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onte Carlo estimates of the percolation probabili y P
' t I', , as a function of theWe present in this paper Mon e ar o es

(
'

) nd bond ercolation problem for a numberconstant pro a I i y p 0b b'1't p f transmitting Quid for the atom site an on per o
of lattices.

' PERCOLATION deals with the flow of Quid through
a medium when the Qow is governed by a random

as an infinite set of atoms (nodes) and bonds (arcs) such
that every bond connects two atoms. Bonds may be
one-way or two-way and Quid cannot Qow against the

bond will "wet" its two end points. ps= sup p.
E(p) =0

see Bomb ' Elliott et at. ' Sato et at. ,
' and Broadbent

7

and Hammersley. 4

The percolation probability P(p) of the medium is
defined to be the probability that Quid supplied to a
single specified atom in the interior of the medium will
"wet" inQnitely many others. The critical Probabi ify Ps
is defined as
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d' t' ish between atom and bond processes.uistinguis e
s obtainedThis paper presents and discusses resu ts o i
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FIG. 1. Comparison of P o(p) for the two-dimensional square
lattice for various values of lV.
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1FIG. 2. Comparison of P o(P) for a typical three-dimensiona
lattice for various values of X.
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it also indicated that larger values of iV were needed
for two-dimensional lattices. We have not yet evinced
any theoretical explanation of this empirical fact.
Figure 1 shows curves for P~~(p) for various values of
X on the two-dimensional square lattice, and it also
shows an estimate of P~(p) obtained from these curves
by extrapolation in 1/S. This estimated P~ (p) is
positive for p&0.487, but it is known theoretically
that P~(p) =0 for p&-', . Some of this contradiction
may be ascribed to Monte Carlo sampling errors, but
we do not think that the whole of the discrepancy can
be explained away like this. A similar discrepancy
appears for the two-dimensional triangular and hexa-
gonal lattices, where the Monte Carlo curves conflict
with the theoretical result' that the two respective
bond problem critical probabilities must sum to at
least 1. In comparison with Fig. 1, Fig. 2 shows the
much more rapid convergence of Pv(p) to P(p) in a
typical three-dimensional case.

The Monte Carlo results satisfy P~(p)&P~(p) for
each lattice in conformity with theory. "The strongest
and weakest cases of this inequality are illustrated in
Fig. 3 and these support the belief that, for these eight
lattices, P"(P) is strictly less than P~(P), (Ps&P&1).
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Fro. 3. Comparison of Pe(p), P ~(p) for the two-dimensional
triangular and hexagonal lattices.

for P(p) by a Monte Carlo experiment on the IBM 7090
computer at Bell Telephone Laboratories. The corre-
sponding results obtained for ps have already been
published. ' ' The method of computation depends upon
the fact that, if Psr(p) denotes the probability of a
single source wetting at least E atoms, then for sufB-
ciently large V, P&(p) approximates P (p). For complete
details, see Frisch et at. '

The size of the computer's store sets an upper limit
on the practicable value of E; and, within this limit,
the larger iV, the longer the computing time is. Hence,
E should be chosen as small as possible consistent with
yielding an adequate approximation to P(p) by Prr (p).
A previous calculation at Harwell for the three-
dimensional simple cubic lattice, on a machine whose
store would accept a maximum S=8192, had indicated
that values of E about 2000 would suffi. ce. The IBM
7090 calculations at Murray Hill, where the store
accepted a maximum X=7000, supported this finding
for the three-dimensional lattices examined. However,
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Fro. 4. Comparison of Pe(p) for the face-centered cubic
and close-packed hexagonal crystals.
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