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Lattice Deforinations in Alkali-Halide Solid Solutions~t

B. G. DzcK
Department of Physics, Uliversity of Utah, Salt Lake City, Utah

T. P. DAS
Departmemt of Physics, Urtiversity of Catiforrtia, Riverside, Califorrtia

(Received March 26, 1962)

Using the Born-Mayer model, calculations on dilute solid solutions of alkali halides have been made. The
systems considered are NaC1—NaBr and KBr—NaBr. In this paper ion displacements in the vicinity of an
impurity atom are calculated and the results applied to the calculation of heats of solution and lattice
constant changes. Electronic and ionic polarization and van der %aals interactions are included and found
to be important.

INTRODUCTION

HE Born-Mayer model of ionic crystals succeeds
quite well in relating the cohesive energy, ob-

served lattice constant, and bulk modulus to one
another. It is less successful in dealing with the elastic
shear moduli and the dielectric constants of these
crystals. For a simple model it is remarkably successful
and it has been quite naturally hoped that it would be
effective in dealing with lattice defects.

Charged point defects such as vacancies or inter-
stitials polarize the ionic lattice in a very extensive
region. Uncertainties in the dielectric theory make it
dificult to treat this polarization with much confidence.
A monovalent substitutional impurity such as Br—in
NaCl at a Cl site, on the other hand, has the same
charge as the ion which it replaces. Furthermore, in
this case the ionic radii of Br and Cl are 1.96 and
1.81 A, respectively. Consequently, displacements of
Na+ ions surrounding a Br—ion impurity are expected
to be small, of the order of 4%. Thus substitutional
impurities can be very gentle disturbances to the
perfection of the lattice. It is to be hoped that the
Born-Mayer model will be adequate to account for the
details of these defects. The work to be described here
investigates this possibility. Ke have calculated the
heat of formation of certain dilute solid solutions, the
latt. ce constant changes associated with their forma-
tion, and the field gradients at certain lattice sites near
the impurity.

Section I describes the calculation of displacements
of ions near certain monovalent substitutional im-
purities in NaCl, NaBr, and KBr. Sections II and IV
apply these results to the calculation of the heats of
formation of certain dilute solid solutions and to the
lattice constant changes in these solid solutions,
respectively. Comparisons with experiment are made.
Section III discusses the eGect on these results of the

*This work has been supported by the 0%ce of Naval Research
and the National Science Foundation.

~ A short account of part of this work was reported at the 1961
International Conference on "The Chemical Physics of Non-
metallic Crystals, " papers from which have been published by
W. A. Benjamin, Inc. , New York.

elastic and dielectric deformation of the ions not
treated in Sec. I. A brief summary of our conclusions
appears after Sec. IV. The applications of the results
of this paper to the calculation of field gradients and
quadrupole splittings of nuclear magnetic resonance
lines appear in a second paper. '

I. DISPLACEMENTS AND DIPOLES IN
DILUTE SOLID SOLUTIONS

In this section the displacements of certain ions near
a substitutional monovalent anion or cation impurity
in rock salt structure alkali halides are calculated. The
ion displacements considered are shown in Fig. 1. The
D ions are only third nearest neighbors to the impurity
and (unlike C ions) have no nearest neighbors with
displacements in such a direction as to give a radial
force on them in first order of nearest-neighbor dis-
placements. Their displacements are therefore neglected.

Displacements $, st, and 8 in units of the perfect
crystal nearest-neighbor distance u are assumed to be
radial and are calculated by minimizing the energy of
interaction of the six A-, the twelve 8-, and the six
C-type ions with one another, and with the rest of the
crystal. In addition to their displacement, the 2, 8,
and C ions are allowed to polarize. The dipole vectors
of these ions are assumed to be directed radially just

A

Fzo. 1. Labeling of axes and neighbors in the vicinity of an
impurity ion. The case shown is that of a cation impurity. The
shaded circle represents the impurity; the open and 6lled circles
are host crystal anions and cations, respectively.

' T. P. Das and B. G. Dick, following paper LPhys. Rev. 127,
1063 (1962)].
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as the displacements are and in units ea are given by
p~, p~, and p~. For the moment the rest of the ions in
crystal are considered to be undisplaced and un-
polarized. This assumption will be discussed in Sec.
III. The change in crystal energy AE which arises
from introducing a single substitutional impurity may
be separated into four parts: repulsive, electrostatic,
electronic dipole self-energy, and van der Waals. The
zero of energy is taken in this case to be the energy of
the set of A, 8, C ions in the host crystal. The change
in zero-point energy of lattice vibrations is neglected.

