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Galvanomagnetic Tensor of Bismuth at 20.4'K*
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Theoretical expressions for the conductivity tensors of semimetals are derived using the deformation
potential approach and are compared with experimental values for zone-re6ned bismuth at 20.4'K in fields
up to 7000 Oe. The agreement is reasonably satisfactory if one assumes only one light-hole band. The data
appear to be quite inconsistent with the existence of an additional heavy-hole band, unless we assume an
extremely small deformation potential for the heavy hole. Numerical values for the relaxation times and
the deformation potential are derived from the experimental results.

I. INTRODUCTION

0TH experimental' and theoretical studies' have
been carried out on the galvanomagnetic effects

in bismuth. However, adequate experiments on the
anisotropy of these phenomena have been primarily
confined to the case of weak magnetic fields for which
co,~&&1, where au, is the cyclotron frequency and r is
the relaxation time. These results have been explained
reasonably well in terms of the many-valley model. '

The previous determinations of the tensor com-
ponents in weak fields have been made mostly in the
range from liquid nitrogen to room temperature, where
the condition co,7((i is easy to satisfy for reasonable
magnetic field strengths. This temperature range, how-
ever, is not necessarily favorable from a theoretical
point of view for the following two reasons. Firstly,
this temperature range brackets the Debye char-
acteristic temperature 0'n which is 119 K in bismuth. '
It is, therefore, questionable to treat the electron-
phonon interaction in the usual simple approximation
because the frequency spectrum of the lattice may be
complicated for large wave numbers and because both
acoustical and optical phonons may be excited. To take
full account of the exact spectrum and all types of
scattering mechanisms is, however, dificult. Secondly,
the occupation of the energy band in this temperature
region may be quite diGerent from that at very low
temperatures, because a considerable number of elec-
trons in the valence band are thermally excited to the

*The experimental work reported here was carried out at the
University of Chicago during the spring of 1961. The authors
gratefully acknowledge the support of the National Science
Foundation at that institution and its continued support at
University of California, Riverside, which enabled this work to
be completed.' P. B. Alers and R. T. %'ebber, Phys. Rev. 91, 1060 (1953);
J. M. Reynolds, H. W. Hemstreet, T. E. Leinhart, and D. D.
Triantos, ibid. 96, 1203 (1954); R. A. Connell and J. A. Marcus,
ibid 107, 940 (1957).; J.Babiskin, ibid 107, 9g1 (1957).; T. Okada,
J. Phys. Soc. Japan 12, 1327 (1957).' B. Davydov and I. Pomeranchuk, J. Phys. (V.S.S.R.) 2, 147
(1940}.

38. Abeles and S. Meiboom, Phys. Rev. 101, 544 (1956).'I. N. Kalinkina and P. G. Strekov, Soviet Phys. —JETP 7,
426 (1958); N. E. Phillips, Phys. Rev. 118, 644 (1960).
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conduction band. At the present time, most of our
detailed knowledge of the band structure in Si is based
on low-temperature experiments such as the cyclotron
absorption and the de Haas-van Alphen type oscilla-
tions. It is hardly possible to calculate every physical
quantity from first principles only, and we must use
available experimental data for parameters in the
calculation of the galvanomagnetic tensors. Thus, it is
clear that focusing our attention on low temperatures
is more useful.

We should point out, however, that in the liquid
helium temperature range there is another difficulty in
interpreting experimental results, because several kinds
of scattering mechanisms become equally important.
Although it might be possible to make scattering by
impurities predominant by doping, a much simpler
way of achieving our objective is to work in an inter-
mediate temperature range near 20'K. This tempera-
ture may be high enough to permit the neglect of
scattering by static imperfections in good single crystals
but low enough to permit the neglect of thermal ex-
citation of the electrons, the high-frequency acoustical
phonons, and optical phonons. The most important
experimental advantage is that the data in this case
should reveal the intrinsic properties of bismuth except
for the antisymmetric part of the tensor which is
impurity dependent.

Here we present an experimental and theoretical
study on the anisotropy of the galvanomagnetic tensor
at liquid hydrogen temperature and in strong magnetic
fields ranging from 1.5 kOe to 7.3 kOe. In Secs. II
and III, a theoretical formulation of the galvano-
magnetic effects in semimetals in strong magnetic fields

is presented. In Sec. IV, we write down an interpolation
formula for the conductivity tensor for intermediate
fields, which is needed for the interpretation of the anti-
symmetric part. In Sec. V, we present the experimental
results for all typical tensor components and the angular
dependence of the tensor at fixed magnetic field. In
Sec. VI, we analyze our data using the theoretical
formulation given in Secs. III and IV.
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II. THE HAMILTONIAN

A. Energy Eigenvalues and Eigenfunctions

We assume ellipsoidal energy surfaces and the effec-
tive mass approximation, although some recent studies
show the need of a generalization to more complicated
energy surfaces. ' The energy band is written as

El ——6(+(gi/2m)P n P,

6~=0, g~=1 for electrons,

g~= —1 for holes.

6 is the overlapping energy of the conduction and
valence bands. As usual we take one of binary axes and
the trigonal axis to be the x and the z axis, respectively.
One of the bisectrices is then the y axis. The theory,
however, does not require any special assumption, ex-
cept ellipticity, until the final stage.

We assume the magnetic field H to be parallel to the
z axis. The results in other cases are obtained by cyclic
permutation of the coordinates x, y, and z. The vector
potential A is taken to be

A= II(0,y,0).

The effective mass equation

harmonic oscillator centered at the point xp',

doll 2 el
l

+(sl—so')'4'=
dsP Ao)l(s)

(2.6)

1 Agy mGDp

Q, (x—xo') = —gl-
2 Agg

nzz (nzy nyz nyylnzz ) Akz

(X x-xo'-gl- . (2.4)'
o,» e~ z cup mcop

The electronic state is specihed by the band index I
and the quantum number q(fl, xp', k,). Here we consider
only intraband transitions and drop the band index l
until necessary; we also measure the energy e& from the
bottom or the top of the energy bands.

it' normalized in unit length (approximately equal to
the normalization in infinite length) is given by

y. '(x—xi)') = (sl/x) 4.—l (2"fl!)-fexp[—(sl—sp')'/2]

XII„(sl—s()') (2.l)—= (sl/x) &C.(sl—sp').

