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Anisotropic S11perexchange in yMnst.
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The suggestion by Keffer of an anisotropic superexchange of the Moriya type in PMnS led to the present
detailed calculation. Whereas Moriya's work was confined to ions with one electron in the 3d shell and to
cases of low symmetry, this calculation was performed for a half-filled 3d shell and tetrahedral symmetry.
The unperturbed state was taken to consist of two Mn++ ions together with their common S nearest
neighbor, each in a tetrahedral crystal field. The perturbing Hamiltonian contained the electronic spin-
orbit interaction and the Coulomb interaction between electrons on neighboring ions. The mechanism in-
volved going from the ground state to an excited crystal field state on one Mn++ ion by the spin-orbit eRect,
then back to the ground state by superexchange between the Mn's. The direction of the 9 vector was found
to be perpendicular to the plane of the three ions, and its magnitude of the order of a superexchange integral
times the spin-orbit parameter over a crystal field splitting energy. The existence of the eRect depends
importantly upon x overlap between the Mn and S orbitals.

I. INTRODUCTION
' "T has been shown by KeBer' that the existence of
~ - an anisotropic superexchange interaction of the form

&=D S,XSs

between magnetic nearest-neighbor spins in PMnS will
resolve a paradox which has long existed in the inter-
pretation of the powder neutron diffraction pattern of
that crystal. He observed that the presence of such an
interaction, in su%.cient magnitude to outweigh the
magnetic dipole interaction among the spins, wouM
permit a spin ordering in the crystal which is consistent
with the observed diffraction pattern and at the same
time minimizes the energy. The purpose of the present
calculation was to determine the size and direction of
9 in PMnS. Interactions of the form (1) were first
suggested on symmetry grounds by Dzyaloshinsky, ' but
it remained for Moriya' to propose a detailed mechan-
ism by which they could arise. Moriya s derivation,
however, was confined to magnetic ions with only one
electron (or hole) in their 3d shells, whereas the Mn++
ions to be considered here have half-filled d shells. Also,
the local symmetry in the present case is tetrahedral,
whereas Moriya's work was done for crystals of lower
symmetry.

II. THE PRESENT METHOD

it, the two Mn-S lines making an angle of 109.5' with
each other. To avoid ambiguity the coordinates shown
in Fig. 1 will be used throughout. Thus the lines to the
sulfur from Mni and Mns are in $111$ and $111j
directions, respectively. In this structure the local en-
vironment seen by each of the ions is described by the
tetrahedral symmetry group T&. The operations of the
group T~ are the same as those of the cubic group with-
out inversion (0) except for the twofold rotations about
face diagonals and the fourfold rotations. These ele-
ments are replaced in T& by the corresponding rotations
each combined with an inversion, giving classes 6o-~

and 654. The character tables of the two groups are
identical, (as are their opera, tions applied to d functions,
which have even parity). As can be seen from these
tables, there are two threefold representations, one
twofold, and two onefold. This symmetry implies a
mirror plane passing through the three ion sites being
considered, and. thus 0 is required to be perpendicular
to this plane. '

In the free ion, Mn + has five electrons in its 3d
shell, combining according to Hund's rules to form a
'S ground state. It is therefore necessary to extend the
Moriya mechanism to the case of a half-filled d shell.
In this calculation the unperturbed states are again
taken to be states of the free ions in a crystal field. For
the present the only Mn~ electronic states to be con-

The structure of pMnS is the zinc-blende structure. '
Each pair of Mn~ ions has one common S nearest
neighbor through which superexchange between the two
Mn's presumably takes place. This S ion instead of
lying on the centerline of the two Mn's is displaced from FIG. 1. Tonic ar-

rangement and crys-
tal coordinate sys-
tem in PMnS.
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sidered are those within the spectroscopic configuration
d'". The central field approximation is assumed, with
individual one-particle orbitals combining in Slater
determinants to form the antisymmetric many-electron
functions required by the Pauli principle. The notation
flpilpslp3lp4(ps) implies a normalized Slater determinant
of the five one-electron orbitals q~ ys. Also, when a
representation is used in which the individual electron
m~'s are specified, the m~ values are often used in place
of p&, etc. Finally, m, =—

~ is indicated by a bar over
the corresponding orbital label. The absence of a bar
implies rr4=+-2'.

