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Theoretical expressions for the conductivity tensors of semimetals are derived using the deformation
potential approach and are compared with experimental values for zone-refined bismuth at 20.4°K in fields
up to 7000 Oe. The agreement is reasonably satisfactory if one assumes only one light-hole band. The data
appear to be quite inconsistent with the existence of an additional heavy-hole band, unless we assume an
extremely small deformation potential for the heavy hole. Numerical values for the relaxation times and
the deformation potential are derived from the experimental results.

I. INTRODUCTION

OTH experimental' and theoretical studies? have
been carried out on the galvanomagnetic effects
in bismuth. However, adequate experiments on the
anisotropy of these phenomena have been primarily
confined to the case of weak magnetic fields for which
w.7K1, where w, is the cyclotron frequency and 7 is
the relaxation time. These results have been explained
reasonably well in terms of the many-valley model.?
The previous determinations of the tensor com-
ponents in weak fields have been made mostly in the
range from liquid nitrogen to room temperature, where
the condition w,7<<1 is easy to satisfy for reasonable
magnetic field strengths. This temperature range, how-
ever, is not necessarily favorable from a theoretical
point of view for the following two reasons. Firstly,
this temperature range brackets the Debye char-
acteristic temperature ®p which is 119°K in bismuth.
It is, therefore, questionable to treat the electron-
phonon interaction in the usual simple approximation
because the frequency spectrum of the lattice may be
complicated for large wave numbers and because both
acoustical and optical phonons may be excited. To take
full account of the exact spectrum and all types of
scattering mechanisms is, however, difficult. Secondly,
the occupation of the energy band in this temperature
region may be quite different from that at very low
temperatures, because a considerable number of elec-
trons in the valence band are thermally excited to the
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be completed.
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conduction band. At the present time, most of our
detailed knowledge of the band structure in Bi is based
on low-temperature experiments such as the cyclotron
absorption and the de Haas-van Alphen type oscilla-
tions. It is hardly possible to calculate every physical
quantity from first principles only, and we must use
available experimental data for parameters in the
calculation of the galvanomagnetic tensors. Thus, it is
clear that focusing our attention on low temperatures
is more useful.

We should point out, however, that in the liquid
helium temperature range there is another difficulty in
interpreting experimental results, because several kinds
of scattering mechanisms become equally important.
Although it might be possible to make scattering by
impurities predominant by doping, a much simpler
way of achieving our objective is to work in an inter-
mediate temperature range near 20°K. This tempera-
ture may be high enough to permit the neglect of
scattering by static imperfections in good single crystals
but low enough to permit the neglect of thermal ex-
citation of the electrons, the high-frequency acoustical
phonons, and optical phonons. The most important
experimental advantage is that the data in this case
should reveal the intrinsic properties of bismuth except
for the antisymmetric part of the tensor which is
impurity dependent.

Here we present an experimental and theoretical
study on the anisotropy of the galvanomagnetic tensor
at liquid hydrogen temperature and in strong magnetic
fields ranging from 1.5 kOe to 7.3 kOe. In Secs. II
and III, a theoretical formulation of the galvano-
magnetic effects in semimetals in strong magnetic fields
is presented. In Sec. IV, we write down an interpolation
formula for the conductivity tensor for intermediate
fields, which is needed for the interpretation of the anti-
symmetric part. In Sec. V, we present the experimental
results for all typical tensor components and the angular
dependence of the tensor at fixed magnetic field. In
Sec. VI, we analyze our data using the theoretical
formulation given in Secs. IIT and IV.
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II. THE HAMILTONIAN
A. Energy Eigenvalues and Eigenfunctions

We assume ellipsoidal energy surfaces and the effec-
tive mass approximation, although some recent studies
show the need of a generalization to more complicated
energy surfaces.® The energy band is written as

Ei= Al+ (gl/Zm)P [\ & P,
A=0, g=1 for electrons,
A=A, gi=—1 for holes.

2.1)

A is the overlapping energy of the conduction and
valence bands. As usual we take one of binary axes and
the trigonal axis to be the x and the z axis, respectively.
One of the bisectrices is then the y axis. The theory,
however, does not require any special assumption, ex-
cept ellipticity, until the final stage.

We assume the magnetic field H to be parallel to the
z axis. The results in other cases are obtained by cyclic
permutation of the coordinates %, v, and z. The vector
potential A is taken to be

A=H(0,9,0).
The effective mass equation

= 8y, (2.2)

where
3= At (g1/2m) (P+-gile| A/c) - a- (P+gil e[ Afo),
is solvable by putting
¥ (r)=exp[i(kyy—+k.2) ] exp[iQ:(x) Ju ().
The phase factor Q;(x) is taken as

azzl hkz 2
+ar ), (2.4)

A zy” MWy

(2.3)

i) 1 mwq az,,l< #ky
x T e — x
l gr—2 2 8

Oz Mwo

where wo=|e| H/mc, the cyclotron frequency of a free
electron. By using the above expression for Q;(x) and
the following substitutions:

/) a”layzl*azylazzl
xl= "'gl_“"[ky"}" k=:|7
mwq [wl(z)/w°]2
s1=az" " Hwi(z)/wo) } (mewo/ 1) bz,
a=At+gi(el+ent),
al= (n+3)hwi(z),
en'=dete (wi(z)/wo)~*(hk./ 2m)=\.hk.2/2m,

(2.5)

wi(2)/wo= (azzlayyl— azy”)‘},

we obtain the wave equation for a one-dimensional

5 M. H. Cohen, Phys. Rev. 121, 387 (1961).
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harmonic oscillator centered at the point x,

d2¢l 2611
———+(si—so")%¢'= ¢ (2.6)
d512 hwz(z)

¢! normalized in unit length (approximately equal to
the normalization in infinite length) is given by
¢at (x—x0t) = (s1/2) =1 (270 1)~ exp[— (51— s01)?/2]
XH,(si—s) (2.7)
= (51/2) (51— 50).

Q:(x) is rewritten in term of a center x, as

Q ( l) 1 Ol:cyl mwo
WX—%0")=— g1~ _
2a..t h
axa:l(a:ylayzl—ayylazrl) hkz 2
X<x—xol_gt ) . (2.4)
azyl[wl(z)/wnjz Mwo

The electronic state is specified by the band index !
and the quantum number ¢(#,xo’,k.). Here we consider
only intraband transitions and drop the band index I
until necessary ; we also measure the energy ¢; from the
bottom or the top of the energy bands.

