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Theory of Slow Neutron Scattering by Liquids. P
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Based on Van Hove s formalism, a general discussion of scattering in liquids has been given. The scattering
cross section has been expressed in terms of velocity correlation functions; in particular, for the incoherent
scattering cross section it is shown that in the Gaussian approximation for Van Hove s G, (r,t) function, only
a knowledge of the velocity autocorrelation function (v(0) v(t))r is necessary. The departure from the
Gaussian approximation is expressed in terms of higher order velocity correlation functions. A derivation
of an approximate formula for the width function of the Gaussian G, (r, t), suggested earlier by the authors,
has been given. The frequency spectrum of the velocity autocorrelation function has been introduced, and
it has been shown that, as a consequence of the fluctuation-dissipation relations, the spectral representation
of the width function is formally identical with that obtained earlier for a harmonic solid. The erst few
moments of the energy transfer have been discussed. Some of these moments have been shown to satisfy
certain relations which involve only experimentally observable quantities; and hence, these relations can
be used as a check on the internal consistency of the experimental data.

I. INTRODUCTION

HE theory of neutron scattering by an interacting
system in terms of the space-time correlation

function G(r, J) has been given by Van Hove. ' Besides
being elegant, Van Hove's formalism has the merit that
it is very useful for interpreting the scattering data for
systems such as liquids for which an exact calculation
of the scattering is too complicated. This possibility
arises from the fact that the function G(r, t) in the
classical case has a very simple physical meaning and
it has known limiting forms for both small and large
times. These considerations have led and guided many
authors' 7 in recent years to propose certain dynamic
models of the liquid state to interpret the scattering
data

Instead of discussing the scattering in terms of Van
Hove s G function, it is often more convenient to dis-
cuss it in terms of what we call the intermediate scat-
tering function F(44, t) which is the space transform of
the function G(r, f), 544 being the momentum transfer.
The corresponding transform of the self-part of G(r, f)
is denoted by F, (44,t). It is shown in Sec. V that F, (44, t)
can be written as an exponential, the exponent being
an infinite series in ~'. The coefficient of f(.

" in this series
is simply related to the two-velocity correlation func-
tion (v(0) v(J))r and the coefficient of N4 to the four-

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

t On leave of absence from the Tata Institute of Fundamental
Research, Bombay, India.

f Address: University of Uppsala, Uppsala, Sweden.' L. Van Hove, Phys. Rev. 95, 249 (1954).The same basic ideas
were earlier put forward by Glauber. R. J. Glauber, ibid. 87, 189
(1952); 94, 751 (1954); 98, 1692 (1955).' I.Butterworth and W. Marshall, Proceedings of the conference
on the Use of Slow Neutrons to Investigate the Solid State,
Stockholm, 1957 (unpublished).' IJ. N. Iirockhouse, Suppl. Nuovo cimento 9, 45 (1958).

4 G. H. Vineyard, Phys. Rev. 110, 999 (1958).
K. S. Singwi and A. Sjolander, Phys. Rev. 119, 863 (1960).
P. Scho6eld, Proceedings of the Symposium on Slow Neutron

Scattering, International Atomic Energy Agency, Vienna, 1960
paper IS, p. 20 (unpublished).

A. Rahman, K. S. Singwi and A. Sjolander, Phys. Rev. 122,
9 (1961).

velocity correlation function and so on. The behavior
of F, (44,1) for the two limiting cases: (i) t~0 and
(ii) f ~ ~ is discussed. The condition under which the
Gaussian approximation for the G, function is valid,
has been derived. The ~4 term in the series is the first
term in the non-Gaussian correction. So far, it has not
been possible to calculate the magnitude of this correc-
tion; however, it should be possible to estimate this
correction experimentally.

In the Gaussian approximation a rigorous quantum-
mechanical expression for the width function is derived
(Sec. VI). This width function is complex. By making
use of the fluctuation-dissipation theorem, discussed in
detail in Sec. III, the scattering cross section S; .(44,oI)

can be expressed as a Fourier transform of a real
function H, (44,t). A very good approximation is ob-
tained for the width function of H, (sr, t), expressed in
terms of the classical two-velocity correlation function.
In the Gaussian approximation, the problem of calcu-
lating the incoherent scattering cross section for almost
all liquids is thus reduced to a classical calculation of
the velocity autocorrelation function (v(0) v(t))z.

It is shown in Sec. VII how in a natural way one
can introduce in the formalism the frequency spectrum

f(oI) of the velocity autocorrelation function. In fact, by
making use of the Quctuation-dissipation theorem one
notices that the width function of H, (44,f) for a liquid
has exactly the same form as that for a harmonic solid.
Thus it is legitimate to characterize the dynamics of a
liquid by this frequency distribution function ana-
logous to the case of a solid.

The first four moments of 5;„,(Ir,or), first given by
Placzek, ' have been rederived in Sec. IV in a simple
manner and further, relations between the second and
the third moments and between the second and the
fourth moments are given which do not contain the
potential and involve only experimentally measurable
quantities. In the coherent case, a similar relation be-
tween the second and the third moments is established.

s G. Placzek, Phys. Rev. 86, 377 (1952).
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These relations may be of utility in checking the in-
ternal consistency of the experimental data.

Section II contains a general discussion of the basic
mathematical formulae, and also a discussion of Vine-
yard's "convolution approximation"4 for coherent scat-
tering. A recent article by Nelkin' contains a review
of certain aspects of the material discussed in Sec. II,
III, and IV.