The repulsive part AE„' is calculated considering
only nearest-neighbor repulsive interactions. As a trial,
in one case the second-nearest-neighbor anion-anion
interactions AE„2 have been included, and their eRect
on the displacements is shown to be small. If the
repulsive energy of an anion-cation pair of the host
crystal at a separation r is given by A exp( —r/p) and
that of the impurity ion with an A ion is B exp( —r/o),
then to second order in $, g, 8

AE '=6(Be '~~ Ae '~')—
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with the top sign for an anion and the bottom sign for
a cation impurity. The dipole self-energies AEz are
given by
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cations. In this case, the fictitious positive charge at
the undisplaced A site restores the appropriate perfect
lattice charge to that site. The remaining fictitious
negative charge along with the displaced A ion may
be treated as a dipole at the undisplaced A site. Thus
to second order in $, g, 8 the energy AE, may be calcu-
lated by considering a set of dipoles superposed on a
perfect lattice. The interaction of the dipoles with the
perfect cubic lattice is zero since the field at cubic
lattice sites is zero. The dipole interactions with one
another give

The additional terms AE„2 to be included when second-
nearest-neighbor interactions with 8 and C ions are
taken into account in the case of an anion impurity are

C)a 5 — a
~'+ —(2)» P+S~, (2)

2D)~ 4(2)»

where D exp( r/r) and C exp—(—r/r) are the repulsive
interaction energies for host crystal anion-anion inter-
action and impurity anion-host anion interaction,
respectively. Cation-cation interactions are neglected.
The range v of the interactions is taken to be the same
for both, since the Huggins-Mayer' (HM) interaction
is used, and HM assume the range of all the alkali and
halogen ion repulsive interactions to be the same.

The electrostatic part AE, is calculated as follows:
At the undisplaced A, 8, and C sites imagine both a
fictitious positive and negative unit electronic charge
to be superposed. Consider, for instance, the A ions
in the case of an anion impurity. The A ions are then

~ M. L. Huggins and J. E. Mayer, J. Chem. Phys. 1, 643 (1933).

where 0.~, u~, and n~ are the electronic polarizabilities
of the A, 8, C ions.

The van der Waals (VDW) term DER is calculated
by considering VDW interactions between first and
second nearest neighbors only. Both dipole-dipole
AE~' and dipole-quadrupole DER VDW terms are
included. To second order in the displacements the
VDW interaction energies are given by

—a'DER'/6= (i—e')+ (k—g)/4+6(e' —i) $

+3(g—k)g/2 (2)»+ (9e'+ 21i+27c/4) P
+ (60e'+ 69g/8+ 21k/8) q'

+ (30e'+15g/4)P
+L3g/2 (2)»jg5—42e'8)+12 (2)»e'tq, (5)

(—a'E.'/6= (j f)+(& h)+8(f j)P—+—(h—l)g/—(2)»
+ (20f+36j+6d) P
+ (112f+29k/4+ at/4) vP

+ (56f+7k/2)P
+ (h/(2)»)qb —72fbt+16(2)»f&g. (6)

Here the VDW constants are defined as follows: c, e',

g, i, and k are the constants P dq for the dipole-dipole
VDW interaction Xde/r' for the following pairs:
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Cation impurity

(++)
(+—)
(——)
(+—')
( g)

Anion impurity

(——)
(+—)
(++)
(—+')
(++')

3 G. S. Durham and J. A. Hawkins, J. Chem. Phys. 19. f49
(1951).

4 M. Born and K. Huang, Dynarlical Theory of Crystal Lattices
(Oxford University Press, New York, 1954), p. 26.' J. E. Mayer, J. Chem. Phys. j., 270 (1933).

—and + refer to the host cation and anion; —* or +*
refer to the impurity cation or anion. d, f, 0,j, and 1 are
the corresponding constants Xq, for the dipole-
quadrupole VDW interaction Xq,/r'. The VDW con-
stant e' is not to be confused with the electronic charge.

$, p, &, and pz, ps, pe have been evaluated by mini-
mizing the quadratic form

AE =2 E,+AE,+AEs+ (AEv'+ ~Ev') (7)

for the cases NaCl —Br, NaBr —Cl, KBr—Na, and
NaBr —K. Here NaC1 —Br designates a substitutional
bromine-ion impurity in NaCl and similarly for the
others, We are restricting ourselves to dilute solid
solutions (concentration of solute (1%).This implies
that we have only isolated solute ions. In more con-
centrated solutions there will be a substantial chance
of ending non-isolated solute ions. These are more dif-
ficult to handle and therefore will be omitted from this
des cuss&on.

Choice of Constants
t

In order to learn the sensitivity of the calculated
displacements and electronic dipoles to the assumptions
of the calculation and to the choice of force constants
the displacements and polarizations have been calcu-
lated in a variety of ways.

We have used both the Born-Mayer4 (BM) and the
Huggins-Mayer' (HM) values for the constants in the
repulsive interaction. For the case of next-nearest-
neighbor cation interactions only HM values are
available. Since the BM values of these constants have
been evaluated without including van der Waals terms
in the calculation, it is inconsistent to include VDW
terms in the expression for AE when using BM
repulsive constants.

