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Stochastic Model of a Liquid and Cold Neutron Scattering. II*
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(Received September 13, 1961)

A simple model for the atomic motions in a liquid has been constructed based on the assumption that
rapidly varying motions behave similarly to those in a solid, whereas slowly varying motions behave accord-
ing to Langevin s equation for diffusion, This has been accomplished by writing the displacement of an atom
as a sum of statistically independent "modes. "E'ach "mode" is assumed to obey I,angevin's equation for a
harmonic oscillator with a certain frequency and a certain damping. To account for diffusion it is assumed
that for "modes" below a certain frequency the harmonic restoring force is absent and thus these "modes"
obey Langevin's equation for diffusion.

Based on this model, Van Hove's G, (r, t) function is Gaussian and its width function has been calculated.
The computed scattering cross section for neutrons has been compared with experimental data for water
and for liquid lead.

I. INTRODUCTION

''N the preceding paper, hereafter referred to as I,
~ - the general theory of the scattering of slow neutrons
by an interacting system was discussed. It was shown
there that incoherent scattering could rigorously be
discussed in terms of the velocity correlation functions
of an atom in the system. More specifically, when a
Gaussian approximation is made for the Van Hove
G, (r,t) function, only the correlation function

(v(0) v(t))I is required to evaluate the width function

p(t) but in the case of a liquid, it has not been possible
to compute even this simple velocity correlation function
from first principles. The formalism of paper I is,
however, general enough to give some guidance in the
construction of the width function p(t) To mak. e any
further progress, one is obliged at this stage to take
recourse to specific dynamic models of a liquid and
subject them to experimental test.

The model that we shall discuss here is based on the
conception that the heat motion of the atoms in a
liquid is very similar to that in a solid. It is, of course,
understood that proper account will have to be taken
of the damping of the vibrations and of the self-
diffusive motion of an atom in a liquid. This conception
is not new, but has indeed been advocated by Frenkel'
many years ago. More recently such ideas have been
revived by Singwi and Sjolander' and by Rahman et

a/. ' in their attempt to explain the observed energy
spectra of neutrons scattered from a liquid.

Larsson and Dahlborg4 have very recently studied in
detail the scattering of cold neutrons from water and
ice, and they find that there exists a great similarity
in the scattered neutron spectra from these two sub-
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stances so much so that these authors are lead to
conclude that a quasi-crystalline model of water
corresponds to physical reality.

The two characteristic features of these spectra are:
(i) A narrow "quasi-elastic" peak, in fact much narrower
than what we would expect on a simple diffusive model
of a liquid; and (ii) an inelastic region devoid of almost
any structure. The narrow "quasi-elastic" peak. is an
indication of the fact that an atom in a liquid is con-
strained to remain in its locality for a time period which
is much greater than its "period of vibration. " The
inelastic scattering, analogous to that in a solid, is a
manifestation of the development of the thermal cloud
of an atom in a time period which is considerably
smaller than the sedentary lifetime of the atom. The
observed lack of structure in the inelastic region, in
contrast to what one has in a solid, indicates that the
vibratory motion of an atom in a liquid is highly
damped.

II. MODEL

In this model, we shall assume that the displacement
of an atom in a liquid can be considered as a super-
position of statistically independent components
each of which obeys a Langevin-type equation of
motion:

(d'$, /dt')+ p, (d$,/dt)+oI, '(,=F,(t),

where P, is the damping constant and F,(t) is the
stochastic force for the mode s. In writing Eq. (1), it is
tacitly assumed that the effect of anharmonicity can be
replaced by a stochastic force F,(t) and a damping
force P.)„which is, indeed, the case if the anharmonic
forces are small and can be treated by perturbation
methods. ' Obviously, such an equation would not lead
to any diffusion since the mean position of each oscillator
is never displaced. For the purpose of building into this
picture a mechanism for diffusion, we remark the fact
that the low frequency transverse modes cannot propa-
gate in a liquid and should necessarily degenerate into a
diffusive type of motion. This, however, is not the case

