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Thermal Conductivity of Dilute Indium-Mercury Alloys
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The thermal conductivities of a series of polycrystalline specimens of indium containing 0.1 to 2.5 at. %,
mercury have been measured in the temperature range 1.4°-4.0°K. By using an extrapolation procedure, the
amount of phonon conduction in the superconductive state was calculated and was found to be about
one-half as large as the value calculated from the theory of Bardeen, Rickayzen, and Tewordt. From the
ratio of the electronic thermal conductivity in the superconductive state to that in the normal state, the
temperature and composition dependences of the Bardeen-Cooper-Schrieffer (BCS) energy gap were
calculated. Small systematic deviations of the measured gaps from the predictions of the BCS theory were

observed.

INTRODUCTION

LTHOUGH thermal conductivity measurements

on superconductors may provide insight into the
processes of superconductivity, the measurements are
frequently difficult to interpret theoretically because
several conductive and scattering mechanisms may be
in operation simultaneously. In both the normal and
superconductive states, heat transfer may occur via
electrons and phonons. Hence, the total thermal
conductivity will be the sum of the electronic and
lattice contributions, i.e.,

K=K,+K,. 1)

In metals which are not too impure, however, the
thermal conduction is predominantly electronic and
the scattering is by static imperfections and phonons.
In this case, the electronic normal state conductivity
at low temperatures is given to a first approximation
by the theoretical expression

1/K ,,=A/T+BT?, (2)

where 4 and B are constants.! To this approxima-
tion, B is independent of imperfection concentration,
whereas A is proportional to the residual electrical
resistivity po. Hence, one can infer from Eq. (2) that
the electronic thermal resistivity is just the sum of two
contributions: 4/7, the resistivity caused by scattering
by static imperfections; and B7?, the intrinsic resis-
tivity, i.e., the resistivity caused by phonon scattering.
Actually, higher order calculations? indicate that B is
not really independent of imperfection content, but
increases with increasing residual resistivity. In the
superconductive state, the situation is more complex.
Near the critical temperature 7', the main contribution
to the thermal conduction is still electronic, except in
very impure materials, and the scattering mechanisms
operative are the same as those in the normal state.
As the temperature decreases, however, the electronic
conduction decreases while the lattice conduction
increases until at about 0.27, the lattice conduction

YA. H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1953), 2nd ed., p. 288.
2 E. H. Sondheimer, Proc. Roy. Soc. (London) A203, 75 (1950).

is dominant. Below about 0.17, the thermal con-
duction generally follows a 7% law characteristic of
boundary scattering of phonons.

The Bardeen, Cooper, and Schrieffer (BCS) theory
of superconductivity?® seems to be capable of predicting
the relative values of the thermal conductivity in the
normal and superconducting states provided that the
conduction is by electrons and the scattering is due to
static defects.* Conversely, thermal conductivity data
can be used to check the variation of the BCS energy
gap with temperature and purity. The chief difficulty
in this procedure is in quantitatively determining that
the thermal conduction is solely by electrons and the
scattering is solely by static defects, or, in the cases
where other scatterers or other conductors are present,
to make the proper corrections.
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F16. 1. The low-temperature thermal conductivity of indium-
mercury alloys in the normal and superconducting states. Speci-
mens A4, B, C, D, and E contain, respectively, 0.1 at. 9%, Hg, 0.2
at. %Hg,OSat % Hg, 1.0 at. 9%, Hg, and 2.5 at. 9%, Hg.

3 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108 1175 (1957)

Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113,

982 (1959), referred to hereafter as BRT.
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TasLE I. Normal state properties of specimens.

Nominal
composition  Constant 4 Constant B
(at. % Hg) (deg® cm/watt) (cm/watt deg) a=BT3/A
pure® 0.034 1.11X1073 1.3
0.1 0.608 2.42X1073 0.157
0.2 1.247 3.15X 1073 0.100
0.5 2.90 3.42X1073 0.046
1.0 5.90 e ~0
2.5 13.25 ~0

a See reference 11.

In order to determine in this way the magnitude and
temperature dependence of the BCS energy gap for
indium, specimens containing from 0.1 to 2.5 at. %
mercury have been measured. The results are shown in
Fig. 1. It was found that at high reduced temperatures
and low-impurity concentration it was necessary to
correct for the scattering of electrons by phonons.
This was done by using the expressions derived by
Kadanoff and Martin® from a simple model for the
combined effects of impurity and phonon scattering.
At low temperatures and low purities a parallel con-
duction by phonons was found. This was corrected for
by an extrapolation procedure.

The choice of indium-mercury alloys for this study
was prompted by the fact that the metallurgy, critical
temperatures, critical fields, and other superconducting
properties had been investigated by Reeber.® The
specimens used in this study were either specimens
used in that study, or specimens prepared in a similar
manner. The results of the preparation were poly-
crystalline extruded wires, known to be highly
homogeneous.

THE NORMAL STATE

The normal-state thermal conductivity data could
be fit to an expression: 1/K,=A4/T+BT? This in-
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Fi1c. 2. The superconducting thermal conductivity as a function
of T./T for specimens containing 0.1, 0.2, 0.5, 1.0, and 2.5
at. % Hg.