The method to be used here involves taking the ex-
pectation value of the "superexchange Harniltonian"
Hs~ for a state consisting of the "ground state" Pe (in
which each ion is separately in its crystal field ground
state), corrected to first order in perturbation theory
by~the spin-orbit interaction H&o. H&z and II&o are
given by

t (Pzi~Hso[ye)
0=Ne+Zl fzl

(Ee—Ezi)

Q z2~ Hso ~Pe))+p ~4Z2

(Ee Ez2) )—

(3)

Here I1 and I2 run over the intermediate states for
ions 1 and 2 to be discussed in the next section.

The part of this E' linear in the spin-orbit param-
eter is:

HsH=Q; $(p,2/2rl)+Q, (e'Z, /r;, )j+P,~, (e'/r;;);

Hso P;——((r,)l; 8;;
(2)

where i and j run over the electrons and g over the nuclei
in the three-ion system. Schematically, the desired
expectation value E has the form

8= (p~ HsE)p);

8e IHso I &»)uzi I Hs~ I &e)+ He IHs~ I &»)(&» IHso I &e)

(&e—&zi)

Qel Hso IAi)uzi~ Hsz[ge)
+++complex conjugate.

(&e &zi)— I2

I2

The complex conjugate arises from the second term in
the first line of the equation because of the fact that
the operators involved are Hermitian. The matrix
element Q'zi~HsE~Pe) is somewhat schematic in that
it includes not only the straightforward matrix element
between Slater determinant states uzi and fe, but also
the compound matrix elements via other intermediate
states which correspond to the various superexchange
mechanisms and actually increase the order of the per-
turbation theory. This point will be dealt with in detail,
and the form of these states given in Sec. VIII.

The calculation divides itself into three parts: (a)
determination of the excited states; (b) calculation of
the spin-orbit matrix elements from the ground state
to these excited states; and (c) consideration of the
superexchange processes by which the return to the
ground states is accomplished. The calculation actually
involves sixteen electrons (five on each Mn++ and six
in the S 3P shell), and the states Pe, Pz are really
Slater determinants made up of sixteen one-electron
orbitals, not all mutually orthogonal (notably those on
different centers). In the spin-orbit matrix elements,
however, only the five orbitals on the ion being excited
are of importance, and the states will be written just as
though they involved only these five orbitals. The ad-
ditional terms introduced by the presence of the other
eleven electrons will be of an order which is higher by
an interionic overlap and will be ignored as very small
compared to the terms retained. In the case of super-

exchange, however, all sixteen electrons must be
discussed.

III. DETERMINATION OF THE
INTERMEDIATE STATES

Since neither the crystal field nor the interelectronic
Coulomb interaction within the ion is small enough
with respect to the other to be taken as a perturbation,
the Hamiltonian must be simultaneously diagonalized
with respect to both. It will be helpful, however, to
consider the two extreme situations where one or the
other vanishes.

When the crystal field is ignored, the Coulomb
interaction splits the d' configuration into terms diagonal
with respect to I, S, M~, and Mq and degenerate with
respect to Ml, and Mg. In the opposite limit, the elec-
trons are completely uncoupled, and the energy states of
the system are determined by the states of an individual
electron in the tetrahedral crystal field.

The characters of the T~ classes in the five-dimensional
representation (for d electrons) of the full rotation group
are 5, —1, 1, 1, —1. This representation splits into the
two irreducible representations T~ and E corresponding
to a threefold and a twofold degenerate energy level with
eigenfunctions de and dp, respectively. The de and dv
functions can be taken to be'

(322 r2)/3 s~ g2 y2

ds: $ 2ys, & 2', f' 2xy.

' Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 753 (1954).
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The energy separation E,—E~ is conventionally de-
noted by ' 10 Dq and is dependent upon the strength
of the crystalline field and the form of the radial wave
function. In the no-Coulomb limit, then, the relative
energies of the d' states depends only on the "crystal
configuration" de"dp' "to which they belong. The crys-
tal field strengths actually encountered in materials of
this kind are sufficiently small in comparison to the
Coulomb interaction so that the sS(de'dy') state is the
ground state rather than the ground state (de' or dy4de

depending on the sign of Dq) for the crystal field alone.
Clearly this actual ground state, which has symmetry
A i, has a wave function

'A i(-,') = [210—1—2)= [grtt uv]. (5)

Under the combined influence of the Coulomb inter-
action and the crystalline field, the good quantum
numbers are S, Mq, and I', where F denotes the transfor-
mation properties (row or column of irreducible repre-
sentation) under the operations of Te, and the states
remain degenerate with respect to Mq. The spin-orbit
perturbation can connect to a given state only those
diferent states which differ from it by one in Mz. Conse-
quently, the sextet ground state can be connected only
to a quartet state by this interaction, and in particular
for vanishing crystal field only the 4I' states are so con-
nected. As can be seen from their tetrahedral trans-
formation characters, I' states belong to the threefold-
degenerate representation T2 of the group T~. As the
crystal field is applied, the 'I' wave functions are mixed
only with functions of the same symmetry and spin
quantum nunbers (such functions are contained also
in eG and 'F), so in the general case one need consider
as intermediate states only those of the type 'T2.