II. MATHEMATICAL FORMULATION

1
S;„,(x,a)) =— exp[i(pr. r —cut)]G, (r, t)drdt. (4)

2'

The cross section has in the conventional way been
separated into a coherent and an incoherent part and
the two scattering lengths are denoted by u h and a;„,.
Ace and Ax are the energy and momentum transfers, and
they are connected to the incident and final wave
vectors of the neutron, kp and k, respectively, through
the relations

x=kp —k,

(u = (A/2m) (kp' —k'),

where m is the neutron mass and X denotes the total
number of atoms in the scattering system. For sim-

plicity, we restrict ourselves to monatomic systems.
The introduction of the G functions by Van Hove was

mainly due to the fact that these functions could be in-

terpreted directly in simple physical terms. '" It is,
however, for many purposes more convenient to
analyze the space transform of G(r, t),

F(tp, t) = exp(itp r)G(r, t)dr, (6)

and the corresponding transform of G, (r, t), henceforth
denoted by F,(x,t). The scattering functions S„z(tr,~)
and S;„.(tp, a&) are then simply the time transforms of
F(x,t) and F, (x,t), respectively. In fact, in the deriva-
tion of the scattering cross section one normally arrives
at F(~,t) first

The general definitions are:

' M. S. Nelkin, Proceedings of the Symposium on Slow Neutron
Scattering, International Atomic Energy Agency, Vienna, 1960
(unpublished).

'P L. Van Hove, Physica 24, 404 (1958).

According to Van Hove' the scattering cross section
can be written in the following form:

d'(r„g/dftd(a = 1Va„h'(tp/t'pp) S„h(x,pp),

d'o;„,/dftd pp= Ea;„,'(tt/Ip p)S;„,(x,pi),

where

1
S„g(L,rp) =— exp[i(pc: r—(ut)]G(r, t)drdt, (3)

2'

1
F(x,t) =—P (exp[ —itc rz(0)5 exp[i' r;(t)])r, (7)

Ã&, ~

1
F,(x,t) =—Q (exp[—ix.rq(0)] exp[i' r~(t)5)r .(8)

Here r~(t) is the position vector of the tth atom in the
Heisenberg representation. ( )r means that both
quantum mechanical and statistical averages should be
taken. In (7) summation over all atoms j is performed
and finally an averaging over all atoms I, and in (8)
only this averaging has to be made. For a system in
statistical equilibrium the 6nal averaging is immaterial
if surface effects are neglected. The properties of the
functions F(tr, t) and G(r, t) for t=0 are well known and
need no comment. However, it is worthwhile to recall
that for ~t~ ~ po both F(x,t) and F, (tp, t) tend to zero
except in the case of a solid, and in that case, they tend
to a 6nite limit with the remarkable consequence that
both S„s(x,pp) and S;„,(x,&p) have a 5(pp) singularity. It
is experimentally well established that a finite fraction
of the neutrons are scattered without any energy
change. In a liquid, where diffusion cannot be neglected,
we do not have any elastic scattering in the same sense
as for a solid. This, however, does not exclude the
possibility of having a pronounced peak in the energy
spectrum with a Rnite width around the incident energy.
It is obvious that the width of this "quasi-elastic" peak
depends sensitively on how F(x,t) [F,(tp, t)] tends to
zero for

~

t
~

+~. On —the other ha, nd, scattering corre-
sponding to large energy transfers will mainly depend
on the properties of F(tr, t) [F,(tp, t) 5 for small times.

To analyze the Ii functions in more detail, it is con-
venient to express them in terms of velocity correlation
functions. For that purpose, we rewrite F(tp, t) in the
following way":

F(x,t) =P, (exp{ iv[rp—(0)—. r;(0)5}exp[—itc r;(0)5
)&exp(iHt/i') exp[itp r;(0)] exp( —iHt/A))r

= exp(iVirpt/2M) p; (exp{—ix [rp(0) —r, (0)5}
)&exp (iH', t/0) exp (—iHt/)'t)) T (9)

where g', =g+gg(ip v;), II being the Hamiltonian of
the system and v, the velocity operator of the jth atom.
We have here made use of the relation

exp( —itr r) f(p, r) exp(itr r) = f(p+Atr, r), (10)

f(p, r) being any function of the momentum and position
operators.

Taking the term j=0 in (9), we obtain the corre-
sponding expression for F,(tp, t). This alternative defini-
tion of F(x,t) and of F,(tp, t) has often been used before.

Before we conclude this section, in which up to now
we have been concerned with the formal aspect only,
we shall mention briefly the approximations which have
been used for F(tr, t) and for F, (ir, t).

"We are here dropping the averaging (1/Iir) Z& in Eq. (7) and
'putting index l =0.
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Making the assumption that the bracket in Eq. (9)
can be broken up into a product of two factors

(expL —ix (rs—r;)])r(exp(sH';t/ft) exp( —iHt/A))r,

we obtain the following relation between F(x,t) and
F,(~,t):

«' as follows (See Sec. IV):
(siH'tfse ~Htfs)

dt2 (" (t&)e (ti))&+ ' ' (14)

F (~,t) =F(~,0)F.(~,t).
All the coe%cients of the odd powers of A: involve an
average of an odd power of the velocity and thus dis-
appear. In (14) tt. (t) stands for the velocity component
along the direction of x. In Sec. V, it will be shown how
one can treat in a consistent way the infinite series in
(14) and obtain as a first approximation

This is the "convolution approximation" first used by
Vineyard' to take care of interference effects in an
approximate way. From Vineyard's derivation, it is
clear that this approximation holds for very small
values of I(:. For large I(, on the other hand, the inter-
ference effects are negligible and this is indeed in ac-
cordance with Eq. (11), for F(x,O) ~ 1 when «~ ~.
In most experiments using cold neutrons, the conditions
have, however, been such that I(: is neither very small
nor very large.

