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J. J. StickiLER, H. J. ZEIGER, AND G. S. HELLER
Lincoln Laboratory,* Massachusetts Institute of Technology, Lexington, Massachusetts

(Received March 30, 1962; and in final form July 16, 1962)

Experimental quantum effect spectra have been observed in germanium and silicon at liquid helium
temperatures and a frequency of 136 kMc/sec. Detailed spectra are presented for the applied magnetic field
in the [1007, [111], and [110] directions. Anisotropy data of some of the more intense lines are also pre-
sented. Using the theory of Luttinger and Kohn with the assumption of thermal equilibrium, effective
masses and line intensities were computed for an applied magnetic field in the [111] direction. By adjusting
the parameters of the theory, good agreement was obtained between the theoretical and experimental
spectra. The experimentally determined parameters are:

7 Y2 Y3 K
Ge 13.2 4.10 5.62 3.29
Si 4.22 0.50 1.35 —0.39

These lead to parameters A =13.2, | B| =8.2, and | C| =13.3 for germanium and A4 =4.22, | B| =1.0, and
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| C| =4.34 for silicon. (See note added in proof.)

1. INTRODUCTION

T has been pointed out by Luttinger and Kohn! and

Luttinger? that deviations from the classical cyclo-
tron resonance of holes in germanium and silicon should
occur for transitions between levels of low quantum
number. According to these theories, the energy-level
spacing at high quantum numbers becomes uniform
and the allowed transition frequencies approach the
usual classical light and heavy hole cyclotron resonance
frequencies. However, at low quantum numbers the
degeneracy of the valence bands at £=0 becomes im-
portant and gives rise to nonuniformly spaced levels
and hence a number of allowed transitions whose fre-
quencies differ from the classical cyclotron resonance
frequencies. These nonclassical resonance lines have
been referred to as quantum effects. Goodman® and
Evtuhov* have discussed the theory of quantum effects
in some detail.

In order to observe quantum effects, it is necessary
that a significant fraction of holes be in states of low
quantum number at the applied magnetic field for
resonance. This condition may be achieved if n="fiw/kT
21, where w is the angular frequency at which the ex-
periment is performed and T is the absolute tempera-
ture of the holes in the valence bands. Quantum effects
were first observed in germanium by Fletcher® at 24
kMc/sec and 1.2°K, corresponding to n~0.8. Because
he was so close to the threshold for observation of the
quantum effects, Fletcher had to exercise great care to
avoid heating of the carriers. Goodman? has tentatively
interpreted these observations using the Luttinger
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theory. More recently, Hensel® has reported observa-
tions in germanium at 56 kMc/sec and 1.2°K; and
Stickler et al.” have obtained spectra in germanium at
1.2°K and silicon at 4.2°K, both at a frequency of
136 kMc/sec.

An analysis of the data obtained by Stickler et al.
has been made in germanium and silicon for the case
where the magnetic field is along the [111] direction.
Computer calculations have been made of the energy
levels and the line intensities at thermal equilibrium
for the most intense lines. In Sec. 2 of this paper, the
experimental procedure is discussed and the results
presented. The theory is discussed in Sec. 3. In Sec. 4,
the analysis of the experiments is presented, and in
Sec. 5 the results are discussed and compared with
previous classical analyses.®~ The analysis of the data
in the [100] and [1107] directions will be the subject
of a future paper.

2. EXPERIMENTAL PROCEDURE

The measurements were made in a 2-mm cavity
spectrometer operating at a frequency of 136.6 kMc/
sec. Most of the measurements were made using fre-
quency doubling from a 4-mm klystron. Some of the
later ones were made using a 2-mm CSF carcinotron
as the source.