~ P. Mazur, Physica 25, 149 (1959).
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It is easy to see that the expression for p(t) has the
correct form in the two limiting cases: (i) of a Debye
solid at a temperature T))OD and (ii) of an atom
diffusing according to I angevin's equation. For case
(i) ~'=0, I'=0 and we have

3kT sin~r)t~.(I)=
MOOD MD I J

and for case (ii) co'=mr) and we have

kTe ~' 1+Pt—
~(~) =

3I

(10)

From Eq. (8), as can be verified easily, one gets the
correct asymptotic diffusive form of p(t), i.e., Dt+C,
where D is the diffusion constant. We get

D= (k T/MP) ((o'/s)D)), (12)

IV. RESULTS AND DISCUSSION

Scattering in Water

In Fig. 1, we have given a whole series of curves for
the width function p(t), computed using Eq. (8), which

C= (3kT/Ma)r))) (1 u&'/cur)) D/P—. (1—3)

The fact that (rv'/&u&) as well as p occur in Eq. (12)
which gives D is the significant difference from the
simple Langevin's case where the parameter p is
determined uniquely by D. Due to the second term in
(13), it is clear that C can be made as large a negative
constant as we like depending on the value of co'/cur).

A large negative value of C corresponds to delayed
diffusion. The width of the "quasi-elastic" peak in the
scattered spectrum is controlled by this constant C;
the larger the absolute value of C, the sharper is the
peak. The parameter co~ determines the size of the
thermal cloud before diffusion becomes dominant, and
the parameter F determines the damping of the oscil-
lations. As remarked in the introduction, there are only
three arbitrary parameters in the present model.

AG. 2. Differential scattering cross section versus outgoing
neutron energy for neutrons of incident energy 5.0)&10 ' ev
scattered at 90' by water at 300'K. The curves are normalized
in such a way that the maximum heights of the "quasi-elastic"
peaks are the same in all cases.

clearly illustrate the infiuence of various parameters.
M has been taken equal to 18 atomic units (a.u.) since
only the translational motion has been considered.
The parameters co' and co~ are expressed as temperatures
8' and 0~ through the relation Ace =ke. It will be noticed
that in curves 1 and 2, the asymptotic behavior of p(t)
is not yet apparent. However, the large value of the
damping parameter prevents any wiggles in p(t) which
are so characteristic of a solid. The characteristic
feature of curves 1 and 2 is thus a thermal cloud, which
after a rapid initial rise, develops almost linearly for a
considerable length of time, but with a very small
slope. This rate of increase of the width of the thermal
cloud is much smaller than the macroscopic diffusion
constant D which manifests itself after a much longer
time period. In contrast to curves 1 and 2, curves 3
and 4 attain the asymptotic limit Dt much more
quickly. Curve 4 differs from curve 3 in having a smaller
value of F and that is why it is a little more wiggly,
and this leads to a structure in the scattered spectrum.

In Fig. 2 is shown the differential scattering cross
section calculated with some of the curves of Fig. 1,
for an incident neutron energy of 5&10 ' ev. The two
characteristic features of all the curves of Fig. 2 are:
(i) a narrow "quasi-elastic" peak and (ii) an inelastic
part which is almost Rat. Both these characteristics
are consistent with observation. It will be noted that
the sharpness of the "quasi-elastic" peak is a function
of the quickness with which diffusion sets in. The part
of curve 4 corresponding to inelastic scattering seems
to show a very broad peak (not seen in Fig. 2), which
is reminiscent of the one-phonon peak in a solid, in
contrast to the case of curve 3 and this is because of a
slightly wiggly nature of p(/) in curve 4 of Fig. 1. The
widths of the "quasi-elastic" peaks of curves 3 and 4,
however, are the same since 0'/tIr) for both curves is
the same.
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FIG. 3. Differential scattering cross section versus outgoing
neutron energy for neutrons of incident energy 5.2)(10 ' ev
scattered at 90' by water at 300'K, using parameters which gave
the best Qt to the experimental data of Iarsson and Dahlborg'
for beryllium-6ltered neutrons.
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FIG. 4. Differential scattering cross section versus outgoing
neutron energy for beryllium-6ltered neutrons scattered at 90'
by water at 300 K. The experimental curve is that of Larsson and
Dahlborg. 4