B. Perturbation Potential

We limit our interest to relatively low temperatures
and then take into account only scattering by long-
wavelength acoustical phonons and neglect the inter-
band and intervalley transitions. Above liquid-air
temperature, however, these interband transitions may
play a very important role in scattering mechanisms
in view of the low Debye temperature in Bi.

The deformation potential due to the lattice vibra-
tions® is given by

oV=D Z Cij€ji,y (28)
2%

where D is the isotropic deformation potential constant
which is common to all bands, €;;=1/2(du./dx;-+du;/dx:)
the strain tensor component, and ¢; a dimensionless
factor giving the anisotropy of the deformation poten-
tial. ¢;; has the same symmetry as a;;.

The displacement vector u(r) is given by

u(r)=(f/2MN)* 37, 3¢ (e/Q)}
X (bf(e)eif-r_*_bf(s)*e—'if-r),

where e is the unit polarization vector and s=1, 2, 3,
the three directions of the polarization of acoustical
phonons. By using the polar angles 6, ¢ as in Fig. 1,
the components of e can be written as

(2.9)

e;V=sinf cosp, e,P=—cosy cosf cose-+siny sine,
e,® = — cosy cosf sinp— siny cose,

(2.10)

e,V =sinf sin g,
e,V =cosb, e,® = cosy sinf.

¢ J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
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F16. 1. Polarization vectors.

e® is obtained by replacing x in e® by x4/2. b5
and b¢9* are the annihilation and creation operators
of the phonon state f in the branch s. MN is the mass
density of the lattice. Then, 8V consists of three parts
(one longitudinal and two transverse ), i.e.,

V=38V,
=i(hDY/2MN)}* Y, 3 ¢(fF,/Q.})

X (byWeit:r— p*e—if-r)  (2.11)
where F, is a dimensionless factor defined as
Fo=3:;ci;(ei fit+ej®f)/2f. (2.12)

In the following we assume the simplest dispersion

formula

Qaz 'Usf, (2.13)

where v, is an f-independent sound velocity and
V17 V9= V3.
C. Hamiltonian and Scattering Probability

The Hamiltonian for the /th band in the absence of
an electric field is

50 =5Cet-5¢/, (2.14)
where
o= eqas a2 2 (b:*bs O +-3)A8,, (2.19)
q s f
fF,
3¢'=i(ADY/2MN)t 3 3. 3
s a0 £ Q.
XL(q |t Q)b — (¢’ [ 77| 9)be P * Jag*aq
=3 X (¢'|V.]@as*a, (2.14)"
s 0.9
The matrix elements (¢'| exit'*|g) are given by
drs =0u,x ’, z)y
(d'let*g) vetnd ¢ q(f2) (2.15)

('l et Q=0bx,—nS ¢,o(— f2),

where « and 7 are two dimensional wave vectors with

fy’=an‘*[w(2)/wo][fy+
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components kg, £k, and f, f2, and Jg,(£f2) has the
property

Jq’.q("fz*)

= / exp{i[Q(x—xs) — Q(x—2x0)+f-2]}

(2.16)
Xdu (x— xO,)¢n (x— xo)dx
=Jq,¢ (fz)

By using this, we obtain
(ql8Vslg)(¢'|8Vslg)
f2F32
= (th/ZMN) ; T‘Sx',hﬂl]q’,q(—fz) [ 2

8

X (e *h D 4-1),  (2.17)

for the emission of a phonon and

(q|oV.lg) (¢ |8V.|q)
2F2

= (hD*/2MN) zf - :

0w ,x+ﬂ| Jq’,q(fz) [2bi(’)*bf: (2-18)

8

for the absorption of a phonon.
We shall give an explicit expression for |Jy,o(f2)|%

Q(x—20") —Q(x— o)

Qzy Olzz
= l:_(ku,_ku) +—(k=,_k'2)]x_ Vq'qy

a2$ az.\:

where vy, is a function independent of x and v,
= —yp4q. Then

Jq’.q(ft)

’ Oy Ozx
= [ el i £t == |
Qzz gy

X (55— %0 ) (4 — %0)dx
=ea’ qf exp['iaw_*fz,x]¢‘n’ (x— %0 ) n (6— x0)dx

_—_e“q'q/ expi£s)®n(s— 50')®n (s—s0)ds. (2.19)

In the above expression the following variables were
introduced :

Qzy Uzz
f,'=au}(fz+—fy+ fz),

[ a
Qzgllyz™ Qgylizg :I
[w(@)/w]?

= —g(mw(z)/)(so’—s0), (2.20)

le =)‘2§f¢7
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and
t=[mw(2)/h] ¥, (2.21)
¢=[mw(2)/ k] ¥y,
from which it is easily shown that
frof=1" (2.22)

Equation (2.19) is just the same as Titeica’s expression.”
Thus, we can use his result for |Jy .(fz)|? with the
substitution for his f and wo by £’ and w(2). An explicit
expression for |Jy,(fs)|? in the region #n,n>1 is
given by

| .o(fo) |P= (1/m)[(n+n'+1)8— (n—n'y— 18],
=i (2.23)

III. CONDUCTIVITY TENSOR

Before starting the calculation of the conductivity
tensor, we give the matrix element of $,and x, and then
the current density operators. These can be easily
calculated by using the wave function (2.3). The result
is

(¢ | le Q)= (@ay@tys—0tyy22) [0(3) /w0 | Hik.,

(q] p=| @) =0tssmbo (3) ]2
X{Fi—gaz[w(z)/wo] ™}

X[(n+1)}67:.’,n+1+n%6n',n—1]6x,x', (31)
(‘Il xl )= %o,
(qlxlg") =aza[mw(z)/n ]
Xz‘%[(n_i'1)%57&’,n+1+n*6n’,n——l]3x,x'-
The current density operators are given by
Ja Qgz Qzy O A (x)
ju = {a:cy Qyy 0 X B(x) } , (3.2)
jz Ozz Qyz Az C(Z)

where
Ax)=—(gle|/m) ;(QIPIIQ’)%*%',

B(:)=~ (glel /migman T (glol OJog"as,
C(z)=—(gle|/m) 2 tik.a.*a,.

The schemes of the calculations for the transverse
and the longitudinal components are different, and these
are given in separate paragraphs.

A. Transverse Tensor

The electric field is assumed to be parallel to the x
axis. By this arrangement we can get the components
0:2(2), 042(2), and 7,2(2).