Equation (11) has been used earlier in calculating the
scattering from lead. ' As has been mentioned there, even
for intermediate values of a the observed variation with
~ of the scattered intensity for small energy transfer
can be accounted for reasonably well on the basis of
this approximation.

It is a fact that Vineyard's approximation violates
the following classical relation between the second
moments of S„g(ir,(v) and S;„,(x,o~)" ":

= exp —K dt's

Using this approximation in the expression for F, (ir, t)
we get the so called "Gaussian approximation"

(16)F,(x,t) =exp' «'y—i(t) j,

yi(t) = —s(jlt/2M)+s (t—ti)(v(0) v(ti))zdti. (17)

o~'S;.,(v,~)d(v,oPS,.h (v.,o))d(u =

In going from (15) to (16) and (17) we have made use
of the isotropy of the system and the time translation

(12) invariance of (v(ts) ti(vi))z. A further discussion of y, (t)
is given in Sec. VI.

x being kept constant during the integration. However,
this fact should not be used as an argument for a com-
plete rejection of the approximation because, as men-
tioned above, it may be of some utility in the region of
small energy transfer. This region does not contribute
significantly to the integrals in Eq. (12). It is certainly
true that for larger energy transfer the approximation
is not valid; it overestimates the interference effects";
the reason being that instead of Eq. (11) we have for
3=0, in the classical limit

d'F (ir.,t)/dP =dF, (x,t)'/dP. (13)

This leads directly to Eq. (12).Egelstaff's has suggested
a modification of Vineyard's approximation for small
times in such a way that Eq. (13) is satisfied and
furthermore the corresponding relation between the
fourth time derivatives of F(ir, t) and F,(x,t) for t=O is
approximately fulfilled.

In most applications made so far, one has also made
simplifying assumptions about F,(v.,t).' r One ca,n ex-
pand the bracket ( ) in Eq. (9) (j=0) in powers of

"See the following section on moments."P.G. De Gennes, Physica 25, 825 (1959).
'4 See reference 7, I"ig. 4."P. A. Egelsta8, Proceedings of the Symposium on Slow

Neutron Scattering, International Atomic Energy Agency,
Vienna, 1960, paper IS, p. 7 (unpublished).

III. THE FLUCTUATION-DISSIPATION THEOREM

It was first pointed out by Schofield" that there
exists a simple relation between the real and the
imaginary parts of Van Hove's G function, and that a
violation of that relation leads to a violation of the
condition of detailed balance for the scattering cross
section. In the treatment of transport properties ac-
cording to Callen and Welton, "Kubo, "and others, a
relation connecting the fluctuations and the dissipation
in a system plays an important role. That relation is a
consequence of the Hermiticity of the quantities in-
volved. The relation obtained by Schofield is a dissipa-
tion-fluctuation theorem, which was rederived in an
earlier paper'~ using the technique of Callen and Welton.
Van Hove" did connect the imaginary part of his
G function with the linear response in the density of
the system due to the interaction with the incident
neutrons, but he did not show how such an analysis
leads to a considerable simplification of the scattering
problem.

It can be shown" that the imaginary and real parts
of F,(x, t) are related as follows:

"P.Scho6eld, Phys. Rev. Letters 4, 239 (1960).
'~ H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951)."R. Kubo, J. Phys. Soc. Japan 12, 570 (1957)."K.S. Singwi and A. Sjolander, Phys. Rev. 120, 1.093 (1960).
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e '"' ImF, (»,t)df

= —i tanh(Poi) e '"' ReF, (»,f)di, (18)

where P = fi/2k+T; Eq. (18) implies the following formal
relation

The Auctuation-dissipation theorem is most often
given for Hermitian operators. If A (t) and B(t) are two
Hermitian Heisenberg operators and Boltzmann's sta-
tistics is applicable, Eq. (19) holds for the statistical
average (A(0)B(t))r.si This more general formulation
will be used when we discuss the Gaussian approxima-
tion for F, (»,t)."

ImF, (»,f) = —tan(Pd/dt) ReF, (»,f). (19) IV. THE MOMENTS OF S(»,es)

The same equation holds, of course, also for G, (r, i),
which is obtained from F, (»,t) through a Fourier trans-
formation in». It is obvious from Eq. (19) that any
assumptions regarding ReF, (»,f) imply automatically
through (19) a certain assumption about ImF, (»,t).
From the definition, it follows that ReF, (»,t) is an even
function of t.2'

When applying Eq. (19), a considerable simplifica-
tion can be made by introducing a new function
H, (», i), defined by

H. (»,f) =F.(», &+iP)

Expanding F, in powers of P and making use of Eq. (19)
leads to the following relation:

H, (»,f) =exp(ad/dt)F, (»,f)
= sec(Pd/dt) ReF, (»,f). (21)

A less formal expression is obtained by taking the
Fourier transform in f of Eq. (21), and one obtains an
equation of the same type as (18).

Due to the fact that sec(Pd/dt) is a real operator, the
function H, (»,t) will be real. This is a consequence of
Eq. (19). On the other hand, the reverse is also true;
assuming H, (», f) real leads to Eq. (19).The latter for-
mulation is more useful when calculating the scattering
cross section. By simply modifying the path of integra-
tion while taking the time Fourier transform of F, (»,i)
the scattering cross section S;„,(»,&u) can be written in
the form

The first four moments of S;„,(»,o&) were first given

by Placzeks using an expansion of F,(»,t) in powers
of t. We shall here give a simpler derivation of these
moments.