In those cases in which VDW interactions are in-
cluded we have, whenever possible, used Mayer's'
values for the VDW constants. This choice of VDW
constants seems to be the most consistent one since
Mayer's values have been used in evaluating the HM
repulsive constants which have been used whenever
VDW interactions were included. For the four
impurity-host crystal systems treated, there are four
VDW constants which are not given by Mayer. These
are the dipole-dipole and dipole-quadrupole constants
for the Br=C1 and the Na+ —K+ interactions. For
Br —Cl the VDW constants (k and l for the cases

NaCl —Br and NaBr —Cl) may be evaluated from the
formulas and tables of reference 5. There are in-
sufhcient data, however, in reference 5 to do the same
for Na+ —K+. In order to get an estimate for the dipole-
dipole and quadrupole VDW interaction constants
for this case, we make the following observation: In
the case of CI=Br, ) ~~ and )~, when calculated by
the method of reference 5 are found to be 159&(10—"
erg-cm' and 361&(10 " erg-cm', respectively. We
notice that the geometric mean of the constants for
Cl=Cl—and Br——Br are near to these values:

Pqd(C1=Cl )}dd(Br=Br )]&=151X10"erg-cm'

Pg, (Cl=C1—)}d, (Br=Br )]'=324X10 ' erg-cm'

We use this indication to get an estimate of the VDW
constants for Na+ —K+. These geometric mean values
for Na+ —K+ are 5.4)(10 ' erg-cm' and 13.9)(10—7'

erg-cm'. Since these are only estimates and the im-
purity-nearest-neighbor interaction is probably the
most significant of the VDW interactions, it will be
important to judge the sensitivity of our results to
these estimates of the VDW constants. As an alternate
and rough estimate we may use the VDW constants
for iso-electronic pairs of ions. For the Br=Cl pair
we use Rb+—Cl, giving 79)&1.0 " erg-cm' and 134
&(10 "erg-cm' as iso-electronic estimates. For Na+ —K+
we use the pair Na+—Cl, giving 11.2)(10 ' erg-cm'
and 13.9)&10 ' erg-cm' as iso-electronic estimates.
The iso-electronic and harmonic mean estimates for
the dipole quadrupole VDW constant for Na+ —K+
di8er negligibly and so are chosen to be the same. In
the calculations including VDW interactions two cases
have been carried through: the Mayer case (VDW)M
and the iso-electronic case (VDW)~. These diifer only
in the values used for k and /. In the (VDW) M case the
Mayer values for these constants are used for Br —Cl
and, lacking them, the geometric mean estimates are
used for the Na+ —K+. In the (VDW)' case the above
iso-electronic estimates are used. One expects the
(VDW)M case to be the better. The (VDW)' case is
investigated solely as an indication of the sensitivity
of the calculated results to variations in the choice of
VDW constants.

Ionic polarizabilities have been taken alternatively
from two sources. Those of Tessman, Kahn, and
Shockley' are semi-empirical, being based on the
assumption of additivity of ionic polarizabilities in
crystals and measured refractive indices; and those of
Sternheimer' are calculated polarizabilities of free ions.
Tables I—III give choices for the various constants
used.

In addition to the variety of force constants used,
the case NaCl —Br has been worked in two additional
cases. First, to investigate the importance of electronic

~ J. R. Tessman, A. K. Kahn, and W. Shockley, Phys. Rev. 92,
890 (1953).

7 R.. M. Stprnheimer, Phys. Rev. 96, 951 (1954); 107, 1565
(1957).
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TABLE I. Repulsive force constants.

~Na —Cl ~Na Br PNs —Cl PNa Br
(10 ' erg) (10 ' erg) (A) (A)

Born-Huang 1.47 1.94 0.328 0.333
Huggins-Mayer 0.908 1.305 0.345 0.345

polarization, using BM repulsions and excluding VDW
interactions, the electronic dipoles were set equal to
zero (pg pg pc 0). It is found that it is important
to include these electronic polarizations. Second, the
next-nearest-neighbor terms hE,' LEq. (2)j are in-

cluded, using HM values for the repulsive constants
occurring in these terms. It is found that these terms
are relatively unimportant.

The results of these calculations are shown in Table
IV. Figures 2 and 3 exhibit these results in graphic
form for ready comparison. Included on Figs. 2 and 3
are points representing the displacements and dipoles
calculated for several additional cases just mentioned.
These additional cases show the importance of including
the polarizability of the ions on the one hand and the
insensitivity of the results to the inclusion of second
nearest neighbors on the other.

Several features of these results are worthy of remark:

(1) ] is positive for oversized impurities and negative
for undersized impurities as one would expect. However,
the displacements $ are smaller by about a factor of 2

than one would estimate by simply setting a( equal to
the diff'erence of ionic radii between the host and the
impurity ion. These estimates for $ are 0.053, —0.0503,
—0.107, and 0.117for the four cases NaCl-Br, NaBr-Cl,
KBr—Na, and NaBr —K.

(2) Among the parameters varied, the polarizabilities
are the ones to which the displacements and dipoles are
the most sensitive. The e8ect on the displacements is

greater in the case of anion impurities than that of
cation impurities. This is reasonable; for with an anion
impurity, 18 of the 24 A, 8, and C ions are anions with

large electronic polarizabilities, while the converse is
true with a cation impurity. The dipoles p&, p&, and p, &

are also more sensitive to the assumed polarizabilities
than to the inclusion of VDW, as would be expected.