JH(2)=Tr(p%)
=2 Zn,x[ﬂnx,(n—l) xlj:cl(n_ 1y n)
+pnx,(n+l) xljxl (n+17 n)]‘
7S. Titeica, Ann. Physik 22, 129 (1935).

(3.3)
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The real part of the matrix element j;(n==1, »n) origi-
nating from the nonvanishing a.,' is canceled, and we
get

JH(2)=—12g1| €| 0uat (heoy(z)/m ]t
X274 2o cLone, (i (0 D) — e, 1yt
=0 ()P (3.4)
On the other hand, J,!(z) has two parts,
JH(z) = —12g81| e| azylazst "M wi(3) /wo ]} (hewo/m)*
X2 g.‘ Lonc, rind (1) = pux, (n-nyent]

— 2 el ez wi(z)/wo JH(fwe/m)}
X 2~% Z [an, (n+1) xl (n"l_ 1)%+an, (n—1) xln;]

=0,.(2)F s+ 0% (2)F.. (3.5)

The first term of J,}(z) is equal to (.y!/azs)o:4' (2)Fa
and this is the symmetric part of J,!(z). Similarly,

]5l (Z) = _‘7:2gl| elaza:laz:cl—%[wl(z)/wﬂ:]i(th/m)%
Xz_} Z [pn'h(n+1)Kl (n+1)%'_l’nx,(n—-l)xln5]

— 2| e]azaH(agsloys! — azylasst) [wi(2) /o]

X (ooo/m)¥274 3 [one, (niny o (0 1)

+an, (n—1) kln*]
=0, (2)F s+ 0..1%(3)F ..

Thus the symmetric parts are expressed as

(3.6)

azyl ale

lozzl (2) ) O2a'® (z) =

0sst(2). (3.7)

025’ (2), 045" (3)= .

Oz Oz

Secondly, we assume the electric field parallel to the
y axis. In this case we can get the components ¢,,(2),
0244(2), and o,,}(2). The relation among the symmetric
parts is quite similar to (3.7), i.e.,

gyt ayt
74,1 (2), O'xyll(z)=_—l°'wl(z): ”zyls(z)=—layyl(z)- (3.8)
Qyy Qyy

From symmetry it must be that
oy () =021 (2).

Then we obtain the relation
0i**(2) /i = 0244 (3) [tas

i.e., we can get all transverse symmetric parts from the
calculation of only ¢.,!(z) in a fixed direction of mag-
netic field.

First, we give an explicit expression for the anti-

(except i=j=2), (3.9)
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symmetric part of o;;. The density matrix pa, . is ex-
panded in power series of the perturbing potential,

WO p Dy O (3.10)

Argyres and Roth® have given a formula for ps, . ®
and pp, '@

Pt @=[f(e")— f(en?)/ (€x'— €n®)]
Xgl! EIF::(W

Pn.n'l=/7n,

|%|n’). (3.11)

This zero-order term gives a nonvanishing contribution
to the antisymmetric part,

7y:'(2) = (— gie*/mwo)
Z [=m+1)(fa—far) F0(fo—fr1)] (3.12)
(gzez/mo)?- 2nnfn
= (g1e*/mwo)n.

Similarly, we get

- l 1
gy Oz

[wi(z)/wo J?

Secondly, we calculate the symmetric part of ;.
As was shown, it is sufficient to calculate o.,'(z). A
real p, '@ does not contribute to o,./(z). By using
Argyres and Roth’s expression for p,,. ® and (3.4), we
can see that our ¢,.;!(2) is different from theirs only in
that their wo is replaced by w;(2) and «,.;"* is multiplied
by a factor. However, the resultant factor a..
X[wi(z)/wo]™? is canceled in rewriting the product
[22n4-1)2V 5,0 Vs g1t C0)2V ng1,0 Vs n] in terms of
the difference of center coordinates, i.e., of gt}
X [wi(2)/wo ]} (xo—x0"), by using the property of the
harmonic oscillator functions. The additional phase
factor exp(7Q) does not give rise to any essential change
in their derivation of Titeica’s expression for the
conductivity.

Thus we obtain

022 (28)=(/kT)X 2 for(1=fg) (wo—20)?

s q.¢

X[ (2x/5) (hD*/2MN) ; (f*/Q)F

: me? o'y,
Ozz a(z) =g
mwo

(3.13)

X{ I-]q’,q(f:v) ' sz(s)‘sx’,ern‘s(fq’— fq"hQs)
HJ o o(— 1) [2(NV:9+1)
X emd (g — e, +A2)} ], (3.14)

Summations over ¢’, ¢, and f are replaced by inte-
grations,

> 'Z;, A=22(1/2m)"(mwo/h)?

XX

n n'

Adk.dk. dxidzdf;. (3.15)

MASE, VON MOLNAR, AND LAWSON

Changing the variables

X= xo+ xol, K= kz+kzl,
X’=x0—x0’, K/=kz—kz’,
converts Eq. (3.15) to
2 2 A=(1/2m)5(mwo/ 1)
q,¢" f
XY | Adf.df,df.dKdX. (3.15')

The argument of the 6 function may be written as
€y — € F =", (2) (W' —n) —INBKK' /mTFhs.
Then we integrate first over K. Using the selection

rules and well-known properties of Fermi and Bose
functions, we obtain for ¢, (2),

(5)= e2(D*/MN)(1/kT)
Tee 2 _247r4hw97\z’|:wz(z)/wo:]2
szaz
XZ Z df fylen’.n(?'i‘fz)
oo foQ
szf(a) (Nf(8)+1)[(fq_fq’)abs+ (fQ'—fq)emis:]:
(3.16)
where

=kt

Wﬂ',n(52+§'2)= |jq'.q(fx) ‘2K l]q’,q(_fz) l2x’=~-—n~

Now we perform the summation over » and »’. We
can follow Titeica’s calculation except that f and w,
are replaced by ' and w;(2) in ours. Using the step
function as an approximation for the Fermi function,
the result is