The 4T2 wave functions are most easily found using
the so-called "strong field" scheme, ' which takes as its
starting point the case of zero Coulomb field. The Pauli
principle and the restriction to S= 2 limit the possible
crystal configurations to three (d e4dp, d e'dp', and
de'd7'). For simplicity the states with Ms=-'sare con-

sidered. For these states, the five-electron function must
contain one "Hipped spin. "The Pauli principle requires
that this spin belong to a dy orbital in the de'dy' con-
figuration and to a de orbital for de4dy. The representa-
tions contained within each configuration are obtained
using the concept of the direct product representation. '
The five-electron Slater determinants arising from a
given configuration belong to the direct product repre-
sentation of T~ obtained from the irreducible represen-
tations to which the individual one-electron orbitals
belong. The entire fivefold direct product for each
configuration does not appear, however, since the Pauli
principle requires that, when two functions differing
only by a pair of interchanged orbitals occur, only the
antisymmetric combination be permitted. This diK-
culty is encountered when several orbitals having the
same spin and belonging to the same representation
occur in a configuration. Thus, dy' does not involve
TtXT,= Ti+Ts+E+A, , but only Tis= Ts. Which of
the four on the right is the correct one is easily deter-
mined by applying one or two group operations to a
sample function. In this way:

Tr'=Ts) Tie=A, ) and E'=As. (6)

From this observation the splitting of each configuration
is easily obtained. Thus,

8: cfe cf:r=Tr XTiXE=Ti+Ts;
ft: de'dy'= T 'XTrXE'+TisXEXE

(7)= Ti+Ts+2E+2As+2Ai',
c: de'dy'=TisXE'XE=Ti+Ts.

The indices a, b, and c will henceforth refer to these
three configurations.

Each of the configurations then contains one and
only one function belonging to each row of the repre-
sentation T2. To obtain the actual functions, consider
the wave functions for 'I'(Ms=a, Mz, ——1), 'P('s, 0),
and 'E(ss, —1). These may be obtained by methods
described in Condon and Shortley. ' They are:

'E(ss, 1)= [1/(20) l](2[220—1—2]+6'[211—1—2]+6i[2100—2]+2[210—1—1]),
'P (ss ~0) =L1/(10)'] (—2[210 1—2]—[210—1 2]+[210 1—2]+2[210—1 2])1

4P (-', )
—1)=[—1/(20) «] (2[110—1—2]+6'[200—1—2]+6**[21—1—1—2]+2[210—2—2]),

or in terms of the de and dy functions:

eP (s,1)= [1/(20) '*]((—[Q'uv8] —%3[8'ggv]+ [rtggv]+ [$$ttgv] —[pr)Ft|'g] —%3[frtrtt'v])

+s( [nt u»]—+&&[nf»v] [8$gv]—Bne»]—Bbt' ]—+g&&Bbt ]))v

'&(s,0)= [s/(1o) '*](—2[In»v] —2BnEu]+[n@uvl+[Nt »]),
'8(-'„1)={( V—3[gugv]—[Pt uvo]+—[grtuv]+[rtt t uv] [P Trtr]t—u—43[(rtrtt'v])

+s( ~~Eel»v]+Lntgvo]+Llew»]+[8 Fuv]+[&tutu] '~~Bb&v]))

' %V. G. Penney and R. Schlapp, Phys. Rev. 41, 194 (1932).
R. Finkelstein and J. H. Van Vleck, J. Chem. Phys. S, 790 (1940).' E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1957).
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To obtain functions which are entirely imaginary, the linear combinations

'P. (-,') —= (1/v2) [4P(-'„—1)—'P (-,', 1)7; 'P„(--)=—(i/V2) ['P (-';.,1)+'P (-', , —1)]; 'P, (-,'")=-'P (-,',0),
can be taken (in analogy with the spherical harmonic x, y, and z p functions). The wave functions are:

'P*(l) =L'/(1o)']( —~3[vi ]+[~i 7+[«n ]+[81" ]+[M~t ] v—3Bbi ]),
'P„(ss) = [i/ (10)l]( [—guv v] V—3[et uuv]+ [rlt'1 uv]+ [jbluv] —[«gu] %—3[«r)i v]),
'P (') =L /(10)'](—2[«u v] —2[«Eu]+[ Ku ]+[58'u ]).

