that gives rise to the electronic current induced by the sound wave. Therefore, in
considering the electron-sound wave interaction, we can neglect the constant current. From (2.2) and (2.5b), we
obtain for the desired constitutive equation,

where

Ji=e (8+qq C u/eip& mu/er) —RNiev, +—X (8+qq C /uei r)p, (2.6)

EF=e 7

dv( Bfp/BE)—
1—i&ur+iq vr

2Q' VgT
VV 1—

(1 ia&r+iq v—r)'

VVg

7

1 ipir+iq v7— (2.7a)

2 Ep, dv( Bfp/BE)— ZQ' Vrjr Vd
v 1— +

3 Npv, 1 iipr+i q vr — (1—ipir+iq vr)' 1 icpr+zq vr— (2.7b)

X=e'7.
dv ( Bfp/BE)v-

Vg—
1 i&or+iq vr—

ZQ' VdT'V

1 i(dr+ pq Ur— '
(2.7c)

In (2.6), e is the conductivity tensor which plays a
part in all field-dependent transport phenomena. The
second term arises from the diffusion of the nonuni-

formly distributed carriers and the third term arises

because of an additional electron pressure due to the
presence of the dc field.

The equation of continuity relates the nonuniform
part of the electron density X& to J&„.i.e., J]z= Egev, .
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Defining a tensor R by means of the relation

R J,= Rji„
current and electric held, respectively, the power
transferred per unit volume is found to be

we can rewrite (2.6) in the form

qqCu mu
Ji=ope'~ S+

e7-

Q=2Np(~/r) lul'a S S,

C qq B-
S=Re I+I r— Le'+x'+ B]-'

(2.13a)

where

qq C u~
+epX'~ a+ ~, (2.9)

ei~
rqqC-

X I —e'+(e'+x')
MSGR

(2.13b)

The average power transferred between the electrons
and the sound wave per unit volume is given by

qq C u)

r
Q=-', Re ji* 8+

er
~ (ji+Npeu) . (2.12)

Using the expressions (2.9) and (2.11) for the electronic

e'=(l —R] 'e/op, x'=Ll —R]—'x/op. (2.10)

Using (2.1), and (2.9), we find an expression for the
self-consistent electric field induced by the sound wave:

a = —Le'+x+8]-'

qq C-mu
X I e'+(e'—+X')r . (2.11)

where p is a unit vector in the direction of polarization
of the sound wave. The absorption coeScient is the
average power transferred between the acoustic wave
and the electrons per unit volume divided by the in-
cident energy Aux,

~=Q/l~ I
~ I"., (2.14)

IIL LONGITUDINAL dc FIELD vd~~q

When the dc electric field is in the direction of
propagation of the sound wave, we find, by using
Fermi-Dirac statistics in (2.7a—c), that the components
of the effective conductivity tensor e' and diffusion
tensor X' are

where p is the density of the material. Using (2.7a—c)
and (2.13a—b) together with (2.14) we can determine
the absorption coefIicient for various orientations of vd,
u, and q. In the next section we shall consider particular
cases of interest.

(1 i&or)P+(q/)2 icur—p — 3ipir
0'xx =

1+(ql)' (ql)'

and

3p ioir ( 3pe„'= (1—i~r)
(ql)' 1+(q/)' k 1+(ql) 'r

1—p ip-
p+ +—

1+(q/)
P cur

(3.1a)

2zoo'p

~**=L3 /(q/)'] p ~- = — u(1 —i )g1+(ql)'
Here p= vq/v, and the functions p and g are

1—p ip
p+ +—

1+(q/)'
(3.1b)

arctanq/ 3 /'L1+ (q/)']
g= arctanpl —1

q/ 2 (q/)' E ql
(3.2)

All the other components of these tensors vanish. In this case we obtain the following expressions for the absorp-
tion coefficient for longitudinal and transverse polarized waves:

O'long =

&trans

P&s7

Npm (1+iP)(1—o.„') iq/(v / )F'(ov„'+P„') ( C„~'
Re

keiv, 'r ~„ro.,'+P „'+iPp&s&

Npm 1 iy+ (vp/—vz)'(cu/pp„)'C„/mviz')- vF
Re 1—o ..' —iql— (o „'+Z„')

I / ~

&zz +Xzz v, mv~2
(3.3a)

(3.3b)

where C„is the longitudinal deformation potential and C„ is the shear deformation potential. We need only sub-
stitute (3.1a—b) into (3.3a—b) to obtain the absorption coeKcient for longitudinal and transverse waves. We will
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use the following limiting forms for p and g:

p= l(ql)' —l(ql)' a=1—l(ql)',

p = 1—v/2ql, g =3rr/4ql, ql & 1. (3 4)