A(», f)= Q (ix)" dpi
n=o

d]~ ~ ~ ~

&n—1

dt„($„(f„) v, (ti) }. (25)

Denoting has/2M by o&ii, we have from (25) and from
the definition of S;„,(»,&e)

exp/i (oi —o ii)t]S;„,(»,oi)doi

Incoherent Case

The moments of S;„,(»,o&) can be derived very simply
by using the expression for F,(», t), obtained from Eq.
(9) by retaining the self-term j=0. Introducing the
notation

A (»,t) = exp(iH't/fs) exp( —iHt/fi), (23)

it is easy to derive the following equation for A (»,t):
r)A (»,t)/r)t =i~A (»,f)e„(t), (24)

v„(i) being the projection of v(t) along». Equation (24)
can be solved by iteration, giving the formal solution

1
S;„,(»,oi) =e~"—

2x
e
—'"'H (»,t)di, (22) n=o

&2n-I

df~e ~ ~

originally given by Schofield. "
H, (»,i) is a real and an even function of f and thus

the integral above is even in ~. The exponential factor
ej'" is essential to satisfy the condition of detailed
balance. It is now possible either to try to 6nd approxi-
mate expressions for H, (», t) directly or, which seems
more suitable, first to find ReF, (»,i) approximately and
then determine H, (»,f) through Eq. (21).

The same arguments as used for F,(»,t) can be
applied to F(», t) and the relation between the real and

imaginary parts holds unchanged.

~ In an unpublished paper, R. Becker has recently discussed the
Quctuation-dissipation theorem in greater detail and has ex-
plicitly given a number of different relations connected to Eqs.
(ig) and (19).

dts„(s„(fs„) s„(fi))T. (26)

Due to thermal averaging, all odd powers of v„have
disappeared.

We shall introduce the notation

(27)

Then by repeated differentiation of Eq. (26) with

"See W. Bernard and H. B. Callen, Revs. Modern Phys. 31,
ioij (1959).

~ The relation between the real and imaginary parts also holds
for the case Bt=A, even though A may not be Hermitian if the
operators depend only on the position coordinates. This fact has
actually been used in the derivation of Eq. (18).
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respect to I, and finally putting 3=0, we get

(1);„.= 1,

((co—co~));„.=s(o„)r——0,

M M g iIIg =-I(: 'Vtt

((co—cog)');„,= icc'—(o„do„/dt)r,

((co coo—)');n.= s'(o„')r s'—(o„d'o,/d t') r

(28)

and

&R inc

= (2cogksT/5)+ (ft/6k' T)((co—cog)');~.+ ) (33)

((co—co~)');„,= (2»ksT/A)
—»'+(~'»2k''T')«~ —»)') + "

Coherent Case

The algebra here is more involved than in the above
case due to the presence of the term expL —i1c (1'o—r&)j
in Eq. (9).

Using the notation p(x) for Di(x,0)—1), a quantity
which is obtained from x-ray or neutron-diffraction

See for instance L. D. Landau and E. M. Lifshitz, Statistical
Physics (Pergamon Press, New York, 1958) p. 102.

It is then possible to show that if U is the potential
energy of the system and s is the component of the posi-
tion vector of a particle in the I(.-direction,

) )'-=(
((co—cog)4);„,=cc4(o„')r+ (s'/M')((c) U/c)s)')r. (29)

These are the same as the expressions given by Placzek
where (co");„,are given instead of ((co—cog)");,as above.

Neglecting co~, and calculating the statistical averages
in (29) classically, leads to De Gennes" expressions for
the moments of S;„,(x,co).

The utility of the above moments from the experi-
mental point of view is that they provide a relation
between various observable quantities and hence a
check on the accuracy of the experimentally obtained
S; .(x,co). This will be seen from the following.

Using a theorem" which gives the quantum me-
chanical correction to the classical statistical average of
any dynamical variable, one has

(o„')r——(kg T/M)

X{1+('i/t1 2M+k'T')((c)U/c)s)'). &+ .) (30)

where ( )„means the classical thermal average. To
this approximation, the velocity distribution has been
shown to retain its Maxwellian form (see the foregoing
reference) and hence

(s ')r =3(o ')r'= 3(kgT/M)'
X(1+(h'/6Mks'T')((c)U/c)s'))a/+ ). (31)

Using
((c)U/c)s)'). g ks T(c)'U/c)s——').i, (32)

and eliminating (cl'U/cjs') r in Eqs. (28) and (29), we get

experiments, we first get

(1)-h= 1+7(&)

((~—~~))-h= —»V (~),

((co») ) oh=& Pt (& o expL —i& (ro —rt)l&.P)r
'"'+i (o o exp' —i&'(ro r~—)3&.t) r

(33)

V. TRANSFORMATION OF E,(x,t)

To be able to analyze the scattering function S;,(x,co)
in greater detail, we will bring it in a form which, at
least in some cases, is more suitable than that given
in Eq. (9). We are primarily interested in the thermal
average of 2 (v.,t) given in (23). Using the expansion in
Eq. (25), we get

n=o

«.- (o,(t.-) "'.(tr))' (39)

We will adopt a time-cluster expansion which is very
similar to the cluster expansion in distance introduced
by Ursell2' and Mayer" when discussing the thermo-

'4 H. D. Ursell, Proc. Cambridge Phil. Soc. 23, 685 (1927)."J.E. Mayer, J. Chem. Phys. 5, 67 (1937).