(10)

Since it is already known that these functions transform
as T2, and since no group operation can mix crystal
configurations, it is clear that the unique (to within a
unitary transformation) 'T functions belonging to each

configuration must be

'T * (-:)=-:(~3[&«|]—[~«t ]),
'T, (l) = :(~&[«-~~ ]+[«~i. )],
'T. (-:)=[«ii ],
'T *'(l)=(1/v2)([«8 7+[8( ]),
'T.,'(l)=(1/~2)([~&i ]+[&6 ]), (1"-)

'T.'(l)=(1/~2)(bm ]+28 ]),
'T2, '(ss) = —,(K3[g'uuv] —[rii uvv]),

'Ts.'(s) = s (v3[8uuv]+[Huvv])
'T. (l)=[« ']

The most general intermediate level of interest, then,
is threefold degenerate, each of its components being a
linear combination of the basic states of the same
symmetry, say, T2, T2, ', and T2,' for T2.„and simi-
larly for T» and T&,. Again a, b, and c refer to the con-
figurations. There will be three such levels (labeled by
g= 1, 2, 3) and their wave functions can be written as:

Tsz ~n T2x +pn T2x +&n T2x q

4T w. ) 4T a+p 4T s+ p 4T (13)

Tsz )ie Tsz +An T2z +&n T2s ~

This set of functions differs by a unitary transformation
from the set obtained by Koide and Pryce" and Pap-
palardo. "Since the steps leading to these functions are
not given in these references, it was thought useful to
present them here. The parameters p„, v„, and A, „as
well as the energy differences dE„from the ground state
are obtained by the solution of a 3)&3 secular equation.
The Hamiltonian to be considered is the sum of the
Coulomb interaction and the crystal field. Since S and
F are good quantum numbers and the Hamiltonian is
diagonal and degenerate with respect to M8 and the
three components of F, only three of the basic states,
for example, 'Ts, (-', ), 'Ts, (ss), and 'Ts, '(ss) need be

considered. The crystal field term is diagonal with
matrix elements

Ec = —10Dg, Ee" 0, a——nd Ee'= 10Dq. (14)

The Coulomb matrix elements can either be calculated
by assuming radial wave functions and using the
methods of Condon and Shortley, ' or they can be ex-
pressed in terms of the Racah parameters" A, 8, and C
and, together with Dq, left as variables to be fit by
optical measurements of other energy levels. In any
event, diagonalization of this matrix gives the energy
levels as well as the p, 's, v's, and X's.

IV. THE SPIN-ORBIT MATRIX ELEMENTS

Now that the states lt r have been obtained, it is neces-
sary to construct the matrix elements Q'g~Hso~gr)
At this point the question of the spin quantization
direction must be introduced. The unperturbed ground
state is degenerate with respect to the spin orientation
of ions 1 and 2. For the present, Pg will be the state in
which MB&——

~ along the direction specified by spherical
angles 0, p and M82 ———,'along 8', q'. The dependence of
E on 8, q, 8', and q

' will be determined and the remain-
ing degeneracy discussed in Sec. VII.

Until now it has been assumed implicitly that both
space and spin functions were quantized in the x, y, s
crystal field system of coordinates. At this point that
assumption must be abandoned. The form given in
Sec. III for the states Pr is clearly independent of the
direction of spin quantization. The 'T(1IIe) functions
merely require that 3f8 and m, be quantized along the
same direction. However, it is easier to calculate spin-
orbit matrix elements when ms~ and m, are quantized
in the same direction. Thus it is advantageous to ex-
press sA&(s') (where the prime is taken to imply
quantization along 8, p) in terms of the various 'A i(Ms)
quantized along the crystal s axis. The same applies
to 'Ts(s ') and 4Ts (M&). This can be done in each case by
diagonalizing the matrix of 8, in the S, M8 representa-
tion. This method determines the relations to within
a phase factor which must be kept consistent throughout
the problem. The results are:

'Ai(ss')=e "&cos'(8/2)'Ai(ss)+5'*e "& sin(8/2) cos'(8/2)'Ai(ss)+10*'e "&sin'(8/2) cos'(8/2)'Ai( —', )
+(10)'e "& sin'(8/2) cos'(8/2)'Ai( —rs)+5&e '& sin'(8/2) cos(8/2)'Ai( —s)+sin'(8/2)'Ai( ——') '

4Ts(ss ') = i [e 4'& cos'(8/2)4T—s(ss)+3&e "& cos'(8/2) sin (8/2)4Ts(s)
(15)

+3&e "& cos(8/2) sin'(8/2)'T&( —rs)+e '& sin'(8/2)'T2( —ss)].
"S.Koide and M. H. T.. Pryce, Phil. Mag. 5, 607 (1958)."R.Pappalardo, J. Chem. Phys. Bl, 1050 (1959)."G.Racah, Phys. Rev. 62, 458 (1952).
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To complete the determination of the matrix ele-
ments one needs the spin-orbit elements connecting the
various 'A&(Ms) components to those of 'T2z(Ms),
'T»(Ms), "'and 'T2, (Me). They can be calculated by
returning to the m&, nz, representation and using Kqs.
(2"1b) of Condon and Shortley. ' The resulting matrix
is given as Table I. In the notation of Koide and Pryce"
O.„is de6ned as

-.= 0/3:)[v2(~.+ .)=..], (16)

where i is the f&e of Condon and Shortley's Eq. (4'1).
It will be noted that Table I divers from the matrix

given by Koide and Pryce' by more than the previously

mentioned unitary transformation. Their matrix is

incomplete and the parts given are in error (although

this error does not affect the results of their paper).
The desired matrix elements can now be written down

as follows

&'~ (l') I&-I'2'""(!'))
= a „[—(') &e—'& cos'(8/2) —3 (2) le'& cos'(8/2) sin'(8/2)

+ (~~)'e '" cos'(8/2) sin'(8/2) 3(—~2) &e'& cos4(8/2) sin'(8/2)+3(2)'e '& cos'(8/2) sin4(8/2)
—(~2)'e'& cos'(8/2) sin'(8/2)+3(2)*'e '& cos'(8/2) sin'(0/2)+ (~)' sin (0/2) j

= (~~) ia„[ e'~—cos'(0/2)+e '~ sin'(0/2) J[cos'(8/2)+sin'(0/2)g'
=—(2):a„[cos'(0/2)e'& —sin'(0/2)e '&).

&'~ (l')I I' ."(l')&
= ia„[(5)le'& cos'(8/2)+3 (') 'ei &—cos'(8/2) sin'(0/2)

+ (2)"'-e '& cos'(8/2) sin'(0/2)+3(5~)'e'& cos4(8/2) sin'(8/2)+3(~)'*e '& cos4(8/2) sin4(8/2)

+ (~) le'" cos'(0/2) sin'(8/2)+3 (~) le '& cos' (0/2) sin'(8/2)+ (~) 'e '" sin(0/2) j
= ia„(~)l[e'" cos'(8/2)+e '& sin'(0/2)g[cos'(8/2)+sin'(8/2)]'
=io „(s2)&[cos'(8/2) e'&+sin'(0/2)e '"5;

&'~i(2') I&soI'2"2."(2')&

=a„[2(2)' cos7(0/2) sin(8/2)+6(52)& cos'(8/2) sin'(8/2)

+3 (~~) & cos'(8/2) sins(8/2)+2 (—', )
'
*cos(8/2) sin~ (8/2) g

=a „(-',)**[2cos(8/2) sin(8/2)].

It is of interest to compute the spin-orbit matrix
elements for the case considered by Moriya of a single
electron going from its ground state g to an excited
state i with its spin Ripped by means of the interaction
$1 s. As mentioned earlier this matrix element can be
written

&a(k')l8 sl~( —2')&=&gi8~~&&~, =-,"[s~m.= ——",
&

=~&l'Id sI ——
&, (1g)

where d is now a constant, real for i and g nondegener-
ate. The expression for

~

2') in terms of n and P, the
spin functions quantized in the same system as 1, is
obtained as before by diagonalizing s, ; and

~

—-,'& is
derived from it in correct relative phase by means of the
"lowering operator. "These expressions are:

P'&=cos(8/2)e '&n+sin(8/2)P,
(19)

~

—~~'& = i[sin(8/2) e '&n —cos(8/2)g.