Figure 3 shows the scattering for a monochromatic
incident beam, and it should be compared with the
scattered spectrum shown in Fig. 4, where the incident
spectrum is taken to be EdE with a sharp cutoff at
5.2X10 ' ev (corresponding to the beryllium-filtered
spectrum). The lack of any similarity between the two
is quite remarkable, and it shows the difhculty in
making any precise interpretation of the scattering
data obtained with a Altered beam technique. Other
aspects of the curves in Fig. 4 are self explanatory.
The rise in the experimental curve in the energy range
greater than 20&10 ' ev is due to the contribution from
the hindered rotations of the water molecules. The
present model ignores the contributions of these
rotations and is concerned only with hindered trans-
lations. It might be mentioned here that earlier Singwi
and Sjolander' had calculated the inelastic scattering
of beryllium-filtered neutrons in water, assuming it to
be a solid with 0D = 135'K and found a good fit between
their computed curve and the experimental curve of

Hughes et ul. '" This good ht, as we have discovered it
now, was the result of a mistake in the normalization,
which if done correctly does not give an agreement.

We have not presented the calculated and observed
spectra at a smaller scattering angle because it shows no
new features. The fit is less satisfactory at 30' scattering
angle.

In Fig. 5, the width of the "quasi-elastic" scattering
is plotted as a function of the scattering angle for two
sets of parameters. In the same figure is also given the
width which one would expect on a simple diffusive
model. The experimental points of Larsson and Dahl-
borg4 are also shown. It will be seen that in the region
of I; values shown, no flattening out of the theoretical
curves is apparent. This is in contrast with the results
obtained by Singwi and Sjolander' on the basis of a
model in which the width was primarily determined
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FIG. 5. Full width of the "quasi-elastic" eak versus a' and
the scattering angle, with a=1.85)&10 ' crn' sec and 7=300'K.
Experimental results of Larsson and Dahlborg4 are shown as
circles.

' D. I. Hughes, H. Palevsky, W'. Kley, and E. Tunkelo, Phys.
Rev. Letters 3, 91 (1959).

through a decay factor of the type e '~" and hence was
independent of the scattering angle. Because of the
large statistical uncertainties, it is hard to conclude
from the experimental points if there is a genuine
fiattening of the curves for large scattering angles.
It would be very desirable to measure the width as a
function of the scattering angle more accurately than
has hitherto been done. In the Appendix, we have
constructed a very simple non-Gaussian model which
gives for the width essentially the same result as
obtained earlier by Singwi and Sjolander. ' An important
question which arises in this connection is whether the
saturation of the width for large values of ~ is the result
of a non-Gaussian G, (r,t), and whether this fact could
be used to decide if G, (r, t) is Gaussian or non-Gaussian.
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One difBculty, however, is that for very large values of
~ there is no clear separation of the "quasi-elastic"
scattering from the inelastic scattering and then the
width in the above sense has no meaning.

From the numerical computation of the Fourier-
transform, we find that the major contribution to the
"quasi-elastic" scattering arises from the values of p(t)
in the time region in which it is almost Bat and slowly
rising as shown in curves 1 and 2 of Fig. 1.This implies
that in the present model, the angular dependence of
the width is determined by an "effective" diffusion
constant much smaller than the ordinary diffusion
constant D. One could say that the neutron is never
able to "see" the macroscopic diffusive behavior but
only the motion over that time period for which p(f)
has the above-mentioned behavior. However, for a very
small ~, a larger and larger time period is scanned by
the neutron and the width is then determined more and
more by the actual asymptotic behavior of the diffusive
motion of the atom. This is the reason why all curves
of Fig. 5 merge into one another for f~
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FIG. 6. Differential scattering cross section (gkp/k) versus
outgoing neutron energy for neutrons of incident energy 4.8X10
ev scattered at 90' by liquid lead at 620'K. Experimental curve
of Brockhouse and Pope'2 is marked a.