TABLE II. van der Waals force constants. '

(3) The inclusion of VDW interactions has a notice-
able eGect on the displacements. For the anion
impurities the uncertainty in the VDW constants
represented by the variation from the "Mayer" to the
"iso-electronic" case is of the same order as the VDW
effect itself. Thus, VDW interactions can't be entirely
ignored, but they are difficult to include accurately.
For anion impurities inclusion of VDW terms tends
to increase the magnitude of displacements, while the
tendency is the opposite for negative-ion impurities. It
will be noticed that for cation impurities there is
essentially no difference between the (VDW)M and
(VDW)' cases. This is as it should be since these cases
differ only in the choice of the Na+ —K+ dipole-dipole
VDW constant. .It is also clear why q is so sensitive to
the variation from the "Mayer" to "iso-electronic"
case for cation impurities: The VDW attraction between
Br and Cl should be important in determining the
displacement g, and it is this interaction which diQ'ers

between these two cases.
(4) It is interesting to note that

~
b~ ) ~g( in the case

of cation impurities but not for anion impurities. This
indicates that the large anion A next to a cation
impurity pushes out the C-type ions more than the
8-type cations are pushed out by the impurity. The
small cation next to the impurity plays no such role
for the case of an anion impurity.

In concluding this discussion of the calculations of
displacements and polarizations about these impurities,
we may summarize roughly as follows: The displace-
ments are affected strongly by the inclusion of polariza-
tions on the ions and are sensitive to the assumed
polarizabilities. To a somewhat lesser extent the dis-
placements are aGected by the inclusion of VDW
interactions. The dipoles are relatively insensitive to
VDW interactions, but are strongly affected by the
assumed value for the polarizabilities.

II. HEATS OF FORMATION OF SOLID SOLUTION

As an application of the relaxation calculation, we
consider hrst the problem of the heats of formation of
solid solution for dilute substitutional solutions of the
alkali halides.

By dilute solutions we mean solute concentrations
less than about 1% in which the solute ions may be
considered to be isolated. The definition of the heat of

¹Cl
Na-Br
Na-Na
Cl-Cl
Br-Br
Cl-Br

(10 ~ erg cm6)

11.2
14.0
1.68
116
196
160
79

(10 "erg cm')

13.9
19
0.8
233
450
360
134

TKS
Sternheimer

Cl

2.97
5.63

4.17
7.36.

0.41
0.145

TABLE III. Polarizabilities, in units 10 '4 cm'.

a Where two values appear, the upper one corresponds to the choice "M"
and the lower to the choice "I". a This value, not calculated by Sternheimer, is estimated roughly by

using (aBr/ac1) Pauling X (acl) Sternheimer.
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TABLE IV. Displacements and electronic dipoles. '

System

NaCl —Br

NaBr-Cl

KBr-Na

NaBr-K

Case

1
2
3

5
6

0.027
0.027
0.030
0.035
0.037
0.040

—0.029—0.031—0.028—0.046—0.052—0.047

—0.055—0.052—0.052—0.063—0.059—0.059

0.050
0.050
0.050
0.051
0.051
0.051

0.0078
0.0077
0.012
0.0094
0.010
0.014

—0.0078—0.0088—0.0056—0.011—0.015—0.011

—0.0064—0.0085—0.0086—0.0024—0.0043—0.0044

0.0098
0.011
0.011
0.0063
0.0076
0.0073

—0.00030—0.0016—0.0032—0.0016—0.0039—0.0052

—0.0078
0.00084—0.00018
0.00050
0.0034
0.0023

—0.017—0.013—0.013—0.025—0.020—0.020

0.0097
0.0073
0.0075
0.015
0.013
0.013

0.00008
0.00012
0.00038
0.00027
0.00032
0.00043

—0.00011—0.00019—0.000014—0.00032—0.00042—0.00033

—0.014—0.012—0.012—0.029—0.025—0.025

0.011
0.010
0.010
0.020
0.018
0.019

—0.0046—0.0049—0.0046—0.011—0.012—0.011

0.0059
0.0061
0.0061
0.016
0.017
0.017

—0.0041—0.0037—0.0036—0.0057—0.0051—0.0051

0.0016
0.0015
0.0015
0.00071
0.00068
0.00069

0.0078
0.0079
0.0090
0.020
0.021
0.024

—0.010—0.011—0.0092—0.029—0.033—0.030

0.0041
0.0039
0.0039
0.0048
0.0045
0.0045

—0.0017—0.0017—0.0017—0.00065
0.00065—0.00065

a The cases are designated as follows: 1—No (VDW), TKS; 2—(VDW) M, TKS; 3—(VDW) i, TKS; 4—No VDW, Sternheimer; 5—{VDW)I, Stern-
heimer; 6—(VDW) i, Sternheimer.