Figure 1 shows the block diagram of the system. The
klystron was a Philips DX-151 which had an output
power of about 100 mW at 68.3 kMc/sec. Power from
the klystron passed through a 4-mm isolator to a point
contact crystal harmonic generator using a silicon,

6 J. C. Hensel, Bull. Am. Phys. Soc. 6, 115 (1961).
7J. J. Stickler, C. Rauch, H. J. Zeiger, and G. S. Heller, Bull.
Am. Phys. Soc. 6, 115 (1961).
(1;511.) N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev. 95, 557
4).
( (9) 5(‘;) Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368
1 .
(IIOSR). N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev. 104, 637
956).
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F16. 1. Block diagram of 2-mm cavity spectrometer.

ion-bombarded crystal as the multiplying element.!!
The multiplier had a conversion efficiency of about 23
dB when tuned for maximum output. The 2-mm output
of the multiplier was transmitted through a 2-mm
waveguide to a 3-dB, 2-mm directional coupler of the
hybrid ring type.’? A phase shifter inserted between the
directional coupler and multiplier served to match the
multiplier to the rest of the microwave transmission
line. The power was transmitted to the sample cavity
through thin-walled silver-plated stainless-steel wave-
guide. An oversized waveguide was used to minimize
the loss of the millimeter energy in the long waveguide
section to the cavity.

The cylindrical cavity operated in the TM ¢ mode
with the sample placed on the bottom end wall in the
region of maximum electric field as shown in Fig. 2.
The sample was a thin disk whose faces were (110)
planes. The microwave electric field was essentially
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F16. 2. Details of TM 16 spectrometer sample cavity.
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normal to the plane of the disk. Carriers were optically
excited in the sample by shining light through a quartz
rod, the end of which was inserted through a hole in
the top wall of the cavity. The hole diameter was small
enough so that it was beyond cutoff at 2 mm with the
quartz rod inserted. Tuning of the cavity was accom-
plished by varying the depth of insertion of the quartz
rod into the cavity.

The experiment was performed in a conventional
glass helium, nitrogen double Dewar system. The
cavity and the portion of waveguide and light pipe
within the Dewar were contained in a vacuum-tight
stainless-steel tube containing a low pressure of helium
gas for heat exchange. This eliminated noise which
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Fic. 3. Composite reproduction of recorder traces showing
intensity of absorption in Ge vs applied magnetic field in the
[100], (1117, and [110] directions at 1.2°K, 136 kMc/sec. The
effective masses of the quantum lines are indicated.

arises from bubbling of helium liquid in the sample
cavity and waveguide. The exchange gas pressure could
be regulated to control the temperature of the sample.
The temperature of the cavity was monitored by a
carbon resistance thermometer attached to the outside
bottom of the cavity.

The Dewar system was placed between the pole
faces of an electromagnet which could be rotated in the
horizontal plane so that a uniform magnetic field could
be applied to the sample in any direction in the (110)
plane. The maximum field that could be achieved with
this magnet was 19 kG, which corresponds to an effective
mass of 0.39 at 136.6 kMc/sec.

The signal reflected from the cavity was monitored
by a detector on one of the ports of the directional
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coupler. The modulation signal produced by chopping
the light to the sample at 240 cps was amplified, phase
detected, and displayed on a recorder trace as the
magnetic field was swept.

The 2-mm signal was frequency stabilized by locking
the 4-mm source to a high-Q external, tunable 4-mm
cavity. The 4-mm power was frequency modulated at
2000 cps. Some of the 4-mm power from the source was
sampled through a directional coupler, then passed
through a phase shifter to the high-Q cavity. (See
Fig. 1.) An in-guide crystal detector inserted between
the coupler and phase shifter monitored the stabiliza-
tion signal. The phase shifter was adjusted to produce a
symmetrical cavity absorption dip as seen at the de-
tector. The signal at the detector, resulting from the
frequency modulation, was synchronously detected and
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Fic. 4. Composite reproduction of recorder traces showing
intensity of absorption in Si vs applied magnetic field in the
[100], [111], and [110] directions at 4.2°K, in 136 kMc/sec. The
effective masses of the quantum lines are indicated.

fed back to the klystron supply to stabilize frequency
in the usual manner.