Z, Wn'.n($2+§2)[(fq_fq’)abs‘l‘[fq'_fq)emis:]
’ ~ 2 RT/hen())]( £ 1/F). (3.17)
Thus
o) = az'e2(DY/ MN) (kT)5 1 dx / do / i
8mth7wi(2)? (detel)} s L
5,2 y, 2F32
Xx—e——(w——— sind, (3.18)
(e==1)*(f'/f)
where
ol = I/ BT =253 (m*v2)Y /R T, (3.19)
or x,' is rewritten as
w'= 20/ E)¥(0O./T), (3.19)

with
Eqt= (72/2mr*a) (3n*/V2)3,

where ¢; is the Fermi energy of /th band and m*
= (dete!)~¥m and ¢ is the atomic distance. The limita-
tion (3.19) arises from the fact that in semimetals the
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electrons can interact only with very long lattice waves.?
If we consider metals, we should put x,/'=0,/T, as
Titeica did. E¢ is the same order of magnitude as the
Fermi energy in metals so that for semimetals «, is
much smaller than ©,/T. In other words, we can treat
the lattice scattering as elastic down to temperatures
much lower than the Debye temperature.
We rewrite (3.18) as

0’21(2) = Z l (az:clnle2/mwl (2)2)[Tl (z)—lja (320)
where
[ri(e) ] L m(D2/MN) (kT)‘s _[ a®e"da
w 87 n(detat)t ¢ (es—1)2

F2sind(f,/f)
d — @32
f "’f '/1) )

By changing the variables f, 6, ¢ into ', ©, &, i.e., by
considering 9(f,0,¢)/3(f',0,8) = (dete!)?, we can write

(D2/ MN)(ET) sl
=D o 1 |

8ritni(dete?) ¢ 0,8
27 T

X / a® / doe
0 0

= (m/*/m) "4l

This expression (3.22) is not easily integrable. How-
ever, for the case of an isotropic deformation potential
and in the high-temperature region where

F1‘-—"1, F2=F3=0, ex~1—}—x,

e 1 (f1 V(1 /1)
(/117" —1)2

XF2(0,®) sin®,

(3.22)
where

(3.23)
we obtain

D/ MN)(kT)5x,%
(g O MG

247370, (deta?) ;8
=3x(D?/N#)(ET/Mv2) (n/¢1). (3.24)

This suggests the following approximate substitution
in Eq. (3.21)

(FS/I P /1) — d(deta)VS(f2+ 12/ 1), (3.25)

by which we can also obtain the same result (3.24) for
the same case (3.23). Thus (3.21) is rewritten as

DYMN)(RT) __ 1 =
[y P MM ELS 1

8*h"ni(detat)t ¢ 9,8

xﬁe:

/ d¢/ 49 2 sing
(e’— 1?

X (f&+17/2f (3.26)

8P. N. Argyres and L. M. Roth, J. Phys. Chem. Solids 12, 89
(1959); see also P. N. Argyres, Phys Rev. 117, 315 (1960).
¢ E. H. Sondheimer, Proc. Phys. Soc. (London) A65, 561 (1952).
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B. Longitudinal Tensor

Both the electric and magnetic fields are assumed to
be along the z axis. The current density is

Jt(z)=Tr(p'j.")
=Z an.nxljzl(n;n)+2 Z I:an,(n—l)xljzl(n— 1, 7’1«)

+pnx,(n+1)xljzl(n+1, n)] (3.27)

The nondiagonal components pn«, (i1« are smaller
than puy,qc in the order of V, as can be seen from the
structure of the equation of motion for p. Then we look
for explicit expressions for the diagonal terms p,. n«
using the stationary equation

dpo/di= (i/h)Cq,o®

FX [ Wa.ape(1=p)) =Wy ,po(1—pg)]=0, (3.28)
where
Co.qV=gle| Eo(R/1) (Neliks/m) [ (eq),
Weo= (277'/7’/) (ﬁD2/2MN) Zs Zf f2F32/Qs
Xl:ax.x’——'rl]]q.q’(_fx) I2(Nf(8)+1)
Xa(fq_ éq’+ﬁﬂs)+5x,x’+nl]q,q’(fx) [2
XN;®5(eq— e —H2:) ] (3.29)

The following type of solution for p,! is assumed :
pdt= fat 2R,/ mkT) fo(1—f)K;,  (3.30)

where K; is a constant with the dimension of wave
number. We put this into (3.28), multiply by k., and
sum up over ¢q. The procedure for the calculation is
quite similar to that of ¢..!(2), and we can use most of
those results. Thus, we obtain

gile| Ezni/h+m{r'(2)} K, =0, (3.31)

where {7'(z)'} is the same as [7!(3)™'] except that
(f//f)? appears instead of (f,/f)? in (3.21). This

(/12 (f'/f) is replaced by (deta?)V8(f,/f)? as in
(3.25). Then we can easily get the result

0::(2) =21 Nrme/ m{ i ()71} (3.32)

C. Representation of All Tensor Components

The other components of the conductivity tensor are
obtained by cyclic permutations of the following :

0i;2(k) = — 2 (gumie?/mwo)
)
(3, 4, k are cyclic over x, y, z),
’ (3.33)
(8 == 5 gon mes—52
ou®(k)=—2_(gmie/mw))—————
! [wi(k)/wo

(3, k, § are cyclic over %, ¥, 2).

Components of the type oy;2(k) are obtained by
merely interchanging ¢ and j in o%(k) because of the
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double reversal of sign on the lettering ¢ j and
oix*(k)=—or;*(k). In this case, however, %, j,¢ are
cyclic over x, y, z; #; is approximated by its value in the
absence of a magnetic field.

On the other hand, the symmetric parts are expressed
by the following:

aii* (k) =2 [ Ntmie?/m {7t (k) ™} 18,58,

+2 iyt (k) )/ may(R)?, (3.34)
where
{71 (k) } =3 (D*/ Nt) (kT/Mv:®) (n:1/ 1)
X2 s(vs/01) 2T (TG (R)},  (3.35)
[+i(k)"]=3x(D*/ Nh) (kT/Mv:®) (1:/52)
st(vs/vl)—2Jsl(T)[Gsl(k)ja (336)
with
4 o x5e®
Jsl(T)z—_ dx )
xslg 0 (ez_ 1)2
(3.37)
Xt= ngl} (ml*”f)’/kT:
Gl (R)Y=(01/2m)(3/4r Wd 2w(i"rd(?
(Gl = (1/20)3/ >/0 x/o 40]0
XSinanz(oy‘P) (sz/fz); (3'38)
27 27 .
Gt (k) ]=(1/2m)(3/4m d d do
[GA(#)1=(1/2m)(3/ )fo x/o “’fo
X SiI'IGF,;2 (0, (P) (fm2+fn2)/2f2) (339)

where m, n, k should by cyclic over #,y,z Explicit
expressions for {G,(k)} and [G,'(%)] are
{GiH(R)} = (1/35)[3(cmm"+cnn'2)+15¢,,"2
+Zcmmlc'n'nl"I'6(Cmml+cnnl)cxxl+4cm'nl2
+12(5nx12+cxml2)],
{GoH ()} = (1/35)[2(Com+Cnn®)+3c i