NaGI-Br
0.06,

NaBr-GI KBr-Na Na Br—K

iC3i

0.02-

formation of solid solution hH~ is

AHf= U„—(1V U'+1V U ')

where U„, U2' are the lattice energies per mole of solid
solution and the pure components 1 and 2, respectively.
LThis definition is the sa,me as that used by Fumi and
Tosi' and Fineman and Wallace. ' It differs in sign from

the definition by Durham and Hawkins. isj 1Vi and 1Vs

are the mole fractions of.components 1 and 2. Since the
reference energy is that of a mixture of pure compo-
nents, the AE which we have calculated is not the heat
of formation of a solid solution per molecule of solute.
For definiteness consider NaCl —Br: DE= (energy of Br
at Cl site in NaC1) —(energy of Cl ion at Cl site in
NaC1). To get the heat of formation we must add to
this EEs (energy of Cl i——on at Cl site in NaCI)
—(energy of Br ion at Br site in NaBr). The energy
of a Cl ion at a Cl site in NaC1 is given by

es (nsr/a)+ 6A —exp (—/pa)
—e'(A s'/a')

f (As /as) —
g (A s '/as) h(As"/as) —(9)

O.OC
C 3 er 4~

j 0.03
NaGI-Br NaBr-GI KBr-Na Nasr-K

O.OI

OOC

I t 3

FIG. 2. Displacements g, q, and b for the four systems studied.
The approximations are designated by numbers as follows:
1—No VDW, TKS; 2—(VDW) TKS; 3—(VDW)', TKS;
4—No VDW, Sternheimer; 5—(VDW)M, Sternheimer; 6—
(VOW)r, Sternheimer; 7—BM, TKS; 8—BM, Sternheimer;
9—BM, TKS, next-nearest-neighbor repulsions included; 10—
BM, no electronic dipoles.

F. G. Fumi and M. P. Tosi, Discussions Faraday Soc. 23, 92
(1957).' M. Fineman and W. E. Wallace, J. Am. Chem. Soc. 70, 4165
(1948).

-O.OI

-002-

«003-

FzG. 3. Electronic dipoles pg, pg, and pq. The approximations
are designated by numbers according to the same convention as
that of Fig. 2.

' G. S. Durham and J. A. Hawkins, J. Chem. Phys. 19, 149
(1951).
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where a is the nearest-neighbor distance in NaCl;
e', f, g, and h are the VDW constants defined in Sec. I
for NaCl —Br; n~ is Madelung's constant for the NaCl
structure and

A, '= Q' (li'+is'+lss) " lr+ls+I sodd

A,"= P' (l '+is'+l ') ' ' lr+ls+ls even

6 6

DE=A++ B;x,+ Q C;,x;x;,

with C,,=C;;, it is easily shown that the minimum of
AE is given by

6

dE;„=A+', Q B;xP, -(12)

where
BAE/Bxg=0, i=1, , 6.

The heat of formation of solid solution per molecule
is then

half ——AEp+ DE;,
the coefFicients and displacements for hE;„being
given in Sec. I and DEp being given by Eq. (11).This
expression for AHf does not include the contribution
from the rest of the lattice beyond the 3, B, and C ions,
but this contribution will be shown to be small in
Sec. III.

» J. E. Jones and A. E.Ingham, Proc. Roy. Soc. (London) A107,
636 (1925).

are sums defined and calculated by Jones and Ingham. "
3 and p are repulsive interaction constants for the
anion-cation interaction of the host crystal NaCl.
Similarly the energy of a Br ion at a Br site in NaBr
is given by

e'(nor/—b)+6B exp( —b/o) —i (Ap'/b')
—j(As'/b') —g*(Ap "/b') —h*(As"/b'), (10)

where $ is the nearest-neighbor distance in NaBr;
i and j are VDW constants defined above for the case
NaCl —Br, and B and 0. are NaBr repulsive constants.
g* and h~ are the dipole-dipole and quadrupole-dipole
VDW constants for the Br=Br interaction. Thus,
taking the difference of Eqs. (9) and (10),

I:(1/ )—(1/b)]
+6LA exp( —a/p) —B exp( —b/o)i
—A 'L("/")—(i/b') j—A 'L(f/a') —(jib') j
—Ap" E(C/a') —(g*/b') j

—As"
t (h/a') —(ls*/bs)]. (11)

To AEO must be added DE evaluated with those values
of $, g, 5, pg, pa, pc, (—=xi, ,xp) which minimize it.

Since ~ is of the form

The calculated values of AB~ for assumed model
constants and the inclusion or exclusion of VDW
interactions are shown in Table V. Separate contribu-
tions to the total are listed there as well. The "Repulsive
and Madelung" contribution lumps together the terms
in AE;„and AEO which contain Madelung's constant
or the repulsive interaction parameters. The "VDW"
contribution is a similar lumping of the terms of VDW
origin. The "relaxation" terms are the terms linear in
the displacements from AE;„$Eq. (12)j.

It is clear from Table V that all the contributions
including the relaxation terms are important. It is also
seen that the best agreement with experiment is ob-
tained when Born-Mayer repulsive constants are used,
the agreement being better for the TKS polarizabilities.
It is gratifying that the heat of solution for NaC1 —Br is
calculated to be larger than for NaBr —Cl as found from
experiment. The bad disagreement of the calculated
heats of solution for the other approximations as
compared with experiment is mostly due to the in-
accuracies in the VDW constants. An examination of
Table V seems to indicate that the VDW interactions
contribute quite substantially to the calculated AHf.
The fact that the results obtained with Born-Mayer
constants agree best with experiment suggests that the
VDW contribution is really not important, but that its
effect is grossly overestimated in the calculations using
the Huggins-Mayer repulsive constants. The experi-
mental values given are derived from the empirically
fitted formula of Fineman and Wallace' in the limit of
zero concentration. It should be remarked that the
relaxation part of AE;„ is probably the most accurate
part of AHf since it is minimized. It is likely that the
poorness of the calculated heats solution can be
attributed to the other (constant) terms in DHr. This
would explain why it is that the field gradients and
lattice constant changes calculated from the displace-
ments of Sec. I do not show the great deviations from
experiment that the calculated heats of solution do.