(Note that the second of these equations implies
eoh=R= inc.

Again using the theorem mentioned above, it can be
shown that

((co—cog)')gob = (2cdlckgT/5)+cd gPy (x)
+(A(dg/6MkgT) Q;(exp/ ix—(ro—r;)$

X (O'U/Bsoas;)). &y (36)

((co—cog)')..~= (cog/M) P;(expL —ix (ro—r,))
X (&'U/&so&s, )),i+

Hence

((co—cd')'),.s ——(2cogk~T/fi)+cogPy (~)
+(&/6k T)((-—

In Eqs. (33), (34), and (37), we have taken into
account the recoil term cog and the first-order quantum
correction to the value of (o„s)r. The recoil effect can
certainly not be neglected whenever the mass of the
atom is small. As regards the quantum correction to
(o„)r it is negligible in most liquids. By using the ex-
pression for a solid with an appropriate value for the
Debye temperature, we can roughly estimate this
quantum correction. We get

(").—(o.').~=((s.').~/20)(0D/T)', (s.').~=k.T/M. (38)

In the exceptional case of liquid Neon (Tsr=24'K,
0&'"'d ——64'K) and possibly in the case of liquid Argon
(Tor 84'K, ez'"' =——80'K) we may expect the quantum
correction to be significant.
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Here (v„(ts„). e„(ti))r is broken up into products of
lower order correlation functions s~(t~ ti) in all

possible ways, and the summation is extended over all

possible products. We shall use the convention that the
times within a I function are for t) 0 ordered so that
the earlier times stand to the left and later times stand
to the right in successive order, and for t(0 we shall

prescribe the opposite ordering. This is the same rule as
that used for (v, (t„) e„(tr))r.

e„shall denote the number of times the function N~

appears in a product. We can thus characterize a
product by the partition (Ns, N4, ).All products corre-

sponding to the same partition can be obtained from one

of the products by simply permuting the times involved.
To conserve the number of 3's appearing in each product
one evidently has

Pire„+Psrr„,+ . =2m. (43)

When using Eq. (42) in Eq. (39) and considering

t —+ ~, the major contribution to each integral comes
from the term in which (ti, ts), (ts, t4), etc. , are taken
together. This allows the distance in time between all

the pairs to be large but the times within a pair have
to be close together, how close being determined by the
raPidity with which ss(ts, ti) ~0 as ~ts —ti~ —+ eo. All

dynamic properties of dense systems. We express the
higher order correlation functions in terms of those of
lower order as follows:

(e.(t4) ~.(ti))r
{S2(t4)ts)S2(t2)tl) +S2(t4) ts) S2(ts) tl)

+S2 (t4~tl)S2 (tSI)t2) }+S4 (t4)t8)t2)tl)l (40)

(e.(ts) '(ti))r
= {SS(telts)S2(t4)ts)S2(t2)tl) + ' ' ' }

+{S4( t~s ts) t4) t)sS2( ts) t)i+' ' ' }
+ss (ts)ts)t4)t3)ts)ti). (41)

Here ss(ts, ti) =(e„(ts)e„(ti))r and the higher order func-
tions N4, N6, etc. , are successively defined by the above
equations. The dots in the first curly bracket in (41)
imply that all possible products of N2 functions have
been taken. Similarly, in the second bracket in (41) all

possible products of u2 and u4 functions are implied.
The I functions are defined in such a way that they

are essentially zero unless all the times involved are
close together. For instance, in (40) whenever one of
the times is far from the other three, (e, (t4) v„(ti))r is

zero; and when the four times cluster together in pairs
so that the pairs are far from each other, this bracket
breaks up into one of the products appearing inside
the curly bracket in (40). Thus s4(t4, ts, ts, ti) vanishes

except when all four times are clustered together.
We notice that in Eq. (39) we have the restriction

for ~)0, and 1&3~&1~& for II(0.
In the general case, we write

dt

fan —1

Ct, (e„(ts„) . v„(ti))r

dt2

t2n —1

«s- 2 (f» f. )

(2rs)!

x(f„.f„.)
ct, . ct,.p (f„, f„,). . .

ss To indicate how one arrives at (45) let us consider Eq. (4I).
In the erst curly bracket, we have taken all products of N2 func-
tions which correspond to the partition (3,0, ~ ). By permuting
the times involved in a product we get 6I terms. However, per-
mutations leading only to a re-ordering of the N2 functions should
not be counted. We thus get 6t/3t difterent permutations. Due to
our convention of time ordering in each u function, we have also
to discard any permutation of the times inside the u functions.
This leads to another denominator (2!)'.

In the second curly bracket, all terms corresponding to the
partition (1,1,0, ~ ) are included. The total number of permuta-
tions is 6t, and we have to divide this number by 2!, the number of
permutations inside e» and by 4!, the number of permutations
inside u4.

the other terms in (42) contribute to a lower power of t.
For t —& 0, on the other hand, the integrals in (39) are

given by the values of (tt,'")r, which for a Maxwellian
distribution of the velocity can be written

f(2s)!/2 "s!$((e')r) ~. (44)

Exactly the same results is obtained by using (42) and
assuming that all the s», P)1, vanish. In fact, by
neglecting these correlation functions one obtains the
"Gaussian approximation" given in Eqs. (16) and (17).
From the arguments above, we would expect this
approximation to be good either when the scattering
cross section depends entirely on the behavior of the
system over a very short period of time or when the
behavior for large times plays a dominant role. One
might hope that the sam, e approximation should be
reasonably good for intermediate values of time as well.