- Cmmlcnnl_3 (Cmml'*"cﬂnl)cml"_scmnn

(3.40

+8(cax?tcm®], (3.41)
nieic aitod —ajilat me
oi;(H)=2 [wi(H )74 (H:) ] +
| H, it —ajt? f

nieic
+—w(H)(H) T
H,

where w;(H) is the cyclotron frequency in a magnetic
field H and

rH(H) = [ ()1,
(rH(H) = (7 ()}

(4.2
(4.2)"

[#*(H)'] and {!(H)'} have structures similar to

1c Q.
Lo H)r(H) T
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[Gi4 (k) ]= (1/35)[9(cmm®+cnn'?)+3cks'?
+ 6Cmmlcnnl+4(Cmml+cnnl)5xxl+ 1 Zcmnlz

+8(cn?Hcm®d], (3.42)
[G* (k) 1= (1/35)[(5/2) (cmm®+Can®)+2c1
- 36’”"‘[6"‘"1— 2 (Cmml+6nnl)ﬂnl+8cmnl2
+(13/2) (cas®+cm® ] (3.43)

In the case of an isotropic deformation potential,
i.e., in the case of ¢;;=1, c;;=0 (i7%7), we obtain

{Gi'(R)} =[G (k) ]=1,
{G'(B)}=[G2'(k) ]=0.
In other words, the transverse phonons do not interact
with electrons as expected. Further, if we limit our-

selves to the high-temperature region such that x,!
£0.5, we should put

(3.44)

JHT)=1. (3.45)
In the case of bismuth (3.45) is approximately

satisfied even down to 10°K.

IV. CONDUCTIVITY TENSOR IN INTERMEDIATE
MAGNETIC FIELDS

The conductivity expressions given in the previous
section are the classical limit for the high-magnetic-
field region w.7>>1, in which quantum effects are neg-
lected. In order to explain the characteristics of our
experimental curves of the antisymmetric part of the
resistivity tensor, it is very important to take account
of the deviation from the high-magnetic-field limit
(3.33) and (3.34). Presenting the conductivity expres-
sion for intermediate magnetic fields thus has practical
meaning.

We cannot, unfortunately, develop an exact theory
applicable in the intermediate region for anisotropic
scattering. However, it is possible to write down an
interpolation formula for this case. For intermediate
fields, the conductivity tensor components should have
the following form:

it — it

Qi Qg _a“.l2

14w l(H)Tl(H)]2+Zl{aijlnlez1'l(H)/ mAINGN(G) Trae(x ()Y /m

Xwi(H) 7t (Hy)wi(H;) 7t (H;)}

BCSY
14+-[w(H)rH(H) I

those of [7}(k)~*] and {}(k)'}. But instead of [G.}(k)]
and {G,'(k)}, [G+(H)] and {G.(H)} enter in (4.2)'
and (4.2)", respectively.

(G ) = (1/2¢)(3/4w) / i / “de [ a

X Fg? Sin0(fn/f>2, (4.3)
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CG.A(H)]= (/20 | T [ Tix / Tdo / i

XF2sind(fi/f)?, (4.4)

where f,, and f, are given by

fu/f=(fs/]) sin® cosd
+(fy/f) sin® sin®+(f./f) coso,
f1/f=(fo/ f) (—cosy cosO cosd+siny sind)
=+ (fy/f) (— cosy cosO sin®
—siny cos®)+(f./f) cosy sin®.

©® and ® specify the direction of the magnetic field, and
¥ specifies the direction perpendicular to the magnetic
field. Then ©, &, and ¢ correspond to 6, ¢, and x in
Fig. 1.

The contribution from the quadratic term (fi/f)?
was already given in-(3.38). The remaining parts are
the contributions from terms of the type f.fn/f% ie.,

G (km) = (3/4x) / dg / 08 (F2fufn/ %) sind,  (4.5)

or, more explicitly,

Git(km)= (1/35)[12 (ctrl+ cmm") +4Cnn! Jckm?, (4.6)
Ggl(km) = (1/35)[(Ckkl+6mml— ZCn”l)Ckml
4+ 2ckntcnnt], (4.6)"

where &, m, and » are cyclic over «, y. and z.
Thus, we have

{G,{(H)} =5in?0 cos?®{G,!(x)}+sin?® sin?®{G,!(y)}
: +c0s20{G,}(2)} 42 sin?® sin® cosdG,!(xy)
+2 sin® cos® sindG, (yz)
+2 sin® cos® cosdG,(zx),

[G.H(H)]=%(cos?® cos’®-+sin’P){G,!(x)}
+%(cos?@ sin?®+cos’®){G,!(y)}
+2 sin?@{G, (2)} + (cos?® sind cosd
—sin® cos®)G,H(xy) —sin® cos® sindG,!(yz)
—sin® cos® cos®G,!(zx). (4.8)
In the special cases of H||x, y, 2, of course, these reduce

to the results in the previous section, for the limiting
case of w;(H)7!(H)>1.

4.7

V. EXPERIMENTAL RESULTS

The measurements were made at the boiling point of
liquid hydrogen, T'=20.4°K. Three samples with
different crystallographic orientations, i.e., lengths along
the x, y, and 2 axis, respectively, were cut out from a
single crystal ingot by a string saw using nitric acid.
The final dimensions of our samples were about 1.5
%0.23X0.2 cm3. X-ray analysis showed that the error
in orientation was less than 1°. We used one third of the

AT 20.4°K 1037
center part of the crystal for welding the probes. For this
size of the crystal, end effects are quite small.

Our measurements were carried out using a type
K-2 potentiometer and galvanometer. Magnetic fields
up to about 7.5 kOe were provided by a water cooled
electromagnet with a pole gap of 2.3 in. The current
through the samples was usually 0.25 A. We used a
potentiometer circuit for adjusting the Hall probes to
an equipotential line. Unfortunately this adjustment
wag somewhat insensitive and may have given rise to
appreciable errors in some of the nondiagonal symmet-
rical components. For the antisymmetric part, however,
this insensitivity is relatively unimportant, because the

-1
10 Necn

8

T=20.4°K -

e .
2 PZ Z( X) /
10

VA

105 P
H (koe)

F16. 2. Experimental curves for the transverse symmetrical
tensor components vs H.



1038 MASE, VON

r PAY) | T=204° .