III. THE EFFECT OF THE REST OF
THE LATTICE

In Sec. I only the 3, 8, and C ions have been allowed
to polarize and move about the substitutional impurity.
The displacements and polarizations extend, of course,
throughout the crystal. In this section we shall show
that the contribution of these additional deformations
to the heat of solution is small and, further, that the
displacement 6 of the C ions is of the same order of
magnitude as that calculated on the basis of an elastic
continuum. The latter fact lends support to the
validity of treating the rest of the lattice as an elastic
and dielectric continuum. By the "rest of the lattice"
we shall mean all of those ions beyond the impurity
and its A, B, and C ions.

Treating the rest of the lattice as a dielectric
continuum, let us first consider its polarization due to
the displacement and polarization of the individual
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TABLE V. AHf in calories per mole.

System

NaC1—Br

NaBr —Cl

KBr—Na

Case'

No (VDW)

(VDW)M

(VDW)'

(BH)

No (VDW)

(VDW)M

(VDW) z

(BH)

No (VDW)

(VDW)M

(VDW) ~

(BH)

Repulsive plus
Madelung

8.8

98

28.8

28.8

28.8

19.5

65.7

65.7

65.7
51.9

VDW

—18.1

23.4

6.3

—5.9

4.6

5.4
0

(Includes dipoles)
Relaxation"

—10.8—14.1—10.1—13.6—11.8—15.8—13.5—16.5
—7.7—12.0—7.4—12.4—6.4—10.8—7.5—12.2

—30.8—34.9—23.2—26.1—23.2—26.2—18.4

Calculated b,IIf
Total

—2.0—5.2—19.4—22.9
20.4
16.4
12.9
9.8

21.2
16.8
27.8
22.8
16.6
12.2
12.0
7.3

34.9
30.8
47.1
44.2
47.9
45.0
33.5

DHf
Experiment'

14.3

NaBr —K
No (VDW)

(VDW)M

(VDW)'

(BH)

107.0

107.0

107,0

92.0

—37.0

—35.5

—63.2—63.9—52.3—52.7—52.1—52.8—43.4

43.9
43.1
17.7
17.3
19.3
18.7
48.7

a The first three cases for each system are based on Huggins-Mayer (reference 2) repulsive constants; the fourth case is based on Born-Huang repulsive
constants (reference 4). In this latter case VDW interactions are not included.

b The top and bottom values are based on TKS (reference 6) and Sternheimer (reference 7) polarizabilities, respectively.' See reference 9.

Q;zs~= p(r )x, x xs x~ dr, ' (14)

and the summation convention has been used. For a
cubically symmetric p(r) there are only two dill'erent

A, 8, and C ions. These A, 8, and C ions constitute a
cubically symmetric charge distribution which we will
treat as a set of electric multipoles. Although this charge
distribution has a monopole moment, this monopole
represents no alteration of the electrostatic configur-
ation of the pure crystal and so may be neglected in
considering the energy change associated with the
introduction of an impurity. There are no nonzero odd
multipole components. There are quadrupole com-
ponents; however, a cubically symmetric charge dis-
tribution gives rise to zero external quadrupole field.
The lowest order multipole of significance is a hexa-
decapole. The potential at an external point r with
coordinates x~, x2, x3 due to a hexadecapole arising from
a charge distribution p(r) is

e.(r) = (Q", /g")
X (35x,x,x~x~—30x,x,8~~r'+38, ,4~r'), (13)

where

sets of nonzero hexadecapole components:

$2,$Z gggy ZZZZ= ly

SSgg XQSQ gQZZ 2y

so that for the cubic case

Ps (r) =E[(x'+y'+ s') (3r4/5) ]/r', —
where

E= (35/8) (Qg —3Qs). (16)

(15)

4~ = (&/r')
X [(1/420)P4'(cos8) cos4q+ (2/5)P4'(cos8)]
+[K(1 e)r'/(5 e+—4)R']

X[(1/84)P4'(cos8) cos4y+2P4'(cos8)], (17)

yg ——[9E/ (5e+4)R']
X [(1/420)P4'(cos8) cos4y+ (2/5}P4'(cos8)], (18)

This holds for a hexadecapole in free space. To calculate
the energy associated with the polarization of the rest
of the lattice due to this multipole, we must know the
potentials inside and outside a spherical hole in a
dielectric where this hole is centered on the hexa-
decapole. Evaluation of these potentials is a straight-
forward electrostatic boundary value problem and the
results are



1060 B. G. DICK AND T. P. DAS

R

W,=—
8m 0

00

theft(QQA)2+ r24fr tffi(+rtsB)
8m g

r'dr dQ(p'yp)2, (19)

where pp is the potential due to the hexadecapole in
the absence of the dielectric given above. Performing
the integrations, we find