Ql(x) is rewritten in term of a center xp as

~l)i!'l = @lstrl, (2.2) B. Perturbation Potential

where

~l ——Di+ (g l/2m) (P+gl ~

e!A/c) n (P+gl ~

e!A/c),

1 m(z)p nzy (
Q, (x) = g~ —

~
x+g,

2 fs n„'k +gi, , (2 4)
mcgp a xy mcop

where pop=! e!II/mc, the cyclotron frequency of a free
electron. By using the above expression for Ql(x) and
the following substitutions:

l l l l&xs O'yz &xy 0'zs
xp' ———g; k„+

m~o [~l(s)/~of'

sl =n..'—f ((p l (s)/opo) &(mM o/)li) 'x,

o l
=6i+gl (ol'+ o I I '),

e, '= (ll+ ,')hopi(Z), -
(2 5)

o, '=detn'(op (s)/(p ) '()fk '/2m) —= l(J)k '/2m,

mt z ~p= n» ~»' —e,

we obtain the wave equation for a one-dimensional

' M. H. Cohen, Phys. Rev. 121, 387 (1961).

is solvable by putting

)it (r) = exp[i(kyy+k, s)] exp[iQ((x)]pi(x). (2.3)

The phase factor Ql(x) is taken as

We limit our interest to relatively low temperatures
and then take into account only scattering by long-
wavelength acoustical phonons and neglect the inter-
band and inter valley transitions. Above liquid-air
temperature, however, these interband transitions may
play a very important role in scattering mechanisms
in view of the low Debye temperature in Bi.

The deformation potential due to the lattice vibra-
tions" is given by

"pV =D Q c;,o,„
Zs1

(2.8)

where e&'& is the unit polarization vector and s=1, 2, 3,
the three directions of the polarization of acoustical
phonons. By using the polar angles 8, p as in Fig. 1,
the components of e" can be written as

e &')=sin8 cosy,
e„"'=sin8 sing,

e,"'=cos8,

e,(') = —cosy cose cosq+sinx sinoy,

e„&')= —cosx cose sing —sing cosy,

e,&') = cosy sin8. (2.10)

' J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

where D is the isotropic deformation potential constant
which is common to all bands, o;,= 1/2((ffl, /Bx;+(ffi /Bx, )
the strain tensor component, and c;; a dimensionless
factor giving the anisotropy of the deformation poten-
tial. c;, has the same symmetry as 0|,,

The displacement vector u(r) is given by

u(r) = (fl/2M%)& p, pf(e"/Q, )&

X (k (s)elf r+k (s)z:e if r) (2
—9)
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components k„, k, and f„,f„and J, ,p(&f,) has the

property

~p, p( f'—)

exp(il Q (x—xp') —Q(x-xo)+fm]}

=~p, p (f.)

(2.16)
Xy. (x-x.')S.(*-*o)dx

Sy using this, we obtain

(slav lv')(v'lbv lv)

FIG. i. Polarization vectors.

= (AD'/2MN) Q
0,

X (by&'~*by&'+1), (2.17)

e&'~ is obtained by replacing x in e&P' by x+n/2. bg&'&

and bg&'* are the annihilation and creation operators
of the phonon state f in the branch s. MN is the mass
density of the lattice. Then, 5V consists of three parts
(one longitudinal and two transverse ), i.e.,

bv=p, SV,
= i(hD'/2MN) «P. P, (fZ,/n. «)

X (bq~z&ez&' —bf&z&*e ~f') (2.11)

where F, is a dimensionless factor defined as

(2.12)

In the following we assume the simplest dispersion
formula

where e, is an f-independent sound velocity and
&&+&2= &3.

C. Hamiltonian and Scattering Probability

The Hamiltonian for the /th band in the absence of
an electric 6eld is

for the emission of a phonon and

(qlbv, l
q') (q'Ibv,

l q)

fRP 2

= (&D'/2MN) P &",z+z I ~p, p(fz) I'bf"*bf, (2.1g)
Q,

for the absorption of a phonon.
We shall give an explicit expression for

I J, ,,(f,) I

'.

Q(x—x ') —Q(x —xo)

A~y O.'z~

(k„'—k„)+ (k.'—k,) x—v, „
where v, , is a function independent of x and v, ,
= —v«. Then

0'xy O'zz
=e'"p'p exp il fz+ f„+ f

n..
Xtb„(x—xp')P (x—xp)dx

X=Xo+X',
where

Xo ——P o,a,'a,+g P(b "*4"+-')&1l

p
X'=i(kD'/2MN)«Q Q Q

s q q' f ~s~

XI (v'I e"'I v)b~" —(v'I e "'Iv)bf"*la"a.

(2.14)

(2.14)'

=e' p p exp$ja„«f, x)y„(x—-xo')y (x—xp)dx

=e'"p'p expfips)C„(s sp')C„(s—sp)ds— (2.19)

In the above expression the following variables were
introduced:

=—P P(q'Ibv, lq)a, 'a, . (2.14)" t' &zz &zz
S +$8 S g/ Z

Qzz Qzz

The matrix elements (q'
I

e+'«'I q) are given by

(v'I "'Iv) =b"..+4', .(f*)
(v'I e ""Iv) =b",. 4', .( f*), -—(2.15)

where ~ and g are two dimensional wave vectors with f.'=~.«f.,
= —

g (oko (s)/k) «(sp sp), (2.20)

n'saayz —0!x~zx
f,'=~** «L~(s)/~pl f„+ f.