T .\\
=-£,,(0)

)= P,,(O)

Bl \

6| I 1 1 1
0 | 2 4 6 8 10

H(kOe)

Fic. 3. Experimental curves for the longitudinal tensor
components vs H.

magnetoresistance contribution from slight misbalance
of the helipot was eliminated by reversing the magnetic
field.

Figure 2 shows the experimental symmetric tensor
components as a function of H. All the p;;(k) (7%k)
are approximately proportional to H!-%. The deviation
from proportionality to H2® was found also in the
measurements at liquid helium temperatures.’® The
particularly large value of p..(y) compared to the
relatively small values of the other components p;;(k)
(i£k) can be qualitatively understood in terms of the
present theory. The unexpectedly large values of
pyz*(y) may not be real but spurious owing to the
extremely large magnetoresistance voltage V.(y) devel-
oped by a slight unbalance of the helipot.

Figure 3 shows the variation of the longitudinal tensor
with H. The negative magnetoresistance is probably also
a spurious effect owing to large probe contact areas.
However, the initial values in weak fields may be nearly
correct and provide a measure of the saturation values
of ps(7). In the absence of a magnetic field, the resist-
ances p,;(0) are much smaller than the corresponding
pi:(3) shown in the same figure. A particularly large
value for p,,(y) was also found in the measurement at
4°K.10

Figure 4 exhibits the antisymmetric tensor compo-
nents as a function of H. The magnitudes of the p;;*(k)
are considerably different from each other, and the

10S. Mase and S. Tanuma, Sci. Repts. Research Inst. Tohoku
Univ. A12, 35 (1960).
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smallest, p.,*(2), has the steepest slope among all p;;*(k)
at the maximum magnetic field, where the largest,
p:*(y), has the most gentle slope. In much stronger
magnetic fields, we should expect these magnitudes and
slopes to approach one another as was found in the
measurement at liquid helium temperatures.’® The sign
reversal of p,,®(2) is to be noted. These characteristic
features of the p;;%(k) are explained in the next section.

Figures 5 to 10 show the angular dependence of p;;(H)
at fixed H=35.76 kOe. The experimental points, taken
every 5° traced out the curves shown, but were omitted
in the final drawing. The figures clearly reveal the
symmetry properties of the crystal when the experi-
mental misalignment between H and the crystal axes is
taken into account. Figures 5, 8, 9 display reflection
symmetry about the x axis, whereas Figs. 6 and 7 are
characterized only by inversion symmetry. Figure 10
exhibits 60° symmetry as expected.

It should be pointed out that the experimental values

103 2M , r [ ST
i o ]
8 /"
L T=20.4°K ; ,f .
. yd
_ / _
-/ I
4 / X
a
i o[ ]
a
yd Pol2)
2 7 O
-PlD)
-4 ™ -6
10 _—‘0 o 7 _|O
8 ./
- e
. £
L PyX) 4
a4
2 ]
(Y) .
IO'°{ />J - 1 l ‘l o7
LS 2 . 6 8 10

H&Oﬂ

Fic6. 4. Experimental curves for the antisymmetric tensor com-
ponents vs H. The magnitude of p;,%(z) should be read on the
right ordinate.
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Fic. 5. Angular dependence of
pzz(H). H is in xy plane.

270°
X
of pzz(z) using sample Bi I are nearly equal to those of VI. COMPARISON BETWEEN EXPERIMENT
pyy(2) using sample Bi II. This result is expected from AND THEORY
crystal symmetry and provides additional evidence In the conductivity expression (4.1) in Sec. V,
that our experimental results for large values such as we did not specify the model but only required ellip-
those of p;(k) (i7k) are reliable. soidal energy surfaces. Now we impose the symmetry

P x8)at H=5.76 kOe
HIl YZ -plane

F16. 6. Angular dependence of
pzz(H). H is in yz plane.
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90°

=576 kOe

HIYZ -plone

P,y (0 ot H
150°, ' .

z F16. 7. Angular dependence of

requirement on e,;' and ¢,;'. We adopt the model of 3
(or 6) ellipsoids tilted from the z axis for electrons and 1,
(or 2) ellipsoid for holes, as usual. [In the combination

Pyy (8

180°

X

) at
Hil

ZX

pyy(H). H is in yz plane.

of 3 (or 6) ellipsoids for electrons and 2 (or 1) ellipsoids
for holes, the result is slightly different.] The pertinent
values of a;;* and ¢;;* are exhibited in Table I.

H=576 kOe
—plane

F16. 8. Angular dependence of

270°

pyy(H). H is in zx plane.
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90°
1205

liA"’.Ag‘
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He D S ependence of .:2‘)‘1\,2::.: ; .

240

180°

300°

270° z

F1G. 10. Angular dependence of
p::(H). H is in xy plane.

Several authors!! have published experimental values for the Fermi surface parameters e. In the interests of
systematic comparison, we use the values from the cyclotron absorption measurements by Galt et al.2

11D, Shoenberg, in Progress in Low-Temperature Physics, edited by J. C. Gorter (North-Holland Publishing Company, Amsterdam,
1957), Vol. II; J. E. Aubrey and R. G. Chambers, J. Phys. Chem. Solids 3, 128 (1957); D. H. Reneker, Phys. Rev. 115, 303 (1959);
G. E. Smith, 4bid. 115, 1561 (1959); N. B. Brandt, Soviet Phys.—JETP 10, 405 (1960); 11, 975 (1960); W. S. Boyle and A. D. Brailsford,
Phys. Rev. 120, 1943 (1960).

127, K. Galt, W. A. Yager, F. R. Merritt, B. B. Cetlin, and A. D. Brailsford, Phys. Rev. 114, 1396 (1959).
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TaBLE I. Parameters a;;! and c;;¢ for each energy band.