We shall proceed by taking into account the higher
correlation functions also and thus get the corrections
to the Gaussian approximation. First, we notice that
the number of products in (42) corresponding to a
given partition is"

N(es, S4,ms, .)
= (2n)!/ (2!)"'ns!(4!)"'N4!(6!)"'ss! . (45)

The integrations in (39) can be simplified considerably
so that a partial summation of the series is possible. To
show this it is convenient to extend the time region
within which the velocity correlation functions have
been used so far, namely t2 &~$2 i&&&&t~&&t for t)0
and t2„~&t2„~~& ~&t~&~$ for $(0. We introduce a
new set of functions f~(t~, ti) such that

f„(t„, t,) =S„(t„, t,), (46)

in the regions mentioned above and define them to be
invariant for permutations of the times (t~, .ti).
Using (42), it follows that
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1
S;.,(xp)) =——

27r
e—'"' exp(P ( «') "—y (t))Ct, (58)

n=1

where for rt&~2, y (t) are defined in (48) and in an
alternative way in (50). p&(t) is re-defined to include
the factor exp(ittt«. ', /2M) in Eq. (9). Henceforth the
notation yi(t) will stand for

yi(t) = i(kt /—2M)+ (t—ti)(v„(0)v„(ti))rCti, (59)

which for an isotropic system can also be written in
the form given in Eq. (17). Hence Di, introduced in
Eq. (54), shall be redefined as

Di —i(A/2M)+—— (v„(0)v„(t,))vCt, . (60)

Using the fact that F,(x, t+iP) is real, and hence
that p„(t+iP) is real, we immediately conclude that
all D„are real and that

In special cases, of course, some of the constants
above may vanish. For instance, all N2, (0,0, , 0) for
n)1 are zero if the velocity distribution function is
Maxwellian. This is always true for a classical system,
if the interaction is velocity independent, and as shown
in Landau and Lifshitz (see earlier reference) it is also
true if the quantum corrections up to order A2 are in-
cluded. According to Schofield' T2(/) starts in a classical
treatment as t', whereas in the same treatment pi(t)
starts as P Th. is can be seen from Eq. (50) without
much de.culty.

If we use the expression for (A (t))v given in Eq. (49)
together with the term j=0 in Eq. (9) we get for
S;,(r.,~) the following

of magnitude we have for ItI large

(—«')"y„(t)-—«'D ItI
n=1

X (1+C2«'(vp)r'i'+C4«4(v„')p'i'+ ) (63)

where d„are constants of order unity or lower. It is
obvious that to have the main contribution to the
integral in (58) from a time region t) ri the value of
«must be such that «'Diri=«'(v„') rri2((1 in which case
the non-Gaussian part in Eq. (63) is small. Here we
have made the assumption that the infinite series be-
haves properly; it shouM be positive for all values of ~

and be of the order unity or higher. This certainly has
not been proved and remains an assumption.

It is of interest to see whether Van Hove's G, (r, t)
function tends to a Gaussian form in r when

I
t

I
—+ ~.

We therefore write

G, (r, t) = (2v) ' exp( —ix r) expI —«'yi(t) j

XexpLQ (—«') "y„(t)/Cv. . (64)
n=2

Let us for the sake of simplicity consider the 6rst order
correction to the Gaussian approximation. Expanding
the second exponential in (64) and retaining only the
first two terms, we get

G, (r, t) = (2')—' exp( —ix r)

Xexp[—«'y (it)]f1+«'yg(t)+. )Ch

=[4~~,(t)5 *'expI ——r' /q4, ( )tj
x (I+L~.(t)/7, (t) j((15/4)-5L. /4„(t) j

ImC =pD„; p=k/2kIiT. (61)

D~ can be shown to be the di6usion constant.
The result obtained in Eqs. (55) and (56) for large

times may seem to contradict what was said earlier,
namely that the Gaussian approximation should be
good both for small and for large times. It is certainly
true that (A(t))r does not in general go over into the
expression (15) when ItI —+ ~. However, we are not
directly interested in (A(t))T or F,(x,t) but in its
Fourier transform S;,(r.,~). To rea, ch experimentally
the time region where (55) or (56) is valid «must be
chosen small and consequently the non-Gaussian con-
tribution will be negligible. To see this more clearly let
us first estimate the order of magnitude of D„.%e get
from the definitions in (54)

ID I (((v 2) )mr 2n—i (62)

where v-„ is the time region within which u2„ is different
from zero. Assuming that ~„'s are all of the same order

For
I
t

I
~ ~ the correction term tends to

(D2/Di'I t I) I:(15l4)—5(r'/4DiI t I)

+ (r2/4D, ItI)'g. (66)

Thus for the region of interest, namely where r'/4Di
I
t

I

is not too large, the correction term tends to zero for
large times as 1/ItI. The higher order corrections de-
crease even more rapidly. From the estimate in (62)
it is now obvious that after a certain time the function
G, (r, t) is Gaussian and satisfies the simple diffusion
equation, and that in order of magnitude v. is the same
as the relaxation time of the velocity autocorrelation
function (v(0) v(t))~. Experiments on some simple
liquids have given for v a value of the order 10 "
to 10 "sec.

In spite of the fact that F,(x,t) tends to a Gaussian
form for t —+0, this approximation is not in general
valid for S;„,(x,cu) for « —+ ~. This is clearly seen from
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Eq. (58) after making a change of integration variable,
y=it;t, and expanding the p functions in powers of y.
We can write

exp( —& (—g') "C„),
n=l

(73)

&«xpf 2 R-(y))dy, (67)
n=l

v„(t)=X—'* P, g, (t). (69)

This condition is exactly fulfilled for a solid in the
harmonic approximation.

