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We present in this paper Monte Carlo estimates of the percolation probability P(p) as a function of the
constant probability p of transmitting fluid for the atom (site) and bond percolation problem for a number

of lattices.

ERCOLATION deals with the flow of fluid through
a medium when the flow is governed by a random
mechanism residing in the medium. A medium is defined
as an infinite set of afoms (nodes) and bonds (arcs) such
that every bond connects two atoms. Bonds may be
one-way or two-way and fluid cannot flow against the
direction of a one-way bond. Fluid flowing along a
bond will “wet” its two end points.
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F1c. 1. Comparison of PyB(p) for the two-dimensional square
lattice for various values of N.

Two important distinct types of percolation are (a)
atom percolation and (b) bond percolation. In (a) each
atom A4 has a constant probability p of allowing fluid
reaching 4 to flow along bonds from A. In (b) each
bond has a constant probability p of transmitting fluid.
For the various physical applications of these processes

see Domb,! Elliott ef al.,? Sato et al.,* and Broadbent
and Hammersley.*

The percolation probability P(p) of the medium is
defined to be the probability that fluid supplied to a
single specified atom in the interior of the medium will
“wet” infinitely many others. The critical probability po
is defined as

sup . (1)
P(p)=0

Wherever necessary we use PA(p), pot, PE(p), pof to
distinguish between atom and bond processes.
This paper presents and discusses results obtained
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F16. 2. Comparison of PyB(p) for a typical three-dimensional
lattice for various values of N.
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T16. 3. Comparison of PB(p), PA(p) for the two-dimensional
triangular and hexagonal lattices.

for P(p) by a Monte Carlo experiment on the IBM 7090
computer at Bell Telephone Laboratories. The corre-
sponding results obtained for po have already been
published.5:¢ The method of computation depends upon
the fact that, if Py(p) denotes the probability of a
single source wetting at least NV atoms, then for suffi-
ciently large NV, Py (p) approximates P(p). For complete
details, see Frisch et al.”

The size of the computer’s store sets an upper limit
on the practicable value of N; and, within this limit,
the larger N, the longer the computing time is. Hence,
N should be chosen as small as possible consistent with
yielding an adequate approximation to P(p) by Px(p).
A previous calculation at Harwell for the three-
dimensional simple cubic lattice, on a machine whose
store would accept a maximum N =8192, had indicated
that values of NV about 2000 would suffice.® The IBM
7090 calculations at Murray Hill, where the store
accepted a maximum N = 7000, supported this finding
for the three-dimensional lattices examined. However,
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it also indicated that larger values of NV were needed
for two-dimensional lattices. We have not yet evinced
any theoretical explanation of this empirical fact.
Figure 1 shows curves for PyZ(p) for various values of
N on the two-dimensional square lattice, and it also
shows an estimate of PB(p) obtained from these curves
by extrapolation in 1/N. This estimated PZ(p) is
positive for $>0.487, but it is known® theoretically
that PB(p)=0 for p<3i. Some of this contradiction
may be ascribed to Monte Carlo sampling errors, but
we do not think that the whole of the discrepancy can
be explained away like this. A similar discrepancy
appears for the two-dimensional triangular and hexa-
gonal lattices, where the Monte Carlo curves conflict
with the theoretical result!® that the two respective
bond problem critical probabilities must sum to at
least 1. In comparison with Fig. 1, Fig. 2 shows the
much more rapid convergence of Py(p) to P(p) in a
typical three-dimensional case.

The Monte Carlo results satisfy P4(p)< PB(p) for
each lattice in conformity with theory.!* The strongest
and weakest cases of this inequality are illustrated in
Fig. 3 and these support the belief that, for these eight
lattices, PA(p) is strictly less than PB(p), (po<p<1).
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F16. 4. Comparison of PZ(p) for the face-centered cubic
and close-packed hexagonal crystals.
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PERCOLATION PROBABILITIES FOR VARIOUS LATTICES

The curves for the face-centered cubic and close-
packed hexagonal lattices in Fig. 4 are indistinguishable
to within Monte Carlo sampling errors. We conjecture
that these two curves should be theoretically identical
and that a similar identity should hold for the P(p) of
the two tetrahedral lattices (ice and diamond).!»
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Fic. 5. Comparison of PB(p) for the triangular lattice derived
from two completely different samples.
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Each curve is effectively a histogram for a population
of 100 independent observations (save that 50 replaces
100 in the case of P4(p) for the ice-tetrahedral, the
face-centered cubic, and the close-packed hexagonal
lattices). The standard error of P associated with a
single point on any curve is thus [P(1—P)/100] or
[P(1—P)/50] as the case may be. Figure 5 exhibits

Le Note added in proof. There is evidence that this conjecture
is false due to M. E. Fisher (private communication).
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F1G. 6. PA(p) for the nine structures.

two independent experiments for the triangular lattice,
shows that the discrepancy between these experiments
conforms to this standard error, and illustrates the
relative accuracy to be expected in the estimates here
and in the other figures.
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F16. 7. PB(p) for the nine structures.
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Figures 6 and 7 provide a summary of results. All
lattices have two-way bonds, with the exception of the
oriented square lattice. In this exceptional case, each
atom has plane coordinates (x,y=0,1,2,--.) and a
pair of bonds from (x,y) to (x, y+1) and to (x+1, y).
The critical bond probability for this oriented lattice
agrees with Mauldon’s theoretical result.!?

Complete numerical results for P(p) may be obtained
on request from Bell Telephone Laboratories.

2 J. G. Mauldon, Proceedings of the Fourth Berkeley Symposium
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