11 1

12 l l

Band anlyen azel,Caol a33t,c33 ayh,C1at assyCas asten
l ay [s7)] [+ %] 0 Q4 0
2 1 (a14-3az) 1 QBentaz) as V3 (a1—as) — 3oy $V3a4
3 i(a1+3062) i(3a1+a2) a3 - %\/3-((11-—(!2) — 04 —%\/3-&4
4 B B1 B3 0

The Fermi energy of electrons was taken from Shoen-
berg’s!! data for the de Haas-van Alphen effect. These
are given in Table II. The number of electrons is
calculated to be 3.75X10Y/cm?® using Table II. We
also need to know the pertinent sound velocities.
According to Eckstein, Lawson, and Reneker,'3 the
velocities of the longitudinal and the transverse sound
waves are both anisotropic. Our theory did not,however,
take into account this feature of sound propagation and
we shall assume the constants

21=2.4X105 cm/sec,

22=1.2X10° cm/sec. 6.1)

The experimentally determined quantities are the
pi;, the components of the magnetoresistivity tensor.
However, by inversion it is easy to obtain the o,
since o;;=(p):. In principle, the relaxation times
[r(x)™], [4(y)™], and [7'()~'] can be determined
from the values of o;;*(k) (j£k) so obtained by use of
Eq. (3.34). However, as noted earlier, the values of
py:*(x) and p,.*(y) are probably erroneous. We, there-
fore, neglect the nondiagonal components p;; (i5£4) and
calculate o;;(k) (ik) from the experimental values of
pii(k) (i%k). These approximate values of o,;(k) (75%k)
when inserted into Eq. (3.34) give a set of linear
algebraic relations between the various [7!(k)~'] for
any given H. For H=17.32 kOe, they are, from o,,(x),
022(%), 022(3), 0.2(9), and ¢,.(z), respectively,

0.00824K 1 (x)+0.00639K 5 (x) + K 4 () = 0.999,
K1(x)+0.0132K,(x)+0.115K 4 (x) = 1.21,

0.00318K 1(y)+0.00653K 2 (y)+ K 4 (y) =0.798,
0.0429K 1 (y)+0.338K 2 (y)+ K 4(y) = 2.51,
K1(2)+0.196K 4(2) =1.99,

Ky(k)=[r' (k)" ]/,

(6.2)

where

TasiE II. Energy surface parameters from the experiments
by Galt et al.® and Shoenberg.?

@ ® @ ® a® @
Electron 114 1.46 114 10.1 0.0177 eV
Hole 14.7 14.7 1.09 0 0.0117 eV

a See reference 12.
b See reference 11.

13Y. Eckstein, A. W. Lawson, and D. H. Reneker, J. Appl.
Phys. 31, 1534 (1960).

and
T0="T7TX101 sec.

Assuming that K.(x) and Ki(y) are not large, we
find Ki(x)~1.1, 12 K4(x)20.8, 52 K2(y)>4.4 from
Eq. (6.2), since K4(x)=K(y). By utilizing the exper-
imentally observed sign reversal in p,,*(z) and Eq. (4.1)
in conjunction with Eq. (6.2), we find K.(z)~1.81,
K4(2)~0.93. Because K2(x) and Ki(y) do not make
significant contributions in Eq. (6.2), their values are
indeterminate. As can be seen from the left-hand terms
of the first and third equations of (6.2), the theory
predicts that o,y (x) should be nearly equal to o..(y),
but experimentally this is not the case. Because of this
disagreement, K4(x) and K,(y) are indeterminate in
the range of the above limits. We now choose values for
the deformation potential anisotropy constants ¢; and
d; in close accordance with the foregoing restrictions on
Ky(k). e

The unique conclusion from K;(x) <K(z) is that ¢,
¢3>>¢, ¢4 in correspondence with experimental finding
that ai, as>>as, as. If the theoretical value of a..(y) is
taken to be in accordance with the experimental value,
i.e., if we assume that K4(x) <K4(z), it follows that
d1>ds, corresponds to the experimental result that
B1>Bs. It was not possible, however, to find values of
¢; and d;, giving values of K(y)=>4.4. The small
experimental value of p,.(y) (despite the fact that this
component is much larger than any other) appears to be
responsible for this discrepancy with the theory.
Nevertheless, our best estimates for ¢; and d; are as
follows: ¢1=3, ¢3=0.02, ¢3=1, ¢4=0.1, d;=0.9, and
d3=0.3. Using these values and the values of «;, 8;, 7™,
v, #-—nt/n=5.2X107%, and D=2.72 eV, we find the
following values for the various 7!(k):

7@ (x)=5.75X 1071 sec,
7@ (x)=4.32X 1071 sec,
7@ (x)=8.78 X 1071 sec,
7®(y)=3.99X 107 sec,
7®(y)=5.18 X107 sec,
@ (y) =79 (x),

70 (2)=3.87X 107! sec,
7 (5)=7.53X 107" sec.

We note that anisotropy in r!(k) is not nearly as
pronounced as the anisotropy in a;, ¢;, and d;. Although
the relaxation times for the holes are larger than those

(6.3)
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for the electrons, the difference is not as large as
suggested by Aubrey and Chambers.!* Rough measure-
ments of p,,(0) as a function of temperature indicate
that the relaxation times are approximately a factor of
10 larger at liquid helium temperatures than those
reported here for 20.4°K. Such values would be con-
sistent with those estimated by Galt et al.”? from their
cyclotron resonance experiments.

Using the values of the various parameters given
above, we may now calculate the field dependence of
the ps. These theoretical curves are exhibited in Figs.
11-13. As mentioned above, the curves for p,,(y) and
p22(2) =pyy(2) were fitted to the data at H=7.32 kOe
and the curve for p,,*(3) was fitted at its zero. Despite
the discrepancies between theory and experiment noted
above, the general features of the theoretical curves are
very similar to the observed behavior shown in Figs.

L2 Qcm T T / T
10" /
8

)
2
i Aod2) ]
Pl2)
102
PeY)~ ReyX) i

pu(x)#/ i

A AN

103 / ] 1 1 1

5 2! 4
H(kOe)

F1c. 11. Theoretical curves for the transverse symmetric
components p;; (k) vs H.
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F16. 12. Theoretical curves for the longitudinal components
and py.*(x) and py.*(y). The magnitude of p,.*(x) should be read
on the right ordinate.