CO 8 COp
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&= [m&o(s)/h5, »f, ,
f'= [m(o(s)/h5»f„,

The real part of the matrix element j,(n+1, ii) origi-

(2.21) nating from the nonvanishing a „' is canceled, and we

get

from which it is easily shown that

f a f=f" (2.22)

J,'(s) =—i2gil e
I
a,.'»(A(oi(s)/m5»

X2 Pn, a[pea, (n+1)a ('++1) pnx(n-, l)c '+ 5

Equation (2.19) is just the same as Titeica's expression. '
Thus, we can use his result for

I J, ,(f,) I' with the
substitution for his f and (oo by f' and oo(z). An explicit
expression for

I J, ,(f,)l' in the region m, ii'))1 is
given by

I J;,,(f,) I'= (1/ )z[(a+i('+1)b' (e——I')'—-'b'5 —»

b2 (2+f 2 (2.23)

III. CONDUCTIVITY TENSOR

o„'—(s)F,.

On the other hand, J„'(s) has two parts,

J„'(s)= —i2gi
I
e

I
a,„'a,g' »[&oi(—s)/o)o5»(I»&do/m)»

X2 2 [pna(a+1, )x (ii+1) pnx(n 1, )K—ii 5

2I e—
l
a„' »[~,-(z)/~o5»(&~o/m)»

X2 Q [pn~, &n+i)~ (I+1) +pe~, &e—i)g tl 5

(3 4)

where

Jy
E)Z r

0'ex 0'xy

Agy Ayy

.Ot'zs &yz

0 ' A(x)
0 x &(x),

.C(z) .
(3.2)

A(*)= —(glel/m) 2 (ql P*l q')a.*a'

Before starting the calculation of the conductivity
tensor, we give the matrix element of p, and x, and then
the current density operators. These can be easily
calculated by using the wave function (2.3). The result
ls

(qIP. I q) = (a*~o*—a.~-)[~(z)/«5 '&&*,

(qIP. I
q') =a*. »[mfa (s)5»2 '

X{Wt' —ga.,[(o(z)/«5 '&

X[(m+1)»b„,„+i+e»b„., „ i5b„,„., (3.1)
(qlxlq)=x(„

(ql xl q') =a..»[m (s)/))i5-»

x2 '[(I+1)»b. ,~i+I»b. .. i5b. .."
The current density operators are given by

'0, K

=—o„."(s)F,+o„."(s)F.. (3.3)

2
I
e

I

a—.,' »(a„'a-„,' a,„'a,—.') [(o((z)/(oo5 »—
X(k(oo/m)»2» Q [p „(„+i)„',(ii+1)»

+p, ( i) &5-l

—=o.,"(s)F,+o „"(z)F,. (3.6)

Thus the symmetric parts are expressed as

l
Q~y

o„'(s), o„,"(s)= o..'(s), o.."(s)=
o'sx ,a*.'(s) (3.7)

The first term of J„'(z) is equal to (a,.„'/a, ')o „'(s)F,
and this is the symmetric part of J„(s).Similarly,

J,'(s) = —i2g&
I
e la„'a..'-»[(oi(s)/ooo5»(&too/m)»

X2 Q [ptlK (tl+1)K (I+1)' pflK—(tl 1)g, 0—5

B(x)= —(glel/m)gm«P (qlxlq')a, *a, ,

C(s) = —(g I
e

I /m) P )M,a,*a,.

The schemes of the calculations for the transverse
and the longitudinal components are diferent, and these
are given in separate paragraphs.

A. Transverse Tensor

The electric field is assumed to be parallel to the x
axis. By this arrangement we can get the components
o„(s), o„,(z), and o„(s).
J.'(z) =Tr(p'j')

2 Pn, g[png, (n—1)g~jg ('s 1~ 's)

+p„„&„+i)„'j,'(v+1, n)5. (3.3)
' S. Titeica, Ann. Physik 22, 129 (1935).

Secondly, we assume the electric field parallel to the

y axis. In this case we can get the components o»'(s),
o,„'(s), and o,„'(s). The relation among the symmetric
parts is quite similar to (3.7), i.e.,

l
Qf ~y O!yz-'() *."()= -'(), *."()= -'() (38)
Ayy Cyy

From symmetry it must be that

o„,i'(s) =o,„"(z).

Then we obtain the relation

o,,"(s)/a, ,'= o „'(s)/a„' (except i=j=s), (3.9)

i.e., we can get all transverse symmetric parts from the
calculation of only o, '(s) in a fixed direction of mag-
netic field.

First, we give an explicit expression for the anti-
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symmetric part of 0,, The density matrix p„„ is ex- Changing the variables
panded in power series of the perturbing potential, X=xp+xp', K= k,+k.',

X'= Xo—xo', E'= k,—k, ',

'"'=Lf("')—f(p"')/(4-' —4-')]
Xg& I

e IF*(t4 I
x

I
4p'). (3.11)

X Q Adfgfvdf jKdX (3..15')

Argyres and Roth' have given a formula for p„,„&'~ ~~~~e~ts Fq
and p„,„

P Q A = (1/24r) '(moo/k)

= (g te'/444~o) 44(

Similarly, we get
2S)e O.'~~ (Xyz Agy Azg

meso art z o 2
~*."(s)=

g4 (3.13)

Secondly, we calculate the symmetric part of o-,,
As was shown, it is sufficient to calculate o„'(s). A
real p„,„'~o& does not contribute to o, '(s). By using
Argyres and Roth's expression for p„,„"'and (3.4), we
can see that our a, '(s) is different from theirs only in
that their 4po is replaced by 4p&(s) and n„'& is multiplied

by a factor. However, the resultant factor n„'&
XL&p4(s)/4po) ~ is canceled in rewriting the product
I 2&(n+1)&V„,„V„., „+~+(244)&V„+~, V,„) in terms of
the difference of center coordinates, i.e., of a„' &

XLop4(s)/&pp]&(xp —xp'), by using the property of the
harmonic oscillator functions. The additional phase
factor exp(4Q) does not give rise to any essential change
in their derivation of Titeica's expression for the
conductivity.