5 L. P. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 (1961).
6 Morton D. Reeber, Phys. Rev. 117, 1476 (1960).
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dicates that there was not a detectable amount of
phonon conduction in the normal state for these
specimens. The results for the alloy specimens are
summarized in Table I.

The most exceptional feature of the data in Table I
is the increase in the constant B, which is a measure
of the phonon scattering of electrons, with increasing
mercury content. According to the elementary theories
of phonon scattering, this constant should depend only
upon the Debye temperature and the ‘‘effective”
number of free electrons present in the material under
consideration. More refined calculations by Sondheimer?
indicate a possible variation of B with mean free path
of about 33%, but this is inadequate to explain the
3009, variation shown in Table I.

The quantity « listed in Table I is equal to the ratio
of the thermal resistance due to phonons to the
resistance due to impurities, evaluated at the transition
temperature. This constant is used in the model of
Kadanoff and Martin to correct for the effects of
phonon scattering in the superconducting state. For
the alloys containing 1.0 and 2.59, mercury the
magnitude of the term B7? was zero within the experi-
mental uncertainty of the data. The value of « for
these specimens was therefore less than about 0.02.

The thermal conductivity of the normal state at
temperatures below the transition temperature is
obtained by applying a sufficiently high longitudinal
magnetic field to completely destroy superconductivity.

THE SUPERCONDUCTING STATE

In order to analyze the thermal conductivity in the
superconducting state, it is necessary that the various
mechanisms of heat conduction and scattering be
identified. From the temperature dependence of the
normal state conductivity, phonon scattering of
electrons can be detected, and in this way discernible
amounts were found in the specimens containing 0.1,
0.2, and 0.5 at. 9 mercury. It will be seen in the
following analysis that phonon conduction in the
superconducting state can be measured in the 0.5, 1.0,
and 2.5 at. 9 mercury specimens.

In Fig. 2 the thermal conductivity in the super-
conducting state is plotted for all the specimens. In
deducing the amount of phonon conduction, we take
advantage of the fact that the plot of InK vs (T,/T) is
approximately linear over the temperature range with
which we are concerned, in the case of impurity scatter-
ing of electrons. (See Zavaritski.”) This can be seen
from Fig. 3 in which is plotted log(#K:/K.) vs {7,
where the K,/K, values are determined from the
theoretical calculation of BRT and ¢ is the reduced
temperature 7'/T,. The significance of this plot can be
easily seen as follows. For the case of electronic thermal
conduction with scattering by static imperfections, K,
is simply proportional to the absolute temperature

7 N. V. Zavaritskii, Soviet Phys.—JETP 10, 1069 (1960).
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F1c. 3. The temperature variation of the electronic thermal
conductivity which is predicted by the theoretical model of
Bardeen, Rickayzen, and Tewordt.

[see Eq. (2)], or more precisely, K, is equal to tK(T,),
where K(T,) is the thermal conductivity at T=T.,.
Hence, K, is given by the expression

K,=K(T)K,/K.. 3)

It can be seen from Fig. 2 that the purest specimens fit
Eq. (3) quite well. In fact, it was possible on this plot
to draw straight lines with the same slope through the
data of all the specimens in the region 1.2</<1.5 to
within the experimental uncertainty. However, with
the more impure specimens and higher values of 7,/T
the conductivities fall above the extrapolation of this
straight line. This “excess’ conductivity we ascribe
to phonon conduction.

The values for the lattice thermal conductivity
which were obtained in this way can be compared to
the predictions of Bardeen, Rickayzen, and Tewordt.®
For our specimens there was no discernible lattice
conduction in the normal state. Therefore, in order to
compare with the results of BRT we used the values of
lattice conductivity in the normal state inferred by
Sladek® from his work with indium-thallium alloys.
He found that the normal state lattice conductivity
could be fit by the function 6XX10~* T2 watt cm™ deg™
for very dilute specimens. Using this value and the
BRT result, a quasi-theoretical curve for the lattice
conductivity could be constructed and compared to the
experimental values in Fig. 4.

8 R. J. Sladek, Phys. Rev. 97, 902 (1955).
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The vertical bars in this plot correspond to an error
of plus or minus 29, in the total superconducting
conductivity from which the lattice conductivity was
calculated. Even though the inaccuracy leaves some-
thing to be desired, it can be seen that the data agree
with the theory in order of magnitude. However, a
curve drawn at half the theoretical value gives a some-
what better fit to the experimental points. These
results are also consistent with lattice conductivity
measurements by other workers, such as Hulm,’
Laredo,® and Sladek,® whose data indicate that the
ratio of lattice conductivity in the superconducting
state to that in the normal state is smaller than the
ratio predicted by BRT.