The velocity autocorrelation function is given by

(Vg (t2)'Vg (tl))T X Q s (58 (t2) $s (tl)) T (70)

For m4(t4, . , t~) we get

(«, . t)=& 'Z {(& («) & (t))
—(k.(«)5.(t)) ($.(t2)$ (t~))r— ), (71)

and similar expressions for the higher correlation func-
tions. This leads to

q, (t) =O(1/S), q, (t) =O(1/Ã'), etc., (72)

and hence they can be neglected if E is large, a result
which is also a consequence of the central limit theorem.

We have in this way proved the Gaussian form of
F,(x,t) for a harmonic solid without explicitly making
use of the particular properties of the eigenstates. If we

had done that we would, in fact, have found that
y„(t) for m) 1 vanish exactly independent of the
value of X.

If the anharmonic effects are not too large, one might
expect that the functions p (t) decrease rapidly in
magnitude for increasing values of e. It would, in fact,
be interesting if one could test the Gaussian approxi-
mation for a solid by measuring the ~ dependence of
the Debye-Wailer factor at high temperatures. Accord-

ing to Eq. (58), it should have a form

g (y) = —(y'/2)(v. '& +o(1/ )
g, (y) = (y4/24) L(v„')r—3((vP)r)'j+O(1/x), etc., (68)

and u)g ——A~'/2M.
The g„'s for e) 1, obviously do not tend to zero for

~~ ~ if the velocity distribution is non-Maxwellian.
However, as mentioned earlier the distribution is Max-
wellian even if quantum corrections up to order A' are
taken care of. We can, therefore, expect the correction
to be extremely small except for very low temperatures.

We shall end this section by considering a system
where the velocity of an atom can be considered as a
superposition of a large number of components $, (t),
which are dynamically independent. Each component
is supposed to give a contribution of order E ', Ã being
the number of components. We can thus write

where C 's are the same constants as in Eq. (55);
diffusion having been neglected all D„must vanish and
all C„are real.

In the case of a liquid, the anharmonic eQects are
certainly large but here new phenomena such as diffu-
sion are responsible for giving more randomness to the
motion. This may have a decreasing effect on y„ for
e&1. It is important to try to estimate the magnitude
of the non-Gaussian correction. The effect is most
clearly revealed by plotting lnF, (x,t) vs a' and deter-
mining how much the curve deviates from a straight
line. Such an analysis has been made by Egelstaff"
using the experimental data of Brockhouse and Pope'7
for liquid lead.

VI. GAUSSIAN APPROXIMATION

In most computations made so far, the Gaussian
approximation has been made. An argument in favor
of this is that it is known to hold exactly in certain
special cases: a harmonic solid, an ideal gas and a system
for which the motion of the atoms is governed by
I.angevin's equation; it seems reasonable to make the
the same approximation for other systems as well.
This is particularly attractive since the interpretation
of the experimental data is considerably simpli6ed.

Ke shall discuss the Gaussian approximation in
greater detail starting from the expression given in
Eqs. (16) and (17). We have seen that in this approxi-
mation the scattering is completely determined by the
function

yi(t) = iht/2M+ ', (t——tj)(v(0) v(t-, ))rdtg. (74)

To satisfy the Quctuation-dissipation theorem we use
the formulation in Eq. (22) with

H. (x,t) =expL —~'p(t) j,
where p(t) =7,(t+ip).

As it stands p(t) is not in a very convenient form and
we will therefore bring it into a form, more suitable
for direct application. For that purpose we first consider
the second derivative

d'p(t)/dt'=d'y~(t+ip)/dt'= ,'(v(0) v(t+ip))r. (7-6)

By making use of the dissipation-fluctuation theorem
$Eq. (21)$ we can replace (v(0) v(t))& by its real part
and after integration we get

d)
p(t)=p(0)+ — (t t') seel p—

0 & dt,)
&&Re(v(0) v(t~))ddt~. (77)

'~ B. N. Brockhouse and ¹ K. Pope, Phys. Rev. Letters 3,
259 (1959).
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As mentioned earlier, p(t) is an even function of t and reality of p(0) and the fluctuation-dissipation theorem
hence no linear term in t should appear in (77). fEq. (19)]. Denoting the differential operator d/dt

The constant p(0) is obtained by making use of the by D, we have

p(0) =7t(sp) =exp(spD)v (0)

=cos(PD) Remi(0) —sin(PD) Immit(0)

d= —P —Immit(t) +P'
C=o P2D2

cos(pD) —1 d'—Rept(t)
dP —8=0 p2D2

sin(PD) —PD d'—Immi(t)
8P —c=o

+p2
4%kgT

cos(PD) —1 sin(PD) —PD
tan (pD) Re(v (0) .v (t))r t g=s.

psD' p2D2
(78)

For suf6ciently high temperatures we can expand
p(0) in powers of 1/T giving

p(o) =
83A~T

O'M(a' )s +
48k''T'

(79)

where (u')& is the mean-square acceleration of a particle.
The second term above can be estimated. Assuming
(a')z to be the same as for a Debye solid with a Debye
temperature 8 one can easily show that

The problem thus reduces to that of calculating
(v(0) v (t)),i based on Newton's equation. One approach
would be to solve these equations directly for a large
number of particles. This, of course, requires a high
speed computer, but it now seems feasible. Another
approach would be to assume a certain form for the
autocorrelation function with some adjustable param-
eters and try to fit the calculated scattering cross section
to the experimental data.

ft'M(a') z /48k a' T'= —', (0/4T)'. (80) VIL SPECTRAL REPRESENTATION OF yg(t)

This is certainly very small compared to unity for any
reasonable values of 0 for a liquid, except possibly liquid
neon and argon.

