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Crude information about the nature of the Fermi surface in alkalis and noble metals is derived from the
ratio of low-temperature electrical and thermal resistivities. The values of the characteristic temperatures
occurring in electrical and thermal resistivities are evaluated through the use of Houston’s method. The
inferences regarding the Fermi surface are found to be consistent with recent refined measurements.

RUDE information about the grosser features of the
Fermi surface can be obtained through the study

of transport properties like electrical and thermal
resistivities. The ratio of low-temperature electrical and
thermal resistivities can give broad indications about
the nature of the Fermi surface.!~® The comparison of
the observed low-temperature Lorentz ratio with the
predictions of the free electron model, and the explana-
tion of the discrepancy in terms of Umklapp processes
was first made by Klemens,! and he drew conclusions
concerning the Fermi surface of monovalent metals
which are considered to be substantially correct. The

quantity
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should exceed unity for a spherical Fermi surface and
should increase with the distortion of the Fermi surface.
Here p;(T) is the ideal electrical and W, (T") the ideal
thermal resistivity in the temperature range where
they are proportional to 7% and 7% respectively, ©, and
Ow are the respective characteristic temperatures and
L is the Lorentz number. Cohen and Heine* first
calculated the quantity
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which depends only on the measured quantities, and
then estimated the ratio
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Here 0, and Oy are computed from the knowledge of
the respective average velocities of sound ¢, and ¢w. A
reasonable method of defining ¢, and ¢w would be*:®
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Here q is a unit vector in the direction of the propa-
gation vector and u is the polarization vector of the
normal mode, the integration is over all the directions
of q, and the summation is over three polarizations for
each q. Cohen and Heine obtained the estimates of (4)
by separately averaging (q;-u;)? and ¢;~*. This method
was considered by them to be very rough at best. We
have calculated ®, and @ by an alternative method
due to Houston,” which is more reliable and has been
successfully applied to the calculations of Debye
temperatures,®! the coefficients of thermal expan-
sions,’? and the vibrational spectra of solids.!3~15
Houston’s method gives proper weight to each reciprocal
lattice point and is inherently preferable to one that
relies merely on taking a very large number of points
in the reciprocal space.

We briefly summarize the results of the method.
To evaluate
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where the integrand, like those occurring in Egs. (4),
is invariant under the operations of the complete cubic
symmetry group, we will require the value of I(6,¢)
in the following six directions: 41007, B[1107, C[111],
D[210], E[211], and F[2217]. These will be written I 4,
Ip, etc. The expansion of the integrand in cubic
harmonics retaining four, five, and six terms leads to the
following expressions for J:
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TasLE I. Physical constants of various materials considered.

Elastic constants (101 dyne/cm?)

Density Tem|

D’ D
(Cohen
and Op €]

Cohen

. " Ow and
Element g/cm3 o1 C12 Cus ° g Source Heinef) (°K) (°K) (°K) Calculated Heinef

Li 0.545 1.481 1.248 1.077 78 a 19.3 369z 447 591 9. cee
Na 0.997 0.945 0.779 0.618 90 b 3.1 158« 215 265 2.5 2.8
K 0.893 0.457 0.374 0.263 83 b 6.8 89s 129 156 6.7 43
Rb 1.619 0.330 0.286 0.196 0 c 14.2 61h 77 92 111 oo
Cs 1.986 0.245 0.208 0.159 0 [ 15.7 44hb 57 67 13.8 ..
Cu 9.021 17.620 12.494 8.177 0 d 6.4 344i 518 590 8.7 6.0
Ag 10.654 13.149 9.733 5.109 0 e 44 2261 365 418 6.7 3.7
Au 19.320 20.163 16.967 4.544 0 e 4.3 1651 320 370 9.1 3.1
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From the knowledge of the average velocities thus
evaluated, ®,, O, and D values for the alkali and
noble metals are calculated. The results along with the
elastic constants and D’ values (same as those used by
Cohen and Heine) are presented in Table I. For all
the metals the values of the characteristic temperatures
were calculated from the four-, five-, and six-term
approximations and these showed an excellent con-
vergence, resulting from the less anisotropic behavior
of the quasi-longitudinal waves considered here, as
compared to quasi-transverse modes. In the table we
only give ©, and @y values obtained from the six-term
approximation. It may be incidentally pointed out that
the values of ®, and @ obtained here are in remarkably
close agreement with the values of these parameters
for alkali metals estimated by Collins and Ziman'® in a
roundabout way from the experimental data.