Scattering in Liquid Lead

In the foregoing, we have compared the calculated
diff erential scattering cross section, based on our
model, with the observed values for water and found
that for certain values of the parameters, the agreement
between the two is satisfactory. One might argue that
water being a very special liquid in the sense that there
exist strong hydrogen bonds between water molecules,
it is not very surprising that a quasi-crystalline model
should work. It would, therefore, be interesting to
compare the results of this model in the case of a simple
liquid. Unfortunately, the only other liquid for which
some experimental data are available is liquid lead.
The data using an incident monochromatic beam are of
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Fro. 7. Width function p(t) for liquid lead for the same
parameters as in Fig. 6. The width function used in reference 3
is shown by circles and that obtained by Brockhouse and Pope"
from their experimental data is shown by crosses. The p(t) ob-
tained from the diGusion equation is also shown.

Turberfield" and of Brockhouse and Pope." The
former author has extended the observations into the
inelastic region and has claimed a higher statistical
accuracy, thus enabling him to measure the "quasi-
elastic" and inelastic scattering simultaneously, whereas
the latter authors used different incident energies to
cover the inelastic region, and, therefore, they had to
use normalization techniques to combine their ob-
servations.

In Fig. 6, we have plotted the scattering cross section
as a function of the outgoing neutron energy for the
values of the parameters shown. These values were
chosen to 6t the "quasi-elastic" scattering data of
Brockhouse and Pope" shown as curve 'u' in the figure.
It will be seen that the agreement between theory and
experiment is fairly good. Besides, the general shape
of the curve in the inelastic region is in agreement with
the observations of Turberfield"; in fact, the magnitude
of the ratio of the elastic to the inelastic peak heights
(=50) is in agreement with his observations. While
making this comparison, it must be clearly borne in
mind that the calculations are based on the incoherent
approximation.

In Fig. 7 is shown the width function p(t) from which

the scattering cross section of Fig. 6 was computed. .
For the sake of comparison, the values of the width
function used in reference 3 by the authors have been
shown as circles in Fig. 7. In the same 6gure is also
shown the width function given by Srockhouse and
Pope" who obtained it by double Fourier inversion of
their observed scattering cross section. It will be seen
that the two do not agree. The function S(sr,M) (see
paper I) which has to be subjected to the double
Fourier transformation is to be constructed from the
experimental data, and in constructing this function
Brockhouse and Pope mention that they have made

"K.C. Turberheld (unpubhshed)."B.
¹ Brockhouse and N. K. Pope, Phys. Rev. Letters 3, 259

(1959).



i002 RAH MAN, SING%I, AND S JOLANDER

several approximations. It is dificult to say how their
approximations affect the complicated mathematical
transformation. Perhaps the reason for disagreement
between the calculated curve and the "observed"
values lies in this fact. To avoid all errors inherent in
smoothing out the experimental observations, it may
be better to compare the theoretical results directly
with the observed scattering cross section.

mated by the corresponding classical correlation
function. For consistency in the approximation we must
also take tanh(A~/2kT) =Au&/2kT and hence

f(ar) = (2M/37rkT) (v(0) v(t)), i cos(a&t)dt. (15)

Using Eq. (5) we get

f(co) = tan k(A(o/2kT)
3' Aor

&( Re(v(0) v(t))r cos(cA)Ch. (14)

In the model the real part of (v(0) v(t))r is approxi-
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Fro. 8. The velocity spectrum for water for
some values of the parameters.