Thus we obtain

o. '(s)=(e'/kT)P P f, (1 fp)(xp xp')'— —
e e

XL(24r/k)(AD'/2MN) P (f'/0 )F '

x& II, , ,(f.) IPN, ~ ~~„.,„+,~(., —.,—an, .)

+
I I',.( f*)I'(N4" +1)—

X8. ,„„8(p,—44+I40,))).

This zero-order term gives a nonvanishing contribution
to the antisymmetric part,

cr„,'(s) = (—g4e'/444opo)

Now we perform the summation over n and n'. We
can follow Titeica's calculation except that f and 4pp

are replaced by f' and op&(s) in ours. Using the step
function as an approximation for the Fermi function,
the result is

Z ~,. -(V+~') I (f,—f;):;.+Lf, -f,)-'.)
2xLkT/»4(s)](I f.'I/f'). (3.17)

Thus

ng. 'e'(D'/MN) (kT)' 1
o„'Z = dx dip dg

84r45'opt(s)'(detn')& ~ p, o o o

x'e*(f„'/f )'F,'
sin8, (3.18)

(e*—1)'(f'/f)
where

x '=kv, ./kT=2&f'(&(4r4*v ')&/kT, (3.19)

or x, ' is rewritten as

The argument of the 8 function may be written as

, —.,~kfl. =», (s) (~'—~)——,'~,~kpKK'/m~f n, .

Then we integrate first over K. Using the selection
rules and well-known properties of Fermi and Bose
functions, we obtain for o„'(s),

e'(D'/MN) (1/k T)

24~4»o&, 'I ~4(s)/~o]'

2P 2

xE 2 « f."lv;,.(8+1')
~ n, n

I fgIn,

XI4'4 '(N4" +1)E(fo f, ).b.+ (f—; f4).-.], —
(3.16)

where

w ....(8+V)=
I &',.(f.) I'"=.+,= II, , ,(—f*)I'"=.—,

Summations over q', q, and f are replaced by inte-
grations,

& r, A =2'(1/2~)'(~~o/&)'
with

x '= (2t /F- ')'(o' /T),

I; '= (f4'/2m4*a') (3~'/&2)i

(3.19')

where f'4 is the Fermi energy of lth band and 4444*

XZ Q Adk. dk. 'dxpdxo'df, . (3.15) = (det44') 4N and a is the atomic distance. The limita-
tion (3.19) arises from the fact that in semimetals the
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electrons can interact only with very long lattice waves. '
If we consider metals, we should put x,'=0",/T, as
Titeica did. Eo' is the same order of magnitude as the
Fermi energy in metals so that for semimetals x,' is
much smaller than Q~,/T. In other words, we can treat
the lattice scattering as elastic down to temperatures
much lower than the Debye temperature.

We rewrite (3.18) as

o „(s)=Pq(n. ,'qq~e'/m&u~(s)')[v'( )s' j, (3.20)
where

m(D'/3') (k T)' 1 *" x'e*dx
[r'(s) '1=

Sqrqh'qs)(dete')& ' v, ' o (ex 1)q

F q sm8(f ~/f)
X dqo d8

' . (3.21)
(f'/f)0 0

m(D'/MN) (kT)' 1
[r'(s) 'j= dx'

8qr45"qs((detqr') ' v, ' o

s~ w x'sex'flf'(f/f~)s(f ~/f')2
X dc' d(3

(e&'flf' 1)q

XF '(Q. C) sino. , (3.22)
where

x,'= (m)*/m) ix '.

This expression (3.22) is not easily integrable. How-
ever, for the case of an isotropic deformation potential
and in the high-temperature region where

Fg=1, Fq ——Fs——0, e' 1+x, (3.23)
we obtain

m(D'/MN) (kT) 'xg'4
7ls 1=

24qr'k'qs)(detn') lv P

=3qr(Dq/Nh) (k T/3A p) (qqi/f () (3.24).

By changing the variables f, 8, y into f', Q~, C, i.e., by
considering 8(f 8,p)/8(f', D~,C) = (detqr')'*, we can write

B. Longitudinal Tensor

Both the electric and magnetic 6elds are assumed to
be along the s axis. The current density is

J.'(s) =Tr(p'j')

=P pox, nx Jq ('+qqq)+2 Q [pnx, (n 1)s-Jq (qs 1—, qs)
7L, K

+p, ( +I) 'i'(qs+1, qs)j (3 27)

The nondiagonal components p„„~„+~)„are smaller
than p„„,„„in the order of V, as can be seen from the
structure of the equation of motion for p. Then we look
for explicit expressions for the diagonal terms p„„„„
using the stationary equation

dp, /d t= (i/h)Cq, q&"

+Zq'[~q, q'pq'(1 pq) lf q', qpq(1 pq')j=o, (3 28)

where

C, ,&ol =g j e
~

E,(h/z) () .kk, /m) f '
(e,),

Wq, q
= (2qr/k) (SD'/2MN) Q, Qg f'F,'/0,

X[5„,„„(J, , (—f,) ~'(N '+1)
X&(eq—eq +&&8)+&., ;+„~Jq, q (f~) ~'

XNf &'5(e,—e, —AQ, )$. (3.29)

The following type of solution for p, ' is assumed:

'p=qf„+ () .VPk, / kmT) f (1 f„)K~, —(3.30)

where E~ is a constant with the dimension of wave
number. We put this into (3.28), multiply by k„and
sum up over q. The procedure for the calculation is
quite similar to that of o„'(s), and we can use most of
those results. Thus, we obtain

Ia+»("(s) ')K&=0 (3 31)

where {r'(s) ') is the same as [v'(s) ') except that
(f,'/f)' appears instead of (f„'/f)' in (3.21). This
(f,'/f)'/(f'/f) is replaced by (detqr')'t'(f, /f)' as in
(3.25). Then we can easily get the result