Using the above relations, we get the following expressions for the absorption coeS.cient in the different frequency
ranges:

ql & 1, (vp/v, )'(r»/rd p)'(C„/mv p') (1,
-=~. /". t-.+(4/»)(qln;

q«1, ( /')'( /. )'(C,./ ')»,
q' (1—p)( /v, )'( / „)'(C„/mv ')'

3P . (1-.) (-/-, ) +(-) L1+-:(../. .) (-/-.)q"
ql& j., 1+(vp/v, )'(oi/cop)'C„/mvp'

~ = (~l~I'sm/6p) (»/v. )q(1 —
~ )

1+ a (»/v )'(~/~. )'
for longitudinal waves; and

(vp/v, )'(o~/o~, )'(C.,/mvp')«1,

= (lt/. m/ " ) (1 g) (g+l3—')/g'+0';

ql (1, (vp/v. )'(re/oi, )'(C„/mvp') & 1,

1V,m vp'q'r(1 —p) (vp/v, )'(oi/o~, )'(C„/m»')'

pv (1—
I )'(~/~. )'+(~ )'L1+s(vp/v. )'(~/~. )'3'

ql& 1, (vp/v, )'(te/oi„)'(C„/mvp') )1,

7rN pm /v p) ' (1—Ii)q(o~/te„)'(C„/mv p')'

CI+ s (v p/v. )'(~/~. )'7

(3.5a)

(3.5b)

(3.5c)

(3.6a)

(3.6b)

(3.6c)

for transverse waves.
The expressions for the absorption coefficient (3.5a-c)

and (3.6a—c) reduce to those derived previously' ' in
the limit of zero dc electric 6eld, @=0.For longitudinal
waves there is a crossover from absorption to gain when

I I I

~~=v„and we get an amplification of the acoustic
wave instead of its absorption in all the frequency
ranges except (3.5a), when v~)v, . When ql&1 and
(vp/v, )'(oi/oip)'C„/mvp'))1, our result (3.5b) agrees
with the result obtained by %einreich using a phe-
nomenological approach. "In this region we have either
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FIG. 1. The ratio of the absorption coe%cient at finite dc field
to that at zero field is shown as a function of vz/v, when ql & 1., for
(a) a&/co„= 10 ' and (b) a&/ar„= 10. In both cases, there is a cross-
over from absorption to gain when vd/v, =1.

FIG. 2. The ratio n(p)/a(0) is shown as a function of vd/v, for ql) 1.
The ratio is a linear function of the dc field.
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maximum absorption or maximum amplification at a
dc field, such that

~='./".= 1+( .' /")9+3(»/'. )'(~/".)'j (3 7)

the + sign corresponding to the amplification and the
—sign to the absorption. When q/) 1, the amplification
increases linearly with dc field and there is no maximum
in the amplification. The absorption coeKcient is shown
as a function of dc field in Fig. 1 for condition (3.5b)
and in Fig. 2 for ql) 1.

For transverse waves, there is no amplification of the
acoustic wave in the presence of the dc electric field

unless the shear deformation potential is large enough to
satisfy the condition (uF/v, )'(~/&u„)'C„/m»')1. In
this case, the criterion for the amplification and the
behavior of the absorption coefFicient are similar to
those for longitudinal waves.

IV. TRANSVERSE dc FIELD v& J q

When the dc electric field is transverse to the direction
of propagation of the sound wave, we find for the
components of the effective conductivity tensor e' and
diffusion tensor X':

3p 21(dr
a ..'= (1—ia)r) + g

(q/)' 1+(q/)'

p(1—i(ur) 3p
/

gxz = 21(dr
'+ g

1+(q/')' (ql)' 1+(ql)'

2p z(dr 3zcor
0 = g- g+

L1+(q/)'3 — (q/)'-

1 ip
p+ +

1+(q/)2 (ur

1 ip
p+ +

1+(ql)'

1 ip
p+ +

1+(q/)'

(4.1a)

And

2icorp 3icur

g+
1+(q/)'-

1 ip
p+ +—

1+(q/)' cur

1M' 3p 210)rg
gg

1+(q/)' (q/)' 1+(q-l)'

3p 2@drgpz*= Zldr/l +
—(q/)' 1+(q/)'-

1
p+ +—

1+(ql)' ~r

1 ip
p+ +—,

1+(ql)' (or

(4.1b)

where the dc field is in the x direction and the remaining
components of these tensors vanish.

Using (4.1a—b) in the expressions for the absorption
coefficient (2.13—14), we find that for both longitudinal
and transverse waves, the values of the absorption co-
efkcient are unchanged from those in the absence of the
dc field as long as the drift velocity of the electrons is
less than their Fermi velocity, i.e., e~(zp. However,
this is the same condition needed for our linear Boltz-
mann equation treatment to be valid. Therefore, as
long as our linear Soltzmann equation treatment is
valid, there is no amplification of acoustic waves in the
presence of a dc field transverse to the direction of
propagation.