"P. A. Egelstaff, S.J. Cocking, R. Royston, and I.M. Thorson,
Proceedings of the Symposium on Slow Neutron/Scattering,
International Atomic Energy Agency, Vienna, 1960 (unpublished).

V. THE SPECTRUM OF THE VELOCITY
CORRELATION FUNCTION

It has been shown in I that the Fourier transform,
henceforth called the velocity spectrum, of the velocity
correlation function (v(0) v(i))r can be used to express
the width function p(t) of the Gaussian G, (r,t) in a form
which is formally identical with that for a harmonic
solid. It was mentioned there that in the case of a
harmonic solid this velocity spectrum is identical with
the usual frequency spectrum of the normal modes.
In the case of diffusive motions according to Langevin's
equation, on the other hand, the velocity spectrum
is easily seen to have a Lorentzian shape with a width
P=kT/MD. The utility of the velocity spectrum in
this context was erst pointed out by Egelstaff et al."

In this section, we shall discuss the velocity spectrum
one obtains from the model under consideration. This
will elucidate to some extent the physical meaning of
the various parameters introduced in the model.

The normalized spectrum f(a&) wa, s defined in Eq.
(83) of I, and it was shown there Lsee Eq. (90)j that

2 (cv')s P 3y jr co

f(~)=
(

-I +
k g&) p'+ ' g)E )

Glg) 2

x ~ (16)
(x—aP)'+4y'aux

It is easy to see that f(0) =2MD/wkT.
In Fig. 8 we have plotted cur f(&o) for some of the

values of the parameters or', or~, I', which were used
in Fig. 1 to illustrate how they determine the shape of
p(t); the shape of f(&o) shows more strikingly the role
played by each of the three parameters. Figure 9 shows
the velocity spectrum for lead with the same parameters
as in Fig. 6.

In the case of an undamped Debye solid, we have
~Df(~)=3(a&/cuD)' whose maximum value is attained
at or=or~. 7Vith damping, however, this sharp cutoff
goes over into a smooth curve with a tail, thus depress-
ing the maximum height of the curve. As will be seen
from Figs. 8 and 9, the maximum value of cvDf((u)

appears to be a function of the damping parameter
only. The parameter coD determines the region in which

f(cv) attains its maximum value.
When cv'/raD is small, i.e., when the number, (&o'/&oii)',

of diffusive modes is small, we see that f(co) ~ &a' down
to frequencies in the neighborhood of or', where it
suddenly rises to give the value 2MD/akT at ~=0.
This sharp rise is probably a consequence of the way
diffusive modes have been introduced in our model, i.e.,
by assuming the diffusion Eq. (2) to hold for all fre-
quencies or, &or'.

It will be noticed from Eq. (16) that f(co) goes to zero
for large values of ~ as 1/oP. This is a consequence of
the non-analytic behavior of the velocity correlation
function for 3=0; both for the diffusive part and the
vibratory part we have a term of the form exp( —c

~

t
~
).

In an exact model, this is certainly not the case, and
we would expect the exact velocity spectrum to decrease
for co~ co more rapidly than any power of 1/&u (see
Sec. VII in I).

In the case of water, it may seem questionable
whether one should use the mass of the hydrogen atom
or the mass of the water molecule when de6ning the fre-
quency spectrum. From the discussion in I, it is clear
that if one includes in f(co) the effects of translational as
well as rotational and vibrational motions of the water
molecules, the mass of the hydrogen atom should appear
in the definition of f(cv) t Eq. (89) of Ig; consequently,
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f(0) =2MHD/m kT, as is also apparent from the experi-
mentally determined f(cu) of Egelstaff et ut."

If, as in our model, only translational motion of the
water molecules is considered the velocity correlation
function should be that of the center-of-mass motion
and the velocity spectrum will be a part of the complete
one. If the rotational and vibrational motions con-
tribute only to high-frequency components of the
spectrum, the shape of the low-frequency part is
determined by the translational motion only. Thus the
velocity spectrum in our model will differ from the com-
plete one by a factor MHmo/Mn since the area under

f(~) has been normalized to unity. As regards f(a&) de-
termined by Egelstaff et u/. " it is not possible to com-
pare their spectrum with ours due to the fact that their
resolution covers almost the whole region of interest
in Figs. 8 and 9.