D is a valuable index of the distortion of the Fermi
surface. Klemens® suggests that if the Fermi surface
touches the nearest zone faces, the D value is increased
by a factor of 10 for body-centered cubic metals and 5
for face-centered cubic metals. It appears from the
inspection of the values of D that the Fermi surface of
Na is nearly isotropic, that of K is somewhat distorted,
that of Li rather more so but may not be in contact with
the zone boundary. In Rb and Cs the Fermi surface is in
considerable contact with the zone surfaces. The values
of D for Rb and Cs may not be very reliable as the
elastic constant values are approximate ones. Many
band-structure calculations and the experimental
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results show'™2 a trend in Fermi surface distortion like
that found here. Luthi,® from his magnetoresistance
work, finds that the low-temperature modification of
Li approximates to the free electron model and the
Fermi surface is closed. In the case of noble metals,
from the D values shown in Table I it appears that for
all these metals the Fermi surface touches the zone
boundary. The distortion appears to be least in case of
Ag and the relative amount of zone boundary touching
in copper and gold is nearly the same. Cohen and Heine,
at the time they wrote their review article, believed
that the case of Ag or Au, or both, differed from that of
copper, and hoped that such a difference would appear
from a proper treatment of D. The present paper does
not confirm this supposition and our conclusions are in
surprisingly good agreement with the conclusive
evidences on the shape of Fermi surface obtained
through various recent experiments.}7:2!:22

The present calculations are based on a model
according to which the electrons interact only with the
longitudinal polarization component (dilation) of a
lattice wave. The calculated values of D for Au, Ag,
and Cu are larger than D’; which corresponds to inter-
action with all polarization components on more or less
equal footing. Which of these models is more appropriate
is still an open question, though Klemens?® argues for the
latter model from lattice thermal conductivity data.
For the alkali metals such data do not exist, but there is
evidence for the former model in case of potassium
from measurements of the lattice component of the
thermoelectric power of potassium alloys.® Since the
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present calculation gives comparable values of D’ and
D for the alkali metals, it is quite possible that the
former model applies to them. We are inclined to believe
that this difference in behavior between the alkali
metals and noble metals may be due to the reason that
at low temperatures the interaction of long-wavelength
phonons with electrons involves only the longitudinal
modes if the Fermi surface is a sphere, but a multiply-
connected surface which the noble metals have, should
be much more sensitive to shear strains in the lattice,
and there should be strong interaction with the trans-
verse phonon modes,? especially in the neck regions.

Our conclusions about the Fermi surface, though in
qualitative agreement with experiments, are weakened
by the findings of Bailyn?®:26 that the Umklapp processes

%], M. Ziman, Electrons and Phonons (Oxford University
Press, New York, 1960), Sec. 5.6.

25 M. Bailyn, Phys. Rev. 112, 1587 (1958).
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dominate the electrical resistivity at all temperatures
down to a few degrees Kelvin, and that these are
dominated by scattering involving transverse phonons
of large wave vector. As a consequence the scattering
is affected moderately by whether or not the Fermi
surface comes close to Brillouin zone surface. The whole
problem of transport properties is of extreme complexity,
for it involves almost all the basic properties of the
metals, both the electronic band structure and the
dynamical properties of the lattice.
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The nuclear magnetic resonance of Tc%® has been observed in Tc metal and its Knight shift measured
relative to a solution of CsTcO4. The Tc® and V¥ resonances have been studied in 50-50 at. 9% TcV and
TcV; alloys as a function of field and temperature. The Tc% resonance curves in TcV and TcVs have a

Lorentzian shape while V® is Gaussian in TcV and Lorentzian in TcV;. Probable causes for the shape

changes and excess widths encountered are discussed.

UCLEAR magnetic resonance (NMR) measure-
ments of Tc® in Tc metal and Tc® and V® in
Tc-V alloys have been made with a Varian, model
V4200, wide-line nuclear magnetic resonance spec-
trometer and a Varian, model V4012A, electromagnet.
The frequency was accurately measured by means of a
Beckman/Berkeley model 7175 frequency meter. Tem-
perature-dependent measurements of the line parame-
ters were made by means of a gas-flow Dewar system
through which the temperature could be varied from
—150 to 300°C.

Technetium metal has the hexagonal close-packed
crystal structure with lattice parameters co=4.400
+0.001 A, ¢p=2.74340.001 A, and ¢/¢=1.604 and the
Tc® nucleus has a nuclear spin /=9/2. Figure 1 shows
a typical recording trace of T'c® in Tc metal where the
central line and its eight satellites are clearly observed.
The first reported resonance of Tc® was in an aqueous

*This work was supported by the U. S. Atomic Energy
Commission.

solution of NH,TcOs! A detailed description of the
quadrupole interactions and isotropic and anisotropic
Knight shifts of Tc® in Tc metal have been given by
Jones and Milford.? The isotropic Knight shift is
(0.6124-0.02)9, relative to a 350-ug/ml solution of
CsTcO4 No chemical shift was observed between the
CsTcOy solution and a 35-mg/ml solution of NH,TcO,.
Table I gives the central line width versus field strength
from which the anisotropic Knight shift and quadrupole
effects are calculated. An analysis of the data shows that
the anisotropic Knight shift is small. The quadrupole
coupling constant €¢Q/% evaluated from the satellites
and central line width are, respectively, 5.05 and 5.15
Mc/sec. Operating in the U mode, the Tc® in the
CsTcOqsolution gave rise to the so-called “m” curve and
using the theory developed by Hubbard and Rowland?
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