2-4 except for the behavior of p,.*(y) which we believe
to be spurious. Numerical discrepancies as large as a
factor of 3 occur in some cases. In the case of the
nondiagonal components, such differences may be
ascribed, at least in part, to experimental error. This
explanation is not valid however in the case of p,,(x),
p:2(x), and p..(y), nor can it explain why p;;(k) (ik)
varies as H'-% rather than H2?®. In the case of impure
crystal, the o;;%(k) (i#%j7k) terms contribute greatly
to the deviation from H? dependence of p;(k) (i7%k),
but this is not the case here because ¢,;%(k) is negligibly
small. These discordances between theory and exper-
iment suggest that our model is difficient in some
respects. It may be necessary to take into account the
departure of the energy surfaces from the ellipsoid,
the anisotropy of the sound waves, the optical branch
of the phonon spectrum, and intervalley and interband
transitions. Most of these effects, unfortunately, are
difficult to treat. We should emphasize, however, that
this simple model does explain the large value of p..(y)
compared to the relatively small values of p;;(k) (1k),
the wide variation and correct order of magnitudes of
pi2(k) (i7#j£FE), the sign reversal of p.,%(3) and the
relatively large value of p,,(y) compared to p..(x) and
pz2(2)-

It is of interest to point out that the order of magni-
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F16. 13. Theoretical curves for the antisymmetric components vs
H. The dashed curves should be read on the right ordinate.

tude of antisymmetric components can be explained
only if the ratio of the difference in concentration of
electrons and holes to the concentration of electrons is
about 5X10~* (since the concentration of electrons is
only about 2X107% per atom in bismuth, the result
bespeaks an impurity concentration of the order of
108 per atom) and if these carriers all have very large
wer. Several authors'4 have suggested that to explain
the large value of the specific heat and the effect of
doping on the de Haas-van Alphen effect it is necessary
to invoke two hole bands, one light and one heavy. The
data presented here appear to be inconsistent with this
possibility. The theory presented here is only consistent
with the experimental values of the antisymmetric

“1. N. Kalinkina and P. G. Strekov, reference 4; D. Weiner,
Phys. Rev., 125, 1226 (1962).
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F16. 14. Theoretical temperature dependence of p.-(x) and
experimental result for the resistance of a polycrystal in zero field
by White and Wood (reference 15).

components, provided that there are no heavy holes.
If heavy holes are present, and if the condition wr>>1
is satisfied for both electrons and holes at the tempera-
ture and magnetic fields considered, these components
should be far larger than those observed and the
dependence on magnetic field would be quite different.

Although we have not derived an expression for the
conductivity tensor for zero magnetic field, we antic-
ipate that its components will have nearly the same
temperature dependence as those for p;, () in a strong
magnetic field. In Fig. 14, we show the theoretical
temperature dependence for p..(x) at H=7.3 kOe as
well as the experimental results of White and Woods!®
for polycrystals. The theory predicts a linear dependence
of pz-(x) down to 10°K, while the experimental curve
shows a sharp break at about 20°K. The very different
behavior of the experimental curve from the Gruneisen
formula (3.37) suggests again that other types of
scattering than those considered here are playing an
appreciable role.

Finally, we should remark that the sign reversal for
pzy*(2) is determined by the condition

w(2)%7(2)*[ (n~—n't)/w~) ]=const, (6.4)
or the critical field H, is
H. < [(n=—nt)/n 7 (2)1
<« TT(@)[[(n——nt)/n~ T2 (6.5)

15 G. K. White and S. B. Woods, Phil. Mag. 3, 342 (1958).
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However, because J(x) experimentally has a sharper
dependence on T than predicted, we must expect H,
to decrease more rapidly with T than predicted by
Eq. (6.5). In the residual resistance range, however, H,
should become temperature independent. To date, the
sign reversal at liquid helium temperatures has not been
found. In our sample, the expected H, is much smaller
than 0.44 kQOe, the smallest field available to us. At
liquid nitrogen temperatures, H, should be about 17

AT 20.4°K 1045
kOe, also inaccessible to us. Some tendency toward a
reversal is descernible in the data of Connel and Marcus.!
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As part of a general investigation into the properties of gallium arsenide, the Hall coefficient and re-
sistivity of three pure samples have been measured from 300 to 2°K. The highest mobility measured at
300°K was 7200 cm?/V-sec increasing to 22 000 cm?/V-sec at 72°K, the mobility temperature curve following
the theory of Ehrenreich very closely. At helium temperatures impurity conduction was observed with the
resistivity p « exp(—e1/kT) and € varying from 9.8X1075 eV to 5.8)X10™*eV. A discussion of these results
is given in terms of the theory of Miller and Abrahams and Twose.

In one sample, below about 30°K the current was not a linear function of the voltage. This arises from a
dependence of mobility on applied electric field and because carriers can be excited from impurity states
to the conduction band. An analysis of the energy loss processes for electrons suggest that piezoelectric
scattering is the most important mechanism below about 30°K but that above this temperature optical
scattering is dominant. Impact ionization occurs between 4 and 12°K.

A. INTRODUCTION

EASUREMENTS of the electrical properties of a
semiconductor provide much basic information
on their properties and particularly on the mechanisms
of charge transport and the nature of the scattering
processes. This paper describes some measurements of
Hall coefficient and conductivity, on samples of low
resistivity #-type gallium arsenide over the temperature
range 300 to 2°K. Previous investigations have been
adequately described in the book by Hilsum and
Rose-Innes,! but the results described here have been
obtained on purer material than was previously available
and are thus of special interest.

The discussion of the experimental results falls
naturally into three sections. The material available
was pure enough for the mobility above about 60°K to
be determined largely by lattice scattering. Ehrenreich?
has recently calculated the theoretical temperature de-
pendence of electron mobility in gallium arsenide on the
assumption that scattering by the polar optical modes
is the dominant lattice process and our results therefore
provide a convenient check on this theory, the agree-
ment being very satisfactory.

At low temperatures the measurements show evidence

1 C. Hilsum and A. C. Rose-Innes, Semiconducting III-V Com-

pounds (Pergamon Press, New York, 1961).
2 H. Ehrenreich, Phys. Rev. 120, 1951 (1960).

of impurity conduction in a more pronounced way than
has previously been possible in #-type gallium arsenide.
The results illustrate the difference between the two
possible types of impurity conduction, the ‘“hopping”
process which occurs for low impurity concentrations
and the metallic type of conduction which takes place
in less pure samples.

In one sample at low temperatures, departures from
Ohm’s law were observed, and to explain these results
a discussion is given of the various mechanisms by which
electrons lose energy and also of the possibility of elec-
trons being transferred from impurity states to the
conduction band under the action of an electric field.

B. EXPERIMENTAL TECHNIQUE

The specimens used were rectangular bars (typically
0.6-X0.2-X0.1-cm), cut from single crystal material.
After grinding, etching (1H.0 3H.SO./1H,0,), and
washing in de-ionized water, six contacts were formed
on the specimen by alloying to it small pellets of indium.
Reliable low-resistance Ohmic contacts could readily
be made in this way.

A large number of specimens have been examined
from room temperature to liquid nitrogen temperature
using the simple apparatus described by Ure.?

3R. W. Ure, Rev. Sci. Instr., 28, 836 (1957).