W4= L8 (1 e) (104'—2+9)/21 (52+4)'7K'/R'. (20)

To compare 8', with By of Sec. II, it is necessary to
estimate the values of Qi and Q2. Since the electronic
dipoles are small, they will be neglected in estimating
the order of magnitude of Qi and Q2. Knowledge of the
displacements of the ions is not sufhcient to find the
fourth moments of the associated charge distribution;
some charge distribution on the ion must be assumed.
If the ions are assumed to be composed of a point core
of charge (Z+&1)e and a uniformly charged shell of
radius r+u and charge Z+e, the hexadecapole com-
ponents Qi and Q2 may be evalua, ted to give (to first
order in the displacements)

Qi—3Q2= 4ett4[(2 —2Z+r+') $—(16+22Z r ')b

—(10(2&)+28(2&)Z r 2)217 (21)

where u is the nearest-neighbor distance in the host
crystal. Suppose r+, r 1/2; Z~ 6. It is then seen
that the value of Qi—3Q2 is the same order of magni-
tude whether calculated for point-charge ions (r+——0)
or for core-shell ions. Therefore, we may use point-ion
estimate with some confidence. Substituting Eq. (21)
with r+ r=0 into Eq. ——(20) and setting 2=2.542,

which seems reasonable, we have

&2 224 (1—,) (10,2 ,+tt)—
W, =— (-,')' ($—5 (2&)rt+88)'. (22)

8 3 (5e+4)'

The energy calculated by this expression is in every
case less than 10% of the calculated AHf and in most
cases is much less than this. Thus, it appears that the
energy associated with the rest of the crystal is not
great enough to alter significantly the calculated values
of bHf. A more consistent calculation of the displace-
ment parameters p, 21, and 8 would result if W, were
added to AE of Sec. I before the minimization was
carried out. This would not affect the values of $ and st

appreciably although it would alter 8 somewhat. Most
of the quantities which we have calculated from a
knowledge of these displacements and the dipoles are

where pA is the potential inside the hole of radius R,
and &B is that outside the hole and in the dielectric
which has dielectric constant e. The electrostatic '

energy in the rest of the lattice outside a radius R is
that associated with the introduction of the dielectric
and is given by

Cl (Cii+C44)/82rC11C44)

C2 (Cll C44)/82rC11C44
(24)

In assuming isotropy we have assumed C»—2C44=C»,
which is not true for the crystals under consideration,
but the order of magnitude of the calculated strain
energy should not be affected. Choosing the origin to
be at the impurity ion, we expand the displacement
U due to the sets of forces in powers of rp;/r and find

to first order

U= (Ci/r') P, F;(r„"r)
+(C2/r') p; L3r(F; r)(rp,"r)r '

—r(F,"rp, )—rp;(F, r), (25)

where the sum over i is a sum over the members of the
6- and 12-prong sources. On carrying out the sums, it
is found that

where

U= E'r/r', (26)

E'=4(C1—C2)a(Fp+ (2 )F»)
= (tt/2rC„) (F4+ (2)&F12). (27)

Knowing U, the strain components

(BU; ct Ut)+ ~(1-l~')
&ax; ctg;i

may be calculated and the strain energy density dW/dr

"A. E. H. Love, A Treatise on the Mathematical Theory of
E/asticity (Dover Pub1ications, Inc. , New York, 1944), 4th ed. ,
P. 185, Eti. (12).

very insensitive to 8, however, and so it was not
considered important to carry out this modification.

Having discussed the electrical eGects on the rest of
the crystal, it remains to discuss those elastic displace-
ments arising from the repulsive forces exerted by the
impurity ion. The electrostatic energy just estimated
and the elastic strain energy are added separately.
This is permissible since piezoelectric effects are absent
in the rest of the crystal, and electrostriction con-
tributes terms to the energy of higher order than the
second in the displacements. To estimate the elastic
energy residing in the rest of the crystal, we treat it as
an isotropic elastic continuum with forces applied
outward from the impurity at the 8 and C ion positions.
Thus, we consider a six-pronged set of forces Fp(&1,0,0),
F2(0,+ 1,0), and Fp(—,0,&1) acting at positions
rp

——2a(+1,0,0), 2a(0,&1,0), and 24t(0,0,+1), respec-
tively, and a 12-pronged set (F»/V2) (&1,&1,0), etc. ,
at rp ——a(+1,+1,0), etc. Fp arises because of the dis-

placements 8 and E~2 from the displacements y. The
displacement U at a point r in an isotropic elastic
continuum due to a force F acting at a point ro can be
shown" to be

U= (Cir/
~

r—rp
~
)+C2(r—rp)F ' (r rp)/

~

r rp
~ & (23)

where
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evaluated:

W, =Sn C44E "/E.', (29)

where we shall choose R 3a. It remains to calculate
Fg and F~2. The repulsive force which a displaced C ion
exerts on its undisplaced nearest neighbor in the
direction away from the impurity is

I'6 aA exp——(—a/p)5/p'

to first order in 5. Similarly,

(30)

2 (dW/dr) = C~ (e„+e»+e„)'+C44 (e„,'+e„'+e,„')
—4C44(e»e, .+e„e„+e„e»), (2S)

dW/dr = 6C4jC"/r'.'