Most of the observations on germanium were made
at 1.2°K, where relatively noise free spectra were ob-
tained. At this temperature the value of the parameter
n was =~0. In the case of silicon, however, lowering the
temperature below 4.2°K reduced the photoconduc-
tivity to such an extent that it was impossible to make
observations. At 4.2°K, the value of 7 was = 1.8 which
still satisfied the condition for the observation of quan-
tum effects.

For germanium, the light and millimeter power were
lowered to the point where further reduction made no
significant change in the spectrum. In the case of silicon,
it was difficult to lower light and millimeter power to
achieve this condition without the deterioration of the
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signal-to-noise ratio. For example, with the applied
magnetic field along the [1117] direction, when the light
intensity was lowered to the point where most of the
quantum effect lines disappeared into the noise, a new
line appeared at an effective mass of 0.123 (Fig. 4).
This indicated that the carriers in silicon were not
quite at the temperature of the lattice at excitation
levels necessary to observe the quantum effect spectra’

Figures 3 and 4 show the observed spectra for ger-
manium and silicon, respectively, for the magnetic
field along the [100], [111], and the [110] directions.
The anisotropy of some lines which could be followed
are shown in Figs. 5 and 6. Some of the lines could
not be followed continuously because of the interference
of the strong electron lines.

3. THEORY OF ANALYSIS

The analysis of the experimental results was made on
the basis of the theory of Luttinger.? The valence band
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F1G. 6. Anisotropy of several of the quantum lines in Si. Dis-
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maxima in Ge and Si occur at the center of the Brillouin
zone. In the absence of spin-orbit interaction, the band
edges are sixfold degenerate, including spin. The spin-
orbit interaction partially lifts this degeneracy, lower-
ing two levels by an amount A with respect to the re-
maining four degenerate levels. In Ge, A~0.29 eV,
and in Si, A~0.035 eV."* At the temperatures at which
cyclotron resonance of holes is usually observed, the
energies of the holes in the fourfold degenerate bands
are so low that the effect of the lower pair of bands can
be neglected. In this case, Luttinger has shown that the
most general set of effective mass equations for the
fourfold set in the presence of a uniform magnetic field,
and consistent with the symmetry of the lattice, is

STICKLER, ZEIGER, AND HELLER

for », y, and z along the crystal cube axes. Here P,
= (%/7)3/dx+ (e/c)A., etc., and m is the free electron
mass. The symbol {P,P,} means % (P,P,+ P,P,). The
Jay Jy, J . are 4X4 angular momentum matrices for the
case J=3%. These are given by Luttinger. The wave
function ¢ is a four element column wave function.
The parameter ¢ is probably quite small for Ge and Si,
and will be neglected.?

Luttinger has shown that the problem takes the
simplest form for H along a [1117] direction. For that
reason, the present first analysis was carried out for
this case only. Goodman!® has given the transformation
of D to a coordinate system with z axis (or axis 3), along
a [1117] direction. When H is taken along [111] and

- the operators P, P,, P; in the new coordinate system
Du=6y, ® crators
where D is of the form are replaced by
D=— (1/m){ (y1+3v2)P/2 at=(c/2heH)t (P1+iPy),
_"72(P22j22+P1/2J1;2+Pz2]z2) a= (C/ZﬁeH)% (Pl—"l:Pg), (3)
_273({P1P1/}{Jz]y}'l'{Psz}{Jsz} Py= heH) P
H{P.PYTT)+ (k) H u=(/het)t Py,
+(etr/c)q(UAH AT H,~+J 2H,)}, (2) the matrix D becomes
D= — (heH /mc)
((vit7vs)(ata+3) — B (vat2ys)a? — @1 L(ys—v2)a® 0 1
+3k+3 (v1—2v3) Pr? +2(ys—7y2)a'Py] + (v3+2v2)aPy]
— B (vat2vs)at (y1—7vs)(ata+3) 0 G (vs—v2)al
% +2(‘Ya—‘)’2)aPH:] “%K+%(71+2’Y3)PH2 + (73+272)0PH:] (4)
— B (vs—v2)a? 0 (v1—7vs)(ata+3) — 3L (va+2ys)a?
+ (vs+2y2)atPr] +3k+3(vi+-2vs) Pi? +2(ys—vy2)atPy]
0 GiL(vs—v2)a? — (@ (v2t2vs)a® (v1t+vs) (ata+3)
L + (vs+2v:)at Py ] +2(ys—v2)aPu] —3k+3 (v1—273) Pr?)
The annihilation and creation operators @, ¢t have the amn=ntu, ,,
commutation relations, [a,at]=1. (6)