This suggests the following approximate substitution
in Eq. (3.21)

o.,(s) =Qt ).'n(e'/m(r'(s) '} (3.32)

(f 'If' )'(f'If) ~ -'(««')"o(f '+f 'If') (3 25)

by which we can also obtain the same result (3.24) for
the same case (3.23). Thus (3.21) is rewritten as

C. Representation of A11 Tensor Components

The other components of the conductivity tensor are
obtained by cyclic permutations of the following:

m(D'/MN) (kT)' 1
[r'(s) ']= dx

8qrqA'ng(dete')& ' v '
o

x'e*
X dy d8 E,2 sine

(e*—1)' o o

~;;(k)= —P(g(qs)e'/m~o)

(i, j, k are cyclic over x, y, s),

'O. '—O. '0| "
$K JS SZ Kg

~;„(k)= Q(ggqs)e'/mooo)—
[oo((k)/a)o]'

(3.33)

X(f*'+f.')/2f'. (3.26)
8 P. N. Argyres and L. M. Roth, J. Phys. Chem. Solids 12, 89

(1959); see also P. N. Argyres, Phys. Rev. 117, 315 (1960).' E. H. Sondheimer, Proc. Phys. Soc. (London) A65, 561 (1952).

(i, k, j are cyclic over x, y, s).

Components of the type o &,'(k) are obtained by
merely interchanging i and j in o;& (k) because of the



1036 MASR, VAN MOLNAR, ANt D LARSON

double reversal of sign on the lettering i~~j and
0;z'(k)= —0.&,'(k). In this case, however, k, j, i are
cyclic over x, y, s; el is approximated by its value in the
absence of a magnetic Geld.

On the other hand, the symmetric parts are expressed

by the following:

~ '(k) =P(P.g'n)e'/m{r'(k)-'}]8„8, „
+Q, cx;,'n, e'[r'(k) ']/meet (k)' (3 34)

where

[G~'(k)]= (1/35)[9(c "+c.")+3c.."
+6Cmm Cnn +4(Cmm +Cnn )Cg L +12cmn

+8(c„„"+c„")],(3.42)

2 ( )]=(1/35)[(5/2) (c ' +c„„")+2C„„"
3cmm cnn 2(cmm, +cnn')cnn +8cmn'

+(13/2)(c-"+c-")] (3.43)

In the case of an isotropic deformation potential,
i.e. , in the case of c;,= 1, c;,=0 (i&j), we obtain

(r'(k) —'}=3m (D'/1Vk) (k T/MnP) (n (/t ()

XP.(../. ,)- I, (T)(G, (k) }, (3.35)
{Gg'(k)}= [Gg'(k)] =1,
{G2'(k)}= [G2'(k)]=0.

(3.44)

with
4 " x'e

dx
(e*—1)'

J.'(T) =
(3.45)J,'(T) =1;X'4 0

(3.37)
x,' =2&{(&(m)*e,')&/kT, In the case of bismuth (3.45) is approximately

satisfied even down to 10'K.

r' k ' =3m- D' AVi kT Mv' n( g In other words, the transverse phonons do not interact
with electrons as expected. Further, if we limit our-
selves to the high-temperature region such that x, '

&0.5, we should put

(G, '(k)}=(1/2n.)(3/4s.) &x dp' d8

Xsin8F, 2(8,q)(f 2/f'), (3.38)

[G,'(k)]= (1/2~) (3/4m) dx, d q

0 0 0

Xsin8F, '(8,y)(f '+f ')/2f', (3.39)

where m, e, k should by cyclic over x, y, s. Explicit
expressions for {G,(k) }and [G,'(k)] are

(G~'(k)}= (1/35)[3(c„"+c„„")+15C,.„~2

+2cmm cnn +6(cmm +cnn )can +4cmn

+12(c„„"+c„")],(3.40

{G2'(k) }= (1/35) [2(c„"+c„")+3c„„"
cmm cnn 3(cmm, +cnn )CKK +5cmn

+8(c„„"+c„")],(3.41)

IV. CONDUCTIVITY TENSOR IN INTERMEDIATE
MAGNETIC FIELDS

The conductivity expressions given in the previous
section are the classical limit for the high-magnetic-
field region ~,~&)1, in which quantum sects are neg-
lected. In order to explain the characteristics of our
experimental curves of the antisymmetric part of the
resistivity tensor, it is very important to take account
of the deviation from the high-magnetic-field limit
(3.33) and (3.34). Presenting the conductivity expres-
sion for intermediate magnetic fields thus has practical
meaning.

We cannot, unfortunately, develop an exact theory
applicable in the intermediate region for anisotropic
scattering. However, it is possible to write down an
interpolation formula for this case. For intermediate
fields, the conductivity tensor components should have
the following form:

slelc n;, o.;„'—n;j o,„i elelC. l . l . .l .l &ij O'Ki &ii &jK, ,l .l . .l . l

'(H)=Z L (H') '(H')]' + [ (») '(HJ)]'l, l2 XT, l ..l .l2H, hajj 'nKK —nj K +KK +$4 +K'4

mlelc
+ [co((H„)r'(H„)]' +p {n; n)e'r'(8)/m+ p'(i) X'(j)]&n(e'(r'(H) )/m

1+[co,(H) r'(H) ]'
X(ug(H;) r'(H;)(o)(II;) r'(H;) } , (4 1)

1+[~&(H)r'(H)]'

r'(H) = [r'~H) —']—'
2%' 2'

where a&&(H) is the cyclotron frequency in a magnetic those of [r'(k) '] and {r'(k) '}.But instead of [G,'(k)]
field I and and {G,'(k)}, [G,'(H)] and {G,'(H)} enter in (4.2)'

(4 2), and (4.2)", respectively.