VI. GENERAL REMARKS

We might mention here the reasons which led us to
abandon our earlier rnodeP in favor of the present one.
The 6rst and the most important reason was that with
a given set of parameters, we found it impossible to fit
simultaneously "quasi-elastic" and inelastic scattering
regions. This was tried in the case of water for which
experimental data were available. The theoretical p(t)
in the earlier model invariably exhibited a wiggly
behavior, whereas the observed cross section is Qat in
the inelastic region. The reason for the wiggly nature of
p(t) in the earlier model is that all frequencies are
damped equally, whereas in the present model the
damping is proportional to the frequency of the "mode. "
The p(t) curves (Fig. 1) in the present model are com-
paratively less wiggly. Secondly, the present model has a
more physical basis behind it than the earlier one has.
From the very nature of the model and from the small-
ness of the values of the ratio a&'/run required to 6t the
neutron data, it is obvious that the thermodynamic
properties of a liquid such as the specific heat will be
close to that of a solid at high temperature which in fact,
is the case. In fact, for all physical phenomena involving
a time scale less than a few times 10 " sec, a liquid
would behave like a solid. For example, it would exhibit
rigidity under the inAuence of an external force if the
time period of the force is less than the above relaxation
time of the liquid. The conventional experimental
techniques have so far failed to reveal this solid-like
behavior of a liquid because of the very short relaxation
time.

The value of the damping parameter I" used in our
computation has reached a saturation value in the sense
that any further increase of its value does not change
p(t) This means tha.t there are, in fact only two adjust-
able parameters ~' and co~ in the model. The value of I'
used is 2.0, which results in the damping of the modes
in a time period which is one-sixth the period of the
mode. Under such circumstances, it is physically mean-
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FIG. 9. The velocity spectrum for liquid lead for the same values
of the parameters as in Pigs. 6 and 7.

ingless to talk of modes in the sense one does in a solid.
In the present context, they have been introduced
rather as a mathematical concept.

As regards the number of parameters which one
should logically expect to be essential for the description
of self-diffusion in liquids, firstly, one should have a
diffusion constant and a constant to delay the diffusion
or, equivalently, to specify the number of diffusive
modes; secondly, the vibratory behavior before diffusion
sets in requires a damping parameter and a frequency
spectrum and the latter under the simplifying assump-
tion of a Debye type spectrum requires a cutoff
Debye frequency. This is probably the minimum
number of parameters required for a physically ad-
missible picture of self-diffusion in liquids.

'4 This mechanism of di6usion in a liquid is similar to that in a
solid with the difference that in a solid the probability density is
anisotropic being large only at the lattice sites or at the inter-
stitial positions I'; whereas in a liquid the probability density is
isotropic.

APPENDIX

After the initial development of the thermal cloud
has taken place, we shall suppose that the intermediate
scattering function F,(x,t) is given by

P,(x t) =e- i'i exp( —K'R')

+ (1—e ~"~) exp/ —a'y(t)g, (A1)

where R is a constant. This function is evidently the
Fourier transform of a non-Gaussian G, (r, t) which is a
sum of two functions each one of which is a Gaussian
function. One of them has a width Ly(t))' which is a
function of time and the other has a constant width R.
Physically, this corresponds to a model in which
diffusion is pictured as an evaporation process from
a probability cloud which has a certain size at time t= 0.
As time progresses, the probability density in the cloud
diminishes, and the gradual development of its wirigs
takes place in a Gaussian fashion. The spreading of the
wings with time corresponds to diffusion. "



The "quasi-elastic" scattering is given by

/d2~~ II2 k
=A'—— e '-'I-'. (E,t)dl. (A2)

&dad ),„.I 22r ko

this case, (A3) simplifies to

u' k v-0

sl kp 1+co rp

Substituting for F,(N, t) from (A1) into (A2) and
performing the integration, we have

~2+co2 (E2D)2+~2

n+ E2D

(A3)
(n+ ~2D) 2+(o2)

where we have put If,"E.'= 2S', the Debye-%aller factor.
In deriving (A3) we have assumed that y(t) =D!t!, D
being the diffusion constant.