The solutions of Eq. (1) for Pg=0 are obtained by
assuming the wave functions to be of the form

Cnpt
Cap?
Canp®
Cnpt

where %, 1s a harmonic oscillator wave function with
the properties

Aoy =Yy b Nl o [ Cod = [Cop = [C ]

Vn,p= ’ (5)

at 1= (n+1)tu,y .

The subscript p labels the four possible solutions of the

4X4 Schrodinger equation (1). For =0, 1, C,,'=C,,?

=C,,=0; and for n=2, 3, C,,=0. The energies, to
second-order perturbation theory in Py, are

8y (Pr)=— (heH/mc) enp+AnpPr]. (7)

Here, — (heH/mc)eq, is the energy obtained from the
solution of the problem for Pr=0, and

+2 I: B (rst+ 2y ){ (r+H1)CnpCrisp = (= 1)CogiCrys,}

3)?

2
- _—(73"‘ 72) { (n+ 1) %C"pzcn+3p’l+ (ﬂ— l)gcnp‘xcvﬂ-%’s} :I / (an - 6ﬂ+3p’)

+Z [(%)%(’73_}_272){ (n— 2)%Cnp4c'ﬂ—3p’2— (ﬂ“‘4)%CnP3C,,_3pll}
o

3)?}

13 A, H. Kahn, Phys. Rev. 97, 1647 (1955).

2
- —('Yli - 72) { (" - 2)§Cnp'cn—3p’z+ (ﬂ—' 4) *Cnpacn—:!p"i} jl / (EM—' eﬂ—39’) . (8)

14 W, Kohn, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957), Vol. 5.
15 R. R. Goodman Ph.D. thesis, University of Michigan, 1958, (unpublished).
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The effective mass for a transition between two
levels, neglecting Py dependence, is

m*(np; n'p")=1/| enp— € l. ©

The perturbation giving electric dipole transitions
due to a microwave electric field E, is given by intro-

ducing a vector potential
M (Pr)
(v1+73) (@TE-+aEY) —®2(v2+2yp)aE-
(vi—2v3)PuEs +2(vs—72) (6T Es+PrE*)]
— ®M2(va+2vs)al EF (n—vs)(a'E-+-aE*)
| +2(vs—72)(eEs+PrET)] 4+ (v14+2v3s)PrEs
—B®2(vs—v2)aE 0
+ (vs+2v2) (@' Es+PrEY)]
0 (3)[2(vs—v2)aE~

+ (vs+2v2) (@' Es+PrE")]

and E+=E1+’iE2, E_=E1—1E2

For the case Py=0, it is easy to see from (11) that
the selection rule for E transverse to His An=41; and
the selection rule for E along H is An=43. Transitions
An==+2, +4 are allowed only for Py5£0. These selec-
tion rules are the quantum mechanical analogs of the
classical result for fundamental and harmonic resonance
with H along a [1117] direction.!* With the sample
geometry of this experiment, E is essentially transverse
to H. However, a small longitudinal component of E
may be introduced when the sample is placed in the
cavity. We then expect that weak An=-3 lines may
appear, as well as An==-2, 4 lines introduced by the
Py dependent terms of (11).