The above matrix element then is

V. A NOTATION FOR SUPEREXCHANGE
CALCULATIONS

Superexchange, like direct exchange, is a manifesta-
tion of the fact that, because of the Pauli principle,
the Coulomb interaction can give rise to energies de-

pendent on the relative spin orientations of the different
electrons in the system. Unlike direct exchange, how-

ever, superexchange between the electrons of two mag-
netic ions involves the presence of an intermediate non-

magnetic ion. The study of this phenomenon, then, is
essentially the study of the Hamiltonian matrix elements
between Slater determinant states involving electron
orbitals on three diferent centers and, consequently, not
necessarily mutually orthogonal. In order to consider
these matrix elements in detail one may find it helpful
to introduce the following pictorial notation.

For a symmetric Hamiltonian such as that of Eq. (2)
the matrix elements between Slater determinant states
u~ N~ and v~ ~~ can be written

&cos(8/2)e —*&n'
+»n(8/2)P(d, s.)d„s„+d,s, )sin(8/2)e '&n

M= const. Q(—1)" Ng*(1)

Xe*(N)HPa, (1) mg($)dxi dxy, (21)
cos 8 2

where the permutation operators 5 permute the coordi-
= —(5/2) (d,[2 sin(8/2) cos (8/2) g nates (space and spin) of the electrons. The N's and e's,

+d,[sin'(8/2) e '"—cos'(8/2) e'&1 but not the determinants as a whole, are taken to be
+id„[cos'(8/2)e'&+sin~(8/2)e '&]). (20) normalized. In all the cases to be considered the same
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FIG. 2. The Yamashita super-
exchange mechanism.

OOOOqO
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set of spatial orbitals will occur in both I and v, althoug
the spins will differ. Let a circle stand for a spatial
orbital and an arrow within the circle for the spin
function associated with it, two arrows within the circle
indicating a doubly occupied orbital. Two directions of
quantization, 8, q and 8', y', will be involved, and these
will be indicated by vertical and horizontal arrows,
respectively. Thus P and & will represent states of
m, = —,

' and ——,', respectively, along 8, p, and similarly
for —+ and+ —along 8', q'.

Each term in the sum over I' will be represented by
a separate diagram with the orbitals I written above
the ~'s and each spatial orbital in I directly above its
counterpart in v. The orbitals centered on ion 1 will

be written to the left, those on ion 2 to the right, and
those on the S——ion in between. The permutation of the
electrons produced by I' will be indicated by two-
headed arrows joining the position of each electron in I
to its position in ~. Since IIgp is spin independent, the
orthogonality of g and g causes diagrams with arrows

joining the two to vanish; similarly for —& and ~.Since

Hgp. is a sum over electrons and pairs of electrons, each
diagram implies a sum of integrals in which the one- and
two-electron Hamiltonians are allowed to act on the
electrons represented by each arrow (or pair of arrows).
The matrix element M in turn consists of the sum of all
nonzero diagrams. Although the number of diagrams
for a given M (particularly with sixteen electrons) is

large, in practice only a small number of them (namely
those representing large spin-dependent interactions)
are of interest.

Clearly, each arrow joining orbitals on different ion
sites introduces a factor of the order of magnitude of
an interionic overlap into the value of the diagram. It
will be assumed, in line with customary procedure, that
this factor is zero if the arrow joins sites 1 and 2 (this
corresponds to neglecting direct exchange between 1
and 2). Superexchange 6rst appears in terms of fourth
order in the overlap, and diagrams of higher order than
this are ignored. Also, a diagram will be neglected if it
contains an arrow joining two orbitals which are rigor-
ously orthogonal (by virtue of having different azi-
muthal dependence). These terms are smaller than the
others and have been ignored in most previous super-
exchange calculations. This last approximation will
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Fro. 3. Cancelling diagrams with doubly-filled orbital.
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subsequently be referred to as the "orthogonality
requirement. "

Each diagram corresponds to one of the integrals LI ~
in the superexchange paper by Keffer and Oguchi"
[for example in their Eq. (14)].As an example of these
methods it may be of interest to obtain Eq. (15) of
that paper. Consider the diagram shown in Fig. 2
whose value is

~= (~l ~)(~l t)(~l &( I »

nr(1)ns(2)ns(3)n4(4)

&&Hszni(3)ns(4)ns(1)n4(2)drr. .dr4. (22)

The product
l (gl —+& l' can easily be computed using the

known wave functions [Eq. (21)] for lg) and
l

—&&.