If we retain only the first term in Eq. (79) and the
first term in the expansion of the differential operator
in (77) and further if we replace Re(v(0) v(t))z by its
classical analog (v(0) v(t)), i, we obtain an expression
which was suggested in an earlier paper ' '

In analogy with the case of a solid, Egelstaff et al."
have suggested the introduction of a frequency spec-
trum for a liquid; this spectrum being that of the velocity
autocorrelation function. Here we shall show how this
can be done in a natural way without any reference to
a solid.

We define two frequency spectra related to the real
and imaginary parts of the velocity correlation function:

+-
MkaT 3 o

(t—ti)(v(0) v(ti)), idti. (81) Im(v(0) v(t))r —— cvf(co) sin(~t)dko, (83)
2M p

For a solid, the approximations suggested for the
integral in Eq. (77) imply retaining only the first term
in the expansion

Re(v(0) v(t))r ——

2
g(re) cos(o~t)do~. (84)

1 1
(1 'p'~'+—" )—-

sin (po)) pe~

From the fluctuation-dissipation theorem (Eq. 19)
(82) it now follows that

where co is a phonon frequency. We can neglect the
quantum correction whenever 0'/24T'«1. The small-
ness of this term for temperatures higher than the Debye
temperature indicates that we should be able to neglect
completely the quantum corrections for most liquids.
We, therefore, except Eq. (81) to be a good approxima-
tion for most liquids.

g( )=P oth(P )f( ) (85)

3Q 00 cc

dt (of(re) sin(cot)do)=2' o o

35
f(~)d~,

2M p

The integral of f(oi) can be evaluated by integrating
both sides of Eq. (83). The right-hand side gives

'~ P. Egelstaff, S.J. Cocking, R. J. Royston, and I.M. Thorson,
"By definition p(t) here differs from that in reference 19 by a Proc. Symposium on Slow Neutron Scattering, International

factor two. Atomic Energy Agency, Vienna, 1960, paper IS, p. 10.
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and the integration of the left-hand side leads to

ce 1
Im(v(0) v(t))ddt= — ((Lv.(0); v (t). 7)r+ }dt

2$ 0

=(1/2)((L.(0)' .( )7)

-(L~*(0);r*(0)7)r+."},
=3k/2M,

43' j.
f(cd) = — Im(v(0). v(t))r sin(cvt)dh

3' f2 M
(89)

4M tanh(Pce)
Re(v(0) v(t))r cos(cet)dh. (90)

As shown by Egelstaff et al. the value of f(0) is
uniquely determined by the diffusion constant. We can
see this easily by inverting the Fourier transforms in
Eqs. (83) and (84):

m„v„, v, are the three Cartesian components of v and
r, r„, r, are the corresponding components of the posi-
tion vector; and where commutation rules for position
and velocity operators have been used.

We thus have

Since the diffusion constant D is given by

D= Re(v(—0) v(t))ddt.
3

(91)

f(ce)dcd = 1.
We get

(86) f(0)= 2MD/7rkliT. (92)

Using the above spectral representation in Eq. (74),
it can easily be shown that

If we assume that (v(0) v(t))z decreases rapidly
enough for t —+ ~, we can conclude from Eq. (89) that
f(ce) can be expanded in powers of a&2

ti
yi(h) =

2M

f(ce) =2MD/xk JiT+cgco'+c4(v'+ (93)

t'i "f(~)
h (t)=

2M
ta,nh(P(u/2) dce

fi " f(ce)
-t 1-cos(e~h) 7dce. (88)

M e ce sinh(pcs)

Again, if we approximate tanh(Pce/2) by Pce/2 we arrive
at the first term in Eq. (79).
"See A. Sjolancier, Arlciv Fysilc 14, 315 (1958)."P. A. Engelsta& and P. Schofield, Nuclear Sci. and Eng. 12,

260, (1962).

)& (coth(p~) L1—cos(a&h) 7—z sin(cet) }des. (87)

This is exactly the same expression as obtained earlier
for a harmonic solid."We thus see that this particular
form for yi(t) is not a consequence of the harmonic
nature of the motion but purely a consequence of the
fluctuation-dissipation theorem. The system is here
characterized by a velocity spectrum f(co), which in
the case of a harmonic solid is identical with the fre-
quency distributions of the normal modes.

For p(t) we get the form which has been used by
Egelstaff and Schofield in a recent paper"

4M (—1)"
C2n=

3 f (2~+1)!
h'-"+' Im(v(0) v(h))ddt. (94)

Assuming (v(0) v(t))z to have all its time derivatives
continuous everywhere and tending to zero for t —+ ~~,
we also conclude from Eq. (89) that f(ce) decreases more
rapidly than any power of 1/co for cd —& ~.

GENERAL REMARKS

In the present investigation, we have covered in
detail only a part of the scattering problem. For in-
stance, no attempt has been made to calculate or even
estimate the non-Gaussian contribution to the scatter-
ing. Furthermore, we feel that a better approximation
for the coherent correction is needed in order to be able
to analyze the experimental data in greater detail
However, in the calculation of the incoherent scattering
cross section in the Gaussian approximation one re-
quires a knowledge of the velocity autocorrelation
function only. The classical autocorrelation function
has been calculated on the basis of a simple model of a
liquid, and these results are reported in the following
paper.