The peak intensity of a quantum effect resonance at
thermal equilibrium should be proportional to

[e=8nePH)IKT — g=n'o* (PRIKT]
H

P
I(np; n'p") & (Hres) X
f Zn"p” e 8o (PRETG Py
Py

1
xHresX |an,n’p'(PH) |2dPHX I . (12)

res

The first factor on the right-hand side of (12) repre-
sents the proportionality of the density of Landau
levels in a magnetic field to Hre, the magnetic field for
resonance. The second factor represents the population
difference of the lower energy state 8,,(Px) and the
higher energy state 8., (Pu) (Py is conserved in the
transition). The factor HreeX |M up;w o (Pr)|? is pro-
portional to the absolute value squared of the matrix
element of the electric dipole interaction operator D’.
The last factor is a measure of the breadth of the
resonance line.

16 H. J. Zeiger, B. Lax, and R. N. Dexter, Phys. Rev. 105, 495
(1957).
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A’= (ic/w)E.

The perturbation matrix is obtained by replacing P in
(4) by P+ (e/c)A’, and retaining terms first order in E.
The result is

D'= (e/ 2imw) (2heH/c)*M (Py), (10)
where
—(AM2(ys—va)al B 0
+ (vs+2v2) (@Es+PrE~]
0 (3)H2(ys—y2)d E*
+ (ys+2v2) (@Es+PrE™)]
(y1—v3) (@' E-+aE*) — (B)2(vat+2yy)aE"
+(v1+2v3)PuEs +2(ys—2) (@"Es+PrE")]
— 3)[2(v2+2vs)d  EF (y1+79) (@ E-+aE*)
+2(ys—7v2) (@Es+PrE")]  +(v1—2v3)PrEs
11)

This expression can be simplified in a number of
ways. Hyes can be eliminated by using the relation

fw= (hieH res/mc) (enr pr— €np)-
We assume
(AH)res/era'\’ 2/")7';

where 7 is a characteristic relaxation time. We do not
attempt in this paper to calculate the intensities of
An==2, 44 transitions. For this reason, the depend-
ence of M (Py) on Py will be neglected. Finally, the
integration over Py in the population factor can be
performed. Combining these steps, and retaining only
relevant factors, the expression we take for the in-
tensity is

| M gy
I(np; ') =————
|5np—fn’p'l
A\
1—( )eXP(—n)
Anlpl
X , (13)

x ( = )i ( eﬂ”ﬂ”‘*”ﬂ)
exp| —p———
n'’p’’! An/rpn |€np_€n'p’l

where n="rw/kT.

4. ANALYSIS OF EXPERIMENTAL RESULTS

To analyze the experimental results for H along the
[1117] direction, a possible set of parameters vi, vz, v3, &
was chosen, based on the analysis of classical cyclotron
resonance. These parameters, along with the appro-
priate value of 5, were then substituted into the ex-
pressions for m*(np; #'p’) and I (np; n'p"), and a machine
calculation was performed.

The analysis of classical cyclotron resonance is not
sufficient to determine the sign of v; and 3 uniquely,
and gives no direct information on . However, theo-
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retical considerations® indicate that the only ambiguity
between physically reasonable choices is in the sign of
2 for Si. Furthermore, the band structure of Ge and Si
indicate that the band structure parameter® H, for both
should be small, and if H,is zero, then an exact relation
exists between k and 1, v2, v3:

k= (3ys+2y2—v1—2)/3.

We therefore chose a reasonable set of parameters
Y1, Y2, 73, and assumed as a starting point that (14)
held, thus determining x. When the intensities of lines
vs their effective mass were plotted, the theoretical and
experimental patterns showed enough similarity that a
reasonable identification of lines could be made. This
would have been difficult without the intensity calcula-
tion, since the theoretical masses were not always very
close to the experimental. (However, see note added in

(14)
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Fi1c. 8. Strong transitions which have been identified in the
spectrum of Ge in the [111] direction. The dotted lines represent
possible higher order transitions.
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proof.) Once the identification of transitions was estab-
lished, it was possible to adjust the values of v1, va, ¥3
(still assuming H,=0), to improve the fit. When a few
prominent lines were adjusted to give the most reason-
able fit, many other theoretical lines fell into place with
respect to the observed spectra. It was then found that
a number of experimental lines could be reasonably
explained as An==2, or =3 transitions from low-lying
levels to excited states. For both Ge and Si, the assump-
tion H,=0 gave a rather good fit of the data within the
experimental error, so that it was never necessary to
relax this condition.