Let us consider the following two cases:
Case (i), «ciDE2or E2Dro))1, where ro=1/n. In

The full width Ae of the peak is 2A/rp.
Case (ii), cs))a'D or K'Dr p«1, and further, if e 2~=1,

(A3) simplifies to

Po

qu —e)

a' k ~'D
=QT——

rr ko (K D) +co
(A5)

The full width of the peak is 2A~'D. The results ob-
tained here in a simple manner are essentially the same
as those obtained earlier by Singwi and Sjolander' from
more detailed considerations. Thus we see that in this
non-Gaussian model we get a saturation effect for the
width function for large values of f(: which is not the case,
as we have seen before, in the Gaussian model.
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Hyperfine Structure of Praseodymium-142)
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The hyper6ne structure of 19-hr Pr" in the electronic ground state 'I@2 has been studied by the atomic-
beam magnetic-resonance method. The following results have been obtained: electronic splitting factor
gJ ('Ipf2) = —0.7322 (3), nuclear spin I=2, magnetic-dipole hyperfine-structure constant

~

A
~

=67.5 (5)
Mc/sec, electric-quadrupole hyperfine-structure constant ~B

~

=7.0(2.0) Mc/sec, and B/A &0. From the
hyper6ne-structure constants, and assumptions made concerning the electronic Qelds at the nucleus, the
nuclear moments are calculated to be ~ni~ =0 297(15) nm, and ~Q~ =0.035(15) b, with Q/t'ai&0.

INTRODUCTION
' +RECISION investigations of hyperfine structure by

the method of atomic beams can yield information
about the electronic structure of the low-lying atomic
states, and the structure of the nuclear ground state.
Some features of the electronic ground state of praseo-
dymium (Pr) ha, ve already been established by the
atomic-beam work of I.ew. ' In particular, this work
showed that the ground configuration of Pr is (4f)', and
that coupling among the electrons to the Hund's rule
state 'Ig~2 gives good agreement with the measured elec-
tronic angular momentum (J) and electronic splitting
factor (gs). This coupling scheme seems to be charac-
teristic of all the elements in the lanthanide series that

t Work done under the auspices of the U. S. Atomic Energy
Commission.

Present address: Convair Astronautics, San Diego, California.
1 Present address: Institute of Physics, University of Uppsala,

Uppsala, Sweden.
$ Now on leave as Science Advisor to NATO.' Bin Lew, Phys. Rev. 91, 619 (1953).

contain 4f electrons only. ' Corrections to the gs values
of systems containing 4f electrons arise from the break-
down of Russell-Saunders coupling and relativistic
and diamagnetic effects. These have been recently
calculated' and have yielded, for Pr, the value

gJ-= —0.7307. As a check of this theory it seemed to us
desirable to obtain a more accurate experimental value
for the gz value than that given by Lew.

Praseodymium-142 has 59 protons and 83 neutrons,
and, therefore, lies in the region of the table of isotopes
that should be well described by the shell model. On the
basis of the single-particle shell model, the ground-state
properties are determined by the states of the last
proton and neutron. The shell model predicts that the
59th proton should lie in the d~ state. This is supported
by the observed spin of Pr'". The state of the 83rd
neutron is very probably frts, as inferred from the level-

' A. Cabezas, I.Lindgren, and R. Marrus, Phys. Rev. 122, 1796
(1961).' B.R. Judd and I.P. K. Lindgren, Phys. Rev. 122, 1802 (1961).