V. DISCUSSION

In our calculations, we have found that in the pres-
ence of a dc electric field in the direction of propagation
of an acoustic wave, an amplification of the wave can
occur. This happens when the drift velocity imparted
to the conduction electrons by the field is greater than
the sound velocity. In this section, we shall present a
physical picture of this eGect and suggest under what
conditions it can best be observed.

When a particle is traveling in the direction of
propagation of a wave with a velocity less than the
wave velocity, the wave will overtake the particle and
give up kinetic energy to it. On the other hand, when the
particle is traveling in the direction of propagation with
a velocity greater than the wave velocity, the particle
will overtake the wave and lose kinetic energy to it.
The dc electric field serves the purpose of giving all the
conduction electrons a net drift velocity in the direction
of propagation of the sound wave. When this drift
velocity exceeds the sound wave velocity, there is a
net loss of energy from the conduction electrons to the
sound wave. Or in other words, the sound wave is
amplified. This eGect is similar to that discussed
by Pines and SchrieGer" in connection with grow-
ing acoustic waves in an electron-hole plasma in
semiconductors.

When the conduction electrons are moving trans-
verse to the direction of propagation of the wave, they
can no longer give up their kinetic energy to the wave.
Therefore, the amplification of an acoustic wave can
only take place if the drift velocity has a component

'1 D. Pines and J. R. Schrieffer, Phys. Rev. 124, 1387 (1961).
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along the direction of propagation which is greater
than the sound velocity. Since the eRect occurs only
when the dc electric field is along the direction of pro-
pagation, transverse polarized waves are not affected
unless there is a mechanism which couples shear waves
to longitudinal currents. One such mechanism is the
shear deformation potential. Thus, for an amplification
to occur for transverse waves, the shear deformation
potential forces must be stronger than the electrostatic
forces, i.e., (»/e, )'(to/to„)'C, /m»') 1.

Another case where amplification of transverse waves
can occur is in a piezoelectric crystal where a longitudi-

nal electric field of piezoelectric origin accompanies a
transverse wave. This indeed is the case in the experi-
ments of Hutson et al. on CdS, ' which happens to be a
strong piezoelectric. The Geld. of piezoelectric ori-
gin which accompanies the transverse wave is E~,
= —d„tt,/n„where d„ is the appropriate piezoelectric
constant. We can take account of the piezoelectricity
of CdS in our theory by adding the piezoelectric field
produced to the term containing the other electric
fields in (2.3). This is equivalent to replacing &iqC„
by +iqC„—ed„ in (2.5b), (2.6), (2.9), (2.11—13), and
(3.3b). When ed„)qC„, we obtain in place of (3.6 b-c)

q/(1, (to/&o„') (ed„/me, ) & 1,

q'r(1 —t)(~/~ )'d '

12&ps, (1—tt)'(to/to. )'+ (~r)'Ll+ l (»/n )'(~/to. )'3'

q/& 1, (co/to„') (ed„/ms, ) & 1,

q»(~/~o)'(1 t )'d*-'
24t .'L1+l( / )'( / )'1'

(5.1a)

(5.1b)

Expression (5.1a) is just that derived by Hutson et ttt

in order to explain the results of their experiments. It
is only valid in the long-wavelength limit in which the
experiment was performed. In the short-wavelength
limit (5.1b) is the correct expression for the absorption
coefhcient. The neglect of the deformation potential
forces compared to the forces of piezoelectric origin is
vaHd since for CdS the piezoelectric constant d„=10'
dyn/esu's and a typical value of the deformation po-
tential for a semiconductor is C,= 10 eV.""Therefore,
the inequality ed„&qC, holds for frequencies up to
~= 10"sec—', i.e, up to all attainable sound frequencies.

To obtain an estimate of the dc electric field strengths
needed to give the conduction electrons a drift velocity
that is equal to the sound velocity, we need to know the
electron mobilities in various materials and for various
temperature ranges. The critical dc field is given by the
velocity of sound divided by the electron mobility. The
electron mobility ranges in value from 300 cm'/V sec
for CdS,' 1200 cm'/V sec for Si, and 3600 cm'/V sec
for Ge at room temperatures" to 10' cm'/V sec for
pure metals and semimetals at low temperatures" and
7&(10s cm'/V sec for InSb at 60'K."Since the velocity
of sound in most materials is of the order of 10' cm/sec,
this means that for diRerent materials the critical dc
field at which we get a crossover from acoustic absorp-
tion to amplification can vary from less than 1 V/cm
to 10' V/cm. In metals, dc electric fields of this order of
magnitude cannot be obtained because of their high