Figure 7 shows a comparison of the theoretical and
experimental spectrum for the best fit of effective masses
in Ge. It can be seen that the theoretical intensities for
An= =1 transitions are in reasonably good agreement
with experiment. There are no lines of significant in-
tensity in the theoretical spectrum which are not found
in the experimental spectrum. However, there are

TasLE I. Valence band parameters of Ge and Si.

Ge Si

I 13.2 4.22
Y2 4.10 0.50
73 5.62 1.35
K 3.29 —0.39
F —28.7 —5.00
G —0.95 —1.11
H, —6.0 —4.22
H, ~0 ~0
L —30.6 —7.22
M —6.0 —4.22
N —33.7 —8.10
A4 13.2 4.22
B| 8.2 1.0
C| 13.3 434
(mL*) [111] 0.042 0151

ma™*) (111) 0.379 0.547

several lines in the experiment which do not appear in
the theoretical spectrum. The best values of the pa-
rameters vyi, vz, v3, k obtained for Ge, along with the
values of other parameters derived from these are
given in Table I. These parameters are very close to
those obtained by Goodman.? Figure 8 shows the strong
transitions identified in this experiment.

Figure 9 shows the best fit of the theoretical spectrum
to the experiment for Si. In this case, the experimental
accuracy (~59%,) was not as good as for Ge. All the
experimental lines observed in the case of Si could be
reasonably accounted for. There are a number of lines
which should be observed at fields higher than we have
available at present. The intensity fit is not as good as
for Ge: There is experimental evidence, discussed in
Sec. 3, that carrier heating effects are important in Si.

The best values of the parameters obtained for Si
are y1=4.22, v,=0.50, v;=1.35, x=-—0.39. We were
not able to find a reasonable fit of the experimental data
starting with the other physically reasonable choice,
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yi=24, v —0.5, v5=21.3. Table I gives the parameters
derived from our values of v1, v2, 3, and k. These disa-
gree with a set of values obtained theoretically.!” Figure
10 shows the transitions observed in the experiment.

5. DISCUSSION

The parameters, 4, B, C, that we obtain for Ge and
Si agree with those obtained from analysis of the class-
ical cyclotron resonance results within the errors quoted
for these experiments.®1® (See note added in proof.)
There are a number of possible explanations of the
extra lines observed in the case of Ge. Among these are,
(1) carriers in other bands (the line at #*=0.030 may,
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F16. 9. Comparison of experimental and theoretical spectra for
Siin the [1117] direction. The lines indicated by arrows correspond
to possible higher order transitions, whose intensities have not
been computed. The width of the lines in the experimental spec-
trum represent the error in the determination of the effective
mass value. The theoretical line at 0.289 is obscured by a strong
electron line.

for example, be the k=0 electron); (2) carriers associ-
ated with the spherical pockets at the ends of the con-
stant energy surface along [1117] axes. This latter
possibility is being examined theoretically.

There are indications in both Ge and Si, that carrier
heating may be playing some role in affecting popula-
tions, and therefore line intensities. Carrier heating is
proportional to the acoustical phonon scattering time,
which is proportional to an elastic constant, and inversely
proportional to a deformation potential squared.!s
Recent experiments on cyclotron resonance of holes in

17 1. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).
18 J. M. Ziman, Electrons and Phonons (Clarendon Press, Ox-
ford, 1960), p. 433.
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Fr1c. 10. Strong transitions which have been identified in the
spectrum of Si in the [1117] direction. The dotted lines represent
possible higher order transitions.

diamond!® seem completely interpretable classically,
even though for those experiments p~3. The elastic
constants of diamond are quite large,® and this fact
combined with small valence band deformation poten-
tials could explain the apparent carrier heating in
diamond.