(r'(H))={r'(H) '} ' (4.2)" (G.'(H) }= (1/2~) (3/4n)

[r'(H) '] and (r'(H) '} have structures similar to

0 0 0

XPP sin8(f„/f)', (4.3)
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[G,'(H)$ = (1/2~)'(3/kr) dP dx d v d8

where f„and f, are given by

f~&/f=(f /f) sinOcosC

&&F,2 sin8(f&/f)', (4.4)

+ (f„/f) sinO sinC+ (f,/f) cosO,

f,/f = (f,/f) (—cosf cosO cos4&+sing sinC)

+ (f„/f) (—cosP cosO sinC
—sing cosC)+ (f,/f) cosP sinO.

center part of the crystal for welding the probes. For this
size of the crystal, end effects are quite small.

Our measurements were carried out using a type
E-2 potentiometer and galvanometer. Magnetic fields

up to about 7.5 kOe were provided by a water cooled
electromagnet with a pole gap of 2.3 in. The current
through the samples was usually 0.25 A. We used a
potentiometer circuit for adjusting the Hall probes to
an equipotential line. Unfortunately this adjustment
was somewhat insensitive and may have given rise to
appreciable errors in some of the nondiagonal symmet-
rical components. For the antisymmetric part, however,
this insensitivity is relatively unimportant, because the

0 and C specify the direction of the magnetic field, and

f specifies the direction perpendicular to the magnetic
field. Then O', C, and f correspond to 8, y, and x in
Fig. 1.

The contribution from the quadratic term (f;/f)'
was already given in (3.38). The remaining parts are
the contributions from terms of the type f„f /f', i.e.,

)O-~ Acm

T- 2O 40K

G, '(km) = (3/4n. ) dq d8 (F,'f~f„/f') sin8, (4.5)
0 0

or, more explicitly,

Gi'(km) = (1/35)$12(c~i'+c ')+4c„„']cl,„', (4.6)'

G~'(km) = (1/3 )5L(c~ 'I+c ' 2c„„—')ci~'
+2CI '& 'j, (4 6)"

where k, m, and n are cyclic over x, y. and z.
Thus, we have

{G,'(H) }= sin'0' cos'C {G,'(x) }+sin'0~ sin%{G.'(y) }
+cos'0'{G,'(s)}+2 sin'0' sinC cosC 6 '(xy)
+2 sinO~ cosO' sinCG, '(ys)

+2 sinO' cosO' cosCG, '(sx), (4.7)

(G t(H) j= i2(cos 0~ cos%+sjn%){G i(x)}
+2 (cos'0~ sin'C+cos'C) {G '(y) }
+-,' sin'0~{G '(s)}+(cos'0~ sinC cosC
—sinC cosC)G, '(xy) —sinO~ cosO' sinCG, '(ys)

—sinO~ cosO cosCG '(sx). (4.8)

In the special cases of H~~x, y, s, of course, these reduce
to the results in the previous section, for the limiting
case of ~i(H)r'(H)))1.

2

-2
)0

V. EXPERIMENTAL RESULTS

The measurements were made at the boiling point of
liquid hydrogen, T=20.4'K. Three samples with
diferent crystallographic orientations, i.e., lengths along
the x, y, and z axis, respectively, were cut out from a
single crystal ingot by a string saw using nitric acid.
The 6nal dimensions of our samples were about 1.5
)&0.23X0.2 cm'. X-ray analysis showed that the error
in orientation was less than 1 . We used one third of the

)O

H (koe)

FIG. 2. Experimental curves for the transverse symmetrical
tensor components vs II.
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IO

smallest, p „(s),has the steepest slope among all p,, (k)
at the maximum magnetic field, where the largest,
p„'(y), has the most gentle slope. In much stronger
magnetic fields, we should expect these magnitudes and
slopes to approach one another as was found in the
measurement at liquid helium temperatures. "The sign
reversal of p,„(s) is to be noted. These characteristic
features of the p;, (k) are explained in the next section.

Figures 5 to 10 show the angular dependence of p, ,(H)
at fixed H=5.76 kOe. The experimental points, taken
every 5', traced out the curves shown, but were omitted
in the Gnal drawing. The 6gures clearly reveal the
symmetry properties of the crystal when the experi-
mental misalignment between H and the crystal axes is
taken into account. Figures 5, 8, 9 display reBection
symmetry about the x axis, whereas Figs. 6 and 7 are
characterized only by inversion symmetry. Figure 10
exhibits 60' symmetry as expected.

It should be pointed out that the experimental values

IO
I

H(koej

I t

6 8 IO

T =20.4'K

Io.'

Fn. 3. Experimental curves for the longitudinal tensor
components vs II.

magnetoresistance contribution from slight misbalance
of the helipot was eliminated by reversing the magnetic
field.

Figure 2 shows the experimental symmetric tensor
components as a function of H. All the p, ,(k) (iWk)
are approximately proportional to H" . The deviation
from proportionality to H'0 was found also in the
measurements at liquid helium temperatures. " The
particularly large value of p„(y) compared to the
relatively small values of the other components p;, (k)
(i&k) can be qualitatively understood in terms of the
present theory. The unexpectedly large values of
p„,'(y) may not be real but spurious owing to the
extremely large magnetoresistance voltage V, (y) devel-
oped by a slight unbalance of the helipot.

Figure 3 shows the variation of the longitudinal tensor
with H. The negative magnetoresistance is probably also
a spurious effect owing to large probe contact areas.
However, the initial values in weak 6elds may be nearly
correct and provide a measure of the saturation values
of p;, (i). In the absence of a magnetic field, the resist-
ances p„.(0) are much smaller than the corresponding
p, ;(i) shown in the same figure. A particularly large
value for p»(y) was also found in the measurement at
4'K. '0

Figure 4 exhibits the antisymmetric tensor compo-
nents as a function of H. The magnitudes of the p@ (k)
«re considerably difT'erent from each other, and the

IO —o

L5 2

pO'
Xf

4
H(koe)

X)

' 'to
8 IOI

' S. Mase and S. Tanuma, Sci. Repts. Research Inst. Tohoku
Univ. A12, 35 (1960).