"A. R. Hutson, Phys. Rev. Letters 4, 505 (1960).
"H. Fritzsche, Phys. Rev. 115, 336 (1959).
'4 C. Kittel, Introduction to Solid State Physics (John Wiley 8r

Sons, Inc. , New York, 1953), p. 277.
'~ G. Smith, Phys. Rev. 11k, 1561 (1959).
'e K. Putley, Proc. Phys. Soc. (London) 75, 128, 280 (1959).

r= ——,'(ps, r/IV, m) lu/n, l
~. (5.2)

The minus sign arises because when n is positive, power
is transferred from the acoustic wave to the electrons.
Using the various expressions derived for n (i.e.,
3.5-6, 5.1), the ratio of the powers transferred can be
calculated. We have found that this ratio is always
much less than unity for all the cases we have con-
sidered. Since most of the power transferred from the
field to the electrons is dissipated through collisions
with impurities or by other mechanisms, we must make
sure that the dissipation of this power will not cause

conductivity. However, in semimetals and semicon-
ductors fields of the necessary order of magnitude can
be obtained.

Related to the problem of maintaining large dc fields
in metals is the problem of the dissipation of energy
from the dc Geld to the conduction electrons. In Sec.
II we neglected the current arising from the dc field
alone in considering the interaction between the acoustic
wave and the conduction electrons. However, this cur-
rent is important in considering the power transferred
from the dc field to the electrons. The average power
transferred per unit volume from the dc field to the
electrons is Js E, where Js———1Voevs is the current
arising from the dc field alone. This can be rewritten in
the form Qg= Xo(m/r)no', where Qs is the power trans-
ferred from the dc field to the electrons. When v~&v„
part of this power is transferred to the acoustic wave.
The remainder is dissipated by collisions of the elec-
trons with impurities. The ratio of the average power
transferred from the electrons to the acoustic wave to
the power transferred from the dc field to the electrons
is
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drastic changes in the properties of the material used.
At the critical field, v~=e„and taking v, to be 10'
cm/sec, v to be 10 " sec, and m=10 "g, we find the
power dissipated by the dc field to be QE=1Vs&&10 '
erg/sec cm'. For a rise in the temperature of the ina-
terial of more than a few degrees to be avoided, the
power dissipated must be less than a few hundred watts.
Therefore, we are limited to materials with conduction
electron densities Eo(10" cm '. The materials in
which an amplification of acoustic waves by the mecha-
nism discussed in this paper can take place are thus
limited to semimetals and semiconductors.

A material which would be well suited for amplifying
sound waves by this mechanism is indium antimonide
because of its large mobility and the value of its de-
formation potential (about 7 eV). Thus, we would have
crossover from absorption to gain of the acoustic wave
at small values of the dc electric field and a large gain
when the necessary criteria are satisfied. For instance,
with a conduction electron density of 10" cm ', we

would have a gain of 10' dB/cm at a frequency of 10
kMc/sec. Piezoelectric semiconductors should also be
well suited for amplification of sound waves via this
mechanism as they would have a large gain with a
relatively small number of conduction electrons. In the
experiments performed on CdS, ' gains as large as 150
dB/cm were measured at room temperatures and at
frequencies in the megacycle range.

The theory presented here is only valid when the
use of the linearized Boltzmann equation is justified.
%hen the conduction electrons gain as much energy
from the dc field as their original energy in thermal
equilibrium, the dc field can no longer be treated as a

perturbation and the use of the linear Boltzmann equa-
tion is no longer valid. Thus, the condition for the
validity of the linear Boltzmann equation approach is
that v«vp, i.e., that the velocity gained by the elec-
trons from the field be less than their velocity in ther-
mal equilibrium. The use of the linear Boltzmann equa-
tion would also break down if the acoustic wave is so
greatly amplified that the energy transferred between
the wave and the electrons is greater than the original
energy of the electrons.

The calculations here have been done using de-
generate statistics for the conduction electrons. How-
ever, other treatments of the sound wave-conduction
electron interaction have shown that using classical
statistics for the electrons only change the expressions
for e by a numerical constant of order unity. 4 Therefore,
the general features of our treatment should hold for
conduction electrons obeying either degenerate or
classical statistics.

The mechanism discussed here is particularly well
suited for amplifying microwave sound waves where the
sound wave intensities generated by present methods
are very low."In semimetals and nonpiezoelectric semi-
conductors, the amplification increases linearly with
wave number q in the high-frequency, short-wavelength
limit (see 3.5c). So precisely in the region where we can
only generate low-intensity sound waves by other
methods, we can get a very large amplification by means
of our mechanism.

"H. E. Bommel and K. Dransfeld, Phys. Rev. Letters 1, 234
(1958); 2, 298 (1959); 3, 83 (1959).E. H. Ja,cobsen, ibid. 2, 249
(1959);N. S. Shiren, ibid 6, 168 (196.1).