We plan to use the values of the parameters obtained
for the [111] case, to compute effective masses and
line intensities for the [100] and [110] cases. We also
plan to carry out machine computations of the intensi-
ties of Py-induced, Az= =2 transitions.

Note added in proof. An abstract of this paper, pub-
lished earlier, quoted different values of the parameters
for Ge. Our earlier analysis was based on the identifica-
tion of the line at m*=0.124 in the Ge [111] spectrum as
a An=4:1 transition in the theoretical spectrum. By an
unfortunate coincidence, this allowed the weak experi-
mental line at m*=0.298 to be identified as a An=42
transition, adding strength to this interpretation.

Subsequent experiments in a cavity configuration
which suppressed any leakage of E|H, eliminated the
line at m*=0.124, identifying this line as An=43
transition, and forcing the new interpretation of the
data given in this paper.

We wish to thank Dr. W. Mercouroff of the Univer-
sity of Paris for re-emphasizing the discrepancy between
the parameters in the earlier abstract, and experimental
observations in the classical limit. We also wish to
thank him for sending us values of the Ge parameters
from his thesis (University of Paris, June 1962), with
which our new parameters agree fairly closely.

19 C. Rauch, Phys. Rev. Letters 7, 83 (1961), and (private
communication).

2 C, Kittel, Iniroduction to Solid State Physics (John Wiley &
Sons, Inc., New York, 1956), 2nd ed., p. 93.
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Amplification of Acoustic Waves through Interaction with Conduction Electrons
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It is shown, from a Boltzmann equation treatment, that in the presence of a dc electric field it is possible
for an acoustic wave to gain energy from the conduction electrons in a material. The criterion for such an
amplification of an acoustic wave to take place is that the drift velocity given to the conduction electrons
in the direction of propagation by the dc field must exceed the velocity of sound. In metals, dc fields of such
a magnitude cannot be maintained, but in semiconductors the necessary conditions can be satisfied and an

amplification of the acoustic wave can take place..

1. INTRODUCTION

IN the past few years, much work, both theoretical'~*
and experimental®® has been done on the absorption
of ultrasonic waves via an interaction with the conduc-
tion electrons in metals, semimetals, and semiconductors.
However, only recently was it discovered by Hutson,
McFee, and White? that amplification of ultrasonic waves
occurred in CdS via the same interaction in the presence
of a dc field. Weinreich hasshown, using a phenomenolog-
ical treatment,!® that when there is a dc electric field
which gives the conduction electrons a drift velocity
the direction of propagation greater than in the velocity
of sound, the wave is amplified instead of absorbed. It
has been pointed out, however, that the phenomenolog-
ical approach is only valid when the sound wavelength
is longer than the mean free path, ie., ¢ <1. A more
general approach must be made through the use of the
Boltzmann equation.? Since the electronic contribution
to the absorption of ultrasound in materials at low
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temperatures can be quite large when g/>1, it is, there-
fore, of interest to examine the whole problen: of the
electron-acoustic wave interaction in the presence of a
dc electric field using the Boltzmann equation treatment.

In Sec. II, we will use the model of a free electron
gas developed by Cohen, Harrison, and Harrison for
the conduction electrons in a metal? and, in general,
adopt the formalism developed by them. This model
has also been used for semimetals® and semiconductors.®
In Secs. IIT and IV we shall consider the cases of the
dc field parallel and transverse to the direction of pro-
pagation, respectively. In Sec. V we give a discussion
of the results of our calculations.

II. CONSTITUTIVE EQUATION

The conduction electrons are replaced by the model
of a free electron gas of density N,. The sound wave of
wave number ¢ and frequency o manifests itself as a
velocity field wu(r,t)«<exp[i(gz—wf)] in the positive
background which has the same density as the electron
gas. The interaction between the acoustic wave and the
electrons can be represented partly through the means
of a self-consistent internal electromagnetic field and
partly by means of a deformation potential. The seli-
consistent electromagnetic field induced by the passage
of the sound wave is derived from Maxwell’s equations.
In our case, the latter can be written in the form

J1+N0eu= —o'oB's, (21)