Fzo. 4. Experimental curves for the antisymmetric tensor com-
ponents vs JI. The magnitude of p „(z) should be read on the
right ordinate.
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TABLE I. Parameters n;~' and c;~' for each energy band.

Band nll )C11

—,
' (nI+3n2)
4 (&t+3ns)

PI

a22 )C22

—,
' (3n1+n2)
-', (3m+ad~)

PI

nag )C33 n12 )C12

0
,'A—(ng n—2)

', V—3-(ng'n2—)
0

a23 )C23

n4
1—yn4—2n41

n31 )C31

0
—,'V3n4

——,'V3CX4

0

The Fermi energy of electrons was taken from Shoen-
berg's" data for the de Haas-van Alphen effect. These
are given in Table II. The number of electrons is
calculated to be 3.75X10'/cms using Table II. We
also need to know the pertinent sound velocities.
According to Eckstein, I.awson, and Reneker, " the
velocities of the longitudinal and the transverse sound
waves are both anisotropic. Our theory did not, however,
take into account this feature of sound propagation and
we shall assume the constants

vi ——2.4X10s cm/sec,

vs 1.2X10s cm——/sec. (6.1)

TABLE II. Energy surface parameters from the experiments
by Gait et al. and Shoenberg. b

Electron
Hole

a1(+)

114
14.7

n2(+) a~(+)

1.46 114
14.7 1.09

n4(+)

10.1
0

g(+)

0.0177 eV
0.0117 eV

a See reference 12,
b See reference 11.

'3 Y. Kckstein, A. W. Lawson, and D. H. Reneker, J. Appl.
Phys. 31, 1534 (1960).

The experimentally determined quantities are the
p;j, the components of the magnetoresistivity tensor.
However, by inversion it is easy to obtain the 0.;,,
since o.,;=(p ');;. In principle, the relaxation times
[r'(x) '] Lr'(y) '], and t r'(z) '] can be determined
from the values of 0, (k) (jWk) so obtained by use of
Eq. (3.34). However, as noted earlier, the values of
p„,'(x) and p„,'(y) are probably erroneous. We, there-
fore, neglect the nondiagonal components p;, (i&j) and
calculate 0,;(k) (iWk) from the experimental values of
p;, (k) (i&k) These a. pproximate values of 0„.(k) (i/k)
when inserted into Eq. (3.34) give a set of linear
algebraic relations between the various Lr'(k) '] for
any given II. For H=7.32 kOe, they are, from 0»(x),
0„(x),0.,(y), o..(y), and 0..(z), respectively,

0.00824Ei(x)+0.00639Es(x)+E4(x)=0.999,

Ei(x)+0.0132Es(x)+0.115E4(x)= 1.21,

0.00318Ei(y)+0.00653E,(y)+E4(y) =0.798, (6.2)

0.0429Ei(y)+0.338E,(y)+E4(y) =2.51,

Ei(z)+0.196E4(z)= 1.99,
where

and
F0=7)(10 "sec.

r&'i(x) =5.75X10 "sec,
r"'(x) =4.32X10 " sec,

r~ i(x) =8.78X10 " sec,

r"'(y) =3.99X10 " sec,

r&'i(y) =5.18X10 "sec,

roi(z) =3.87X10 "sec,

r&" (z) =7.53X 10 " sec.

(6.3)

We note that anisotropy in r'(k) is not nearly as
pronounced as the anisotropy in n;, c;, and d;. Although
the relaxation times for the holes are larger than those

Assuming that Es(x) and Ei(y) are not large, we
find Ei(x) 1.1, 1&E4(x)&0.8, 5&Es(y)&4.4 from
Eq. (6.2), since E4(x) =E4(y). By utilizing the exper-
imentally observed sign reversal in p,„'(z) and Eq. (4.1)
in conjunction with Eq. (6.2), we find Ei(z) 1.81,
E4(z) 0.93. Because Es(x) and Ei(y) do not make
significant contributions in Eq. (6.2), their values are
indeterminate. As can be seen from the left-hand terms
of the first and third equations of (6.2), the theory
predicts that 0»(x) should be nearly equal to o„(y),
but experimentally this is not the case. Because of this
disagreement, E4(x) and Es('y) are indeterminate in
the range of the above limits. We now choose values for
the deformation potential anisotropy constants c; and
d; in close accordance with the foregoing restrictions on
Ei(k). CQ

The unique conclusion from Ei(x) (Ei(z) is that ci,
c3))c2, c4 in correspondence with experimental finding
that ni, ns))ns, n4. If the theoretical value of 0. ,(y) is
taken to be in accordance with the experimental value,
i.e. , if we assume that E4(x)(E4(z), it follows that
d1)d3, corresponds to the experimental result that
Pi&Ps. It was not possible, however, to find values of
c; and d, , giving values of Es(y)&4.4. The small
experimental value of p„(y) (despite the fact that this
component is much larger than any other) appears to be
responsible for this discrepancy with the theory.
Nevertheless, our best estimates for c; and d; are as
follows: ~1=3) c2——0.02, c3——1, t."4——0.1, d1 ——0.9, and
ds=0.3. Using these values and the values of n, , P, , n,
v„n n+/n =—5 2X10 4,. and D=2.72 eV, we find the
following values for the various r'(k):
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for the electrons, the difference is not as large as
suggested by Aubrey and Chambers. "Rough measure-
ments of p„(0) as a function of temperature indicate
that the relaxation times are approximately a factor of
10 larger at liquid helium temperatures than those
reported here for 20.4'K. Such values would be con-
sistent with those estimated by Gait et a1." from their
cyclotron resonance experiments.