Once corrections have been made for lattice con-
duction, there remains the task of accounting for the
phonon scattering of electrons in the purest specimens
near the transition temperature. The exact method of
doing this remains one of the unsolved problems in
superconductivity. The model of Kadanoff and Martin®
predicts a decrease of the ratio of conductivities
K,/K, where phonon scattering is appreciable; how-
ever, it fails to predict the correct ratios observed in
very pure lead and mercury, and is in disagreement
with the detailed calculations of BRT. On the other
hand, the latter fails to predict the decrease in the
K,/K, ratio in the presence of phonon scattering. We
have, therefore, used the model of Kadanoff and
Martin because it has been shown to be empirically
successful in the cases of pure indium! and pure tin.!?
Further, it is hoped that the results are fairly insensitive
to the exact nature of this correction since the phonon
scattering is, in all of these specimens, known to be
small.

The expression derived by Kadanoff and Martin is
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Fi1c. 4. The lattice thermal conductivity in the supercox;lducting
state vs T/T,. The curve through the experimental points is
one-half the theoretical curve.

9 J. K. Hulm, Proc. Roy. Soc. (London) A204, 98 (1950).

1S, J. Laredo, Proc. Roy. Soc. (London) A229, 473 (1955).

11 R. E. Jones and A. M. Toxen, Phys. Rev. 120, 1167 (1960).
12 A, M. Guénault, Proc. Roy. Soc. (London) A262, 420 (1961).
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as follows:

K, ® Bl
—=3/21r2f d(Be) (Be)? sech2(—2—>
0

X[+a(T/To)P 1 Be/BE+a(T/Ti T, (4)

where the notation is that of BCS with the exception of
the constant «, which is the ratio of the normal state
electronic thermal resistance due to phonons at the
transition temperature to that due to impurities. For
the purposes of determining the BCS energy gap from
this expression, it is sufficient to observe that once the
ratio K,;/K.,, the reduced temperature 7/7,, and the
ratio « are determined, the energy gap eo(f) is com-
pletely determined on the right-hand side of the
expression.

THE ENERGY GAP

The results for the energy gap determined in this
manner as a function of reduced temperature can be
displayed in several ways. Perhaps the most natural
is a plot of the energy gap itself as a function of the
reduced temperature. An entirely equivalent plot is the
ratio of the energy gap found from the thermal con-
ductivity data to the value predicted by BCS. The
smoothed energy-gap values calculated from the
thermal conductivity data by means of Eq. (4) are
shown in Fig. 5. For comparison, energy gaps were
calculated using the BRT formula which does not take
account of phonon scattering. These results are shown
in Fig. 6. A comparison of Figs. 5 and 6 indicates that
for temperatures below about ¢=0.7, the results are
virtually identical, i.e., the phonon scattering is low
enough that the calculated energy gap is insensitive
to the model used to compute it. Hence, it is these
results which are the most reliable. First, consider the
lowest temperature /=0.48. From Fig. 5, it is clear
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FiG. 5. The ratio of experimental energy gap to the theoretical
BCS gap as calculated from the formula of Kadanoff and Martin.
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T16. 6. The ratio of experimental energy gap to the theoretical
BCS gap, as calculated from the model of Bardeen, Rickayzen,
and Tewordt.

that the calculated energy gaps are in very good
agreement with the weak coupling limit of the BCS
theory; a variation of 49, from the predicted values
encompasses all five specimens. However, the magni-
tude of the deviation is composition dependent, i.e., it
varies monotonically with critical temperature 7°.. The
specimen with the highest 7', the 0.1 at. 9, Hg speci-
men with 7T,=3.402°K, deviated by +49%; the 0.98%,
specimen with the lowest 7', 3.350°K, deviated by
—2.6%. The temperature dependence of eexp/encs is
also dependent upon specimen composition. Again,
consider the temperature interval 0.45 <¢<0.7 in which
the data are most reliable. For the most dilute alloy
specimens, eep/€pcs increases with increasing temper-
ature. It is significant that this type of deviation of the
temperature dependence of the energy gap of indium
from the prediction of BCS was also observed in ultra-
sonic attenuation experiments!® as well as in tunneling
experiments.!* This behavior can be explained by the
presence of an anisotropic energy gap such as that
suggested by generalization of the microscopic theory
of superconductivity' or deduced from ultrasonic
attenuation experiments on tin single crystals.16:17

For the more concentrated alloys, the ratio €exp/escs
is more nearly temperature independent. This can be
explained by assuming that the anisotropy of the gap
is diminished as the mercury content is increased.
This is just the result that would be expected from
Anderson’s theory of “dirty”” superconductors.!®:?

1BR. W. Morse and H. V. Bohm, Phys. Rev. 108, 1094 (1957).

1T, Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961).

16 This concept was independently arrived at by several authors.
See, for example, Leon N. Cooper, Phys. Rev. Letters 3, 17 (1959).

18R. W. Morse, T. Olsen, and J. D. Gavenda, Phys. Rev.
Letters 3, 15 (1959).

1P, A, Bezuglyi, A. A. Galkin, and A. P. Korolynuk, Soviet
Phys.—JETP 9, 1388 (1959).

18P, W. Anderson, Bull. Am. Phys. Soc. 4, 148 (1959).

19 P, W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).