Integrating this strain energy density over a region
outside a sphere of radius R to indnity, we find the
strain energy 8', to be

When tV, is calculated, the contribution to AII'y is in
all cases less than one percent of the calculated values
shown in Table V. We may, therefore, neglect the
contribution of W, to an even better approximation
than we neglected 8",. It is useful to compare the
elastic displacement given by Eq. (26) at r=2a with
the value of 8 calculated from the detailed considerations
of Sec. I. The ratios 5a/U for this position are 1.6, 4.5,
2.2, 2.8 for the cases Nacl —Br, NaBr-C1, KBr—Na,
NaBr —K, respectively, (Born-Mayer constants, no
VDW). Thus, the C-ion displacements calculated
microscopically are somewhat in excess of the elastic
continuum theory estimate. It is gratifying, though,
that even without including lV, and IV, in the energy
to be minimized, the 5's calculated are of the same
order of magnitude as the elastic continuum estimate.
This fact lends some confidence to the method of
treating the rest of the crystal as an elastic and di-
electric continuum.

P)2——aA exp( —a/p)rl/p', (31) IV. LATTICE CONSTANT CHANGES
so that

The x-ray lattice constants of mixed crystals of the
W, = (SC44a/27CqPp')A' exp( —2a/p) (5+ (2&)g)'. (32) alkali halides are observed to be different from those

TABLE VI. Lattice constant changes.

System

NaCl —Br

NaBr —Cl

NaBr-K

Case'

No (VDW)

(VDW)M

(VDW)~

BH

No (VDW)

(VDW)M

(VDW)'

BH

No (VDW)

(VDW)M

(VDW)~

BH

No:, (VDW)

(VDW)M

(VDW)~

BH

Calculate db

aa/f
0.114
0.124
0.099
0.109
0.201.
0.154
0.127
0.136

—0.130—0.169—0.130—0.200—0.091—0.149—0.040—0.170

—0.229—0.250—0.220—0.229—0.221—0.230—0.160

+0.264
0.268
0.256
0.266
0.259
0.266
0.231

Vegard
n=1

0.167

—0.167

—0.312

0.312

Preservation
of atomic
volume of

@=3

0.177

—0.159

—0.283

0.346

Experiment'

0.1776

-0.146

& See footnote a, Table V.
b Top and bottom values are based on TKS and Sternheimer polarizabilities, respectively.
o See reference 15.
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of either of the constituents. Kshelby, " using isotropic
elastic continuum theory, has shown that the change
in volume associated with a mole fraction fof impurities
is given by

where
hU/V =47ryK'f/a',

y= 3 (1—o)/(1+o.),

(33)

(34)

0- is Poisson's ratio, a' is the atomic volume, and E is
given by Eq. (27). What is measured is Aa/f, given by

Aa/f = ah V/3f V. (35)

We have calculated values of ha/f for the several cases
considered for the displacements. These values are
listed in Table VI. In the past there have been e6orts
to fit the observed lattice constant changes to a formula
of the form:

a" a,"+-(as ar )f. (36)

4a/f = (as" ar")/—eat" (37)

For comparison with the Aa/f calculated from Eqs.

"J.Eshelby, J. Appl. Phys. 25, 255 (1954).
'4 A. Miller (to be published).

Here u, a~, and a2 are the measured lattice constants of
the mixed crystal and the two constituent crystals.
The case v=1 is called Vegard's law. The case m=3
corresponds to the somewhat more plausible "preserva-
tion of atomic volumes. ""

For very dilute solid solutions such as the ones we
are considering, Eq. (36) takes the form

(33) to (35), Vegard's law (m=1) and v=3 cases have
been calculated from Eq. (37). (See Table VI.) Nickels,
Fineman, and Wallace" have measured Da/f for the
NaCl —NaBr system. Their data indicate small positive
deviations of Aa/f from both the cases v=1 and m=3
and for both the NaC1 —Br and the NaBr —Cl case. Our
calculations are not conclusive on this point, including
among the several cases both positive and negative
deviations. It is worth noting that for both NaCl —Br
and NaBr —Cl the (VDW)'-Sternheimer case calculated
value comes nearest to experiment. As in the case of
the heats of formation of solid solution, the VDW
interactions and the polarizabilities strongly affect the
calculation of Aa/f.

SUMMARY

The calculations of lattice deformations about
monovalent substitutional impurities in alkali-halide
crystals depend strongly on electronic polarization and
van der Waals interactions. Uncertainties in the
choices of polarizabilities can account for large vari-
ations in the calculated specific heats and somewhat
smaller variations in the calculated lattice constant
changes. Therefore, poor agreement with experiment is
not necessarily an indication of the failure of the Born-
Mayer model in these calculations. As will be seen in
the following paper, ' calculated field gradients are
somewhat less sensitive to the permissible variation of
parameters.

"J.E. Nickels, M. Fineman, and W. E. Wallace, J. Phys.
Chem. 53, 625 (1949).