Using the values of the various parameters given
above, we may now calculate the 6eld dependence of
the p;I,. These theoretical curves are exhibited in Figs.
11—13. As mentioned above, the curves for p„(y) and
p„(s)=p»(s) were fitted to the data at H=7.32 kOe
and the curve for p,„~(s) was fitted at its zero. Despite
the discrepancies between theory and experiment noted
above, the general features of the theoretical curves are
very similar to the observed behavior shown in Figs.

„QCM

tG

P„„(Y)

p„„(x) X)

ID

ta QCM

lo v)—

lo

4
I5 2 4

H(kOe)

6 8 IO

FIG. 12. Theoretical curves for the longitudinal components
and p„,'(x) and p„,'(y). The magnitude of p„,'(x) should be read
on the right ordinate.

to'

-3

I5 2'
H(kOe)

6 8 IO

FIG. 11.Theoretical curves for the transverse symmetric
components p;;(k) vs H.

2—4 except for the behavior of p„,'(y) which we believe
to be spurious. Numerical discrepancies as large as a
factor of 3 occur in some cases. In the case of the
nondiagonal components, such diff erences may be
ascribed, at least in part, to experimental error. This
explanation is not valid however in the case of p»(x),
p„(x), and p„(y), nor can it explain why p, ,(k) (i/ )k
varies as H" rather than H". In the case of impure
crystal, the o,; (k) (iWjWk) terms contribute greatly
to the deviation from H" dependence of p,, (k) (iWk),
but this is not the case here because a „(k) is negligibly
small. These discordances between theory and exper-
iment suggest that our model is difficient in some
respects. It may be necessary to take into account the
departure of the energy surfaces from the ellipsoid,
the anisotropy of the sound waves, the optical branch
of the phonon spectrum, and intervalley and interband
transitions. Most of these effects, unfortunately, are
difficult to treat. VVe should emphasize, however, that
this simple model does explain the large value of p„(y)
compared to the relatively small values of p;, (k) (i/k),
the wide variation and correct order of magnitudes of
p, (k) (i' Wk), the sign reversal of p,„~(s) and the
relatively large value of p»(y) compared to p„(x) and

p**(s)
It is of interest to point out that the order of magni-
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However, because J(x) experimentally has a sharper
dependence on T than predicted, we must expect H,
to decrease more rapidly with T than predicted by
Eq. (6.5). In the residual resistance range, however, H,
should become temperature independent. To date, the
sign reversal at liquid helium temperatures has not been
found. In our sample, the expected H, is much smaller
than 0.44 koe, the smallest field available to us. At
liquid nitrogen temperatures, H, should be about 17

kOe, also inaccessible to us. Some tendency toward a
reversal is descernible in the data of Connel and Marcus. '
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As part of a general investigation into the properties of gallium arsenide, the Hall coefficient and re-
sistivity of three pure samples have been measured from 300 to 2'K. The highest mobility measured at
300'K was 7200 cm'/V-sec increasing to 22 000 cm'/V-sec at 72'K, the mobility temperature curve following
the theory of Ehrenreich very closely. At helium temperatures impurity conduction was observed with the
resistivity p ~ exp( —4&/k T) and 4I varying from 9.8X10 4 eV to 5.8X10 4 eV. A discussion of these results
is given in terms of the theory of Miller and Abrahams and Twose.

In one sample, below about 30'K the current was not a linear function of the voltage. This arises from a
dependence of mobility on applied electric 6eld and because carriers can be excited from impurity states
to the conduction band. An analysis of the energy loss processes for electrons suggest that piezoelectric
scattering is the most important mechanism below about 30'K but that above this temperature optical
scattering is dominant. Impact ionization occurs between 4 and 12'K.

A. INTRODUCTION

' EASUREMENTS of the electrical properties of a
' ~ semiconductor provide much basic information

on their properties and particularly on the mechanisms
of charge transport and the nature of the scattering
processes. This paper describes some measurements of
Hall coeKcient and conductivity, on samples of low
resistivity n-type gallium arsenide over the temperature
range 300 to 2'K. Previous investigations have been
adequately described in the book by Hilsum and
Rose-Innes, ' but the results described here have been
obtained on purer material than was previously available
and are thus of special interest.

The discussion of the experimental results falls
naturally into three sections. The material available
was pure enough for the mobility above about 60'K to
be determined largely by lattice scattering. Ehrenreich'
has recently calculated the theoretical temperature de-
pendence of electron mobility in gallium arsenide on the
assumption that scattering by the polar optical modes
is the dominant lattice process and our results therefore
provide a convenient check on this theory, the agree-
ment being very satisfactory.

At low temperatures the measurements show evidence

' C. Hilsum and A. C. Rose-Innes, Semzcondlcting III—V Com-
po44r4ds (Pergamon Press, New York, 1961).' H. Ehrenreich, Phys. Rev. 120, 1951 (1960).

of impurity conduction in a more pronounced way than
has previously been possible in e-type gallium arsenide.
The results illustrate the difference between the two
possible types of impurity conduction, the "hopping"
process which occurs for low impurity concentrations
and the metallic type of conduction which takes place
in less pure samples.

In one sample at low temperatures, departures from
Ohm's Iaw were observed, and to explain these results
a discussion is given of the various mechanisms by which
electrons lose energy and also of the possibility of elec-
trons being transferred from impurity states to the
conduction band under the action of an electric field.

B. EXPERIMENTAL TECHNIQUE

The specimens used were rectangular bars (typically
0.6-X0.2-&&0.1-cm), cut from single crystal material.
After grinding, etching (1HsO 3HsSO4/1HsOs), and
washing in de-ionized water, six contacts were formed
on the specimen by alloying to it small pellets of indium.
Reliable low-resistance Ohmic contacts could readily
be made in this way.

A large number of specimens have been examined
from room temperature to liquid nitrogen temperature
using the simple apparatus described by Vre. '

' R. W. Ure, Rev. Sci. Instr. , 28, 836 (1957).