l (4 l ~&
l

'=
l (i[»n(0/2)e '&n —cos(0/2)P]

l
cos(0'/2)e '&'n+sin(0'/2)P) l'

=
l

—i[sin(0/2) cos(0'/2)e'&v &'i —cos(0/2) sin(8'/2)] l'
= [sin(0/2) cos(0'/2)e'iv v'i —cos(0/2)sin(0'/2)][sin(0/2) cos(0'/2)e 'i~&'i co—s(0/2) sin(0'/2)]
=sin'(0/2) cos'(0'/2)+cos'(0/2) sin'(0/2) —sin(0/2) cos(0/2) sin(0'/2) cos(0'/2) (e'&v &'i+e '&r &'i)

= 4[(1—cos0) (1+cos0')+ (1+cos0)(1—cos0') —2 sin0 sin0' cos((p —y')]
= —',[1—cos0 cos0' —sin0 sin8' cos (q —y')]
= —,'[1—cos((8,y), (0', q '))]
=(&ll(1—4s s)l ), (23)

or for the spin-dependent part,

l(&l~&l'-(&I —» s l~) (24)

It is this product which always occurs to give super-
exchange. The crossed arrows on the left are necessary
also, for with a doubly-filled orbital in the middle, the
diagrams in Fig. 3 cancel, as they must since the doubly-
61led orbital cannot by itself affect the orientation of
another ionic spin. Finally, the energy AW of Keffer
and Oguchi is obtained by dividing the sum of the two

Yamashita mechanism) is not the only one, or even the
most important. Other mechanisms involve proceeding
through intermediate states in which electrons are trans-
ferred from one ion to another, that is by a perturbation
process of higher order than first. Two examples of these
processes are given by the following diagrams. Here only

C)

FIG. 4. Diagrams corresponding to matrix elements in AW.

diagrams in Fig. 4 by the two terms in the normalization
integral in Fig. 5 (where the dashed arrows signify the
absence of a Hamiltonian) to obtain

Hr —2Ss S4Hrs, s4aS'=-
1—254Ss S4

~2S'HrSs S4—2S3 S4Hrs, $4 (25)

It is evident that only the diagrams of zeroth order in
the overlap S and those of fourth order containing
Ss S4 can enter into the result to fourth order.

Before proceeding to the Moriya case one should note
that the above mechanism of superexchange (the

(Q Cl P3

Q
Fro. 5. Normalization integral in dS'.

"F.Keister and T. Oguchi, Phys. Rev. 115, 1428 (1959).

FIG. 6. The Keffer-Oguchi superexchange mechanism.

the matrix elements involving Ss S4 are indicated.
The Keffer-Oguchi mechanism, a second-order per-
turbation process, can be represented by the diagram
in Fig. 6. The Anderson mechanism, involving third-

FIG. 7. The Anderson superexchange
mechanism.

order perturbation theory, is given by Fig. 7. Both of
these examples are seen to be fourth order in the overlap
and to involve just the kind of "crossed arrows"
found above.

FIG. 8. The Yamashita-type mecha-
nism in anisotropic superexchange.
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VI. SOLUTION IN THE MORIYA
ONE-ELECTRON CASE

In proceeding to the case of anisotropic super-
exchange, consider first the one-electron case for which
the spin-orbit matrix element was calculated in Sec. V

LEq. (20)$.Take the Yamashita mechanism as simplest.
Then the pertinent diagram for return to the ground
state from the excited state is shown in Fig. 8. This
involves Hj3, 24 as before, but the spin factor is now

(& I
—&)(~

I ». Evaluating this by means of Eq. (19):

«I )( I»
= (iI sin(8/2)e '&n —cos(8/2)g I

cos(8'/2)e '&'a+sin(8'/2) p')

X (cos(8'/2)e '&'n+sin(8'/2) p I
cos(8'/2) e '&n+ sin(8/2)p)

= —iI sin(8/2) cos(8'/2)e'&~&'& —cos(8/2) sin(8'/2) jLcos(8'/2) cos(8/2)e '&~&'&+sin(8'/2) sin(8/2)$
= —iI sin(8/2) cos(8/2) cos'(8'/2) —sin(8/2) cos(8/2) sin'(8'/2)

+sin'(8/2) sin(8'/2) cos( 8/2)e' ~&&' & co—s'(8/2) sin(8'/2) cos(8'/2)e '&~+'&)

= —iL~~sin8 cos8' —2 sin8' cos8 cos(y —y')+ (i/2) sin8' sin(y —y')]. (26)

No term appears here from the normalization since the numerator has no zeroth-order term. Combining this result
with Eq. (20), one can evaluate Eq. (4) in this simple case and obtain:

H] 3,245E'= R-e{I (i/2) sin8 cos8' —(i/2) sin8' cos8 cos(y —y')
(&g &rr)—

——', sin8' sin(y —y') jL—d, (cos8 cosy+i siny)+d„(i cosy —cos8 siny)+d, sin8j}

&I3,24&

{-,'d, Lsin8 cos8' siny —sin8' cos8 cos(y —y') siny+sin8' cos8 sin(y —y') cosyg
(&g—&n)

+-',d„L—sin8 cos8' cosy+sin8' cos8 cos(y —y') cosy+sin8' cos8 sin(y —y') sinyj

——,'d,
I

sin8 sin8' sin(y —y') j}
HI3, 24k

I d, (sin8 siny cos8' —sin8' siny' cos8)+d„(sin8' cosy' cos8—sin8 cosy cos8')
2(Eg Eri)—

+d, (sin8' siny' sin8 cosy —sin8 siny sin8' cosy') j
2+13,24

(gld S,XS, I

5(Eg—Er&)
(2&)

d S&XS2,
h(&g &ri)—

as expected from the derivation in Moriya's paper.

VIL THE SIXTEEN-ELECTRON CALCULATION

(28)

It is now possible to proceed to the actual problem at
hand, for the present confining the calculation to the
Yamashita mechanism. Consider each of the orbitals
comprising the intermediate-state wave functions
T2,„,," to be re-expressed in terms of a coordinate
system whose z axis is the line joining the site of Mn~~
to the S site (a I 111)direction in the crystal system)
and whose x axis is perpendicular to the plane of the
three ions, and the eleven orbitals corresponding to the

FIG. 9. Possible diagrams for the
sixteen-electron case.

Again, since 8, p and 0', p' are arbitrary directions, this
result indicates that the Hamiltonian is equivalent to

ionic ground states of S and Mn2~ to be included in
each Slater determinant. The orbitals on S —are to be
expressed as x-, y-, and z-like functions in the same co-
ordinate system as those on Mn~~, while those on Mn2+I
are expressed in a coordinate system whose z axis is
along the line (—1 —1 1) joining Mn, ++ to S and
whose x axis is the same as that in the Mn&++ system.

Consider the possible diagrams representing the re-
turn from one of the Slater determinants comprising a
T2 state to the ground state. Because of the orthogon-
ality requirement each of the p orbitals on S —can have
a "crossed-arrow" diagram with only one of the orbitals
on Mn&~ (x with xs, y with ys, and z with 3s' —r')
but with more than one on the Mn2++ (x with xs, y and
s with both ys and 3s' —r'-) because of the differing co-
ordinate systems. Hence there are five possible diagrams
each having the form shown in Fig. 9, where orbitals
whose arrows connect directly below are omitted. These
diagrams are specified by the particular orbitals oc-
cupying the center and right positions.

Note that the orthogonality requirement forces all
the orbitals on the top to be the same as those on the
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x= —,'42[x'+ (-', )ly'+ (-', )is']
= —5~2[~"+ (3) 'y"+ (3)'s"],

3 =V&[—~'+ (3)'7'+ (3)'s']
= —z~&[—~"+(3)'y"+ (3)'s"],

s = L- (3)'y'+ (3) 's'] =[-(3)'x"+(3)'s"],
=L- (-:)'"+(l)~&']=-[(-:)'"'+(l):r"],
= [(-'.)~i-'+(-:)~~']= [(-:)'i"+(l):."],

t = [(3)'I' 3"+—3~~3']= [( )z'~" 3~"+—b~&"],

[(3)'~—"+'3"' (3)'t "—
+ 2 (3)'n" '6~&&"]-,

=—[(s)'*~"+3o"+ (3):&"—l (3)'n"—
6~2& "]

(30)

bottom. This restriction is significant in that it elirni-
nates most of the Slater determinants making up the
4T2's. Only three such determinants can give a con-
tribution. They are:

B'q't 'I'zI'], [$'q'i 'I''o'], and [$'zl'i 'zz'zI'] .(29)

Here the primes on the orbitals indicate that they are
of the same form in the new coordinate system as the
unprimed orbitals are in the old (that is, $=ys, $'=y's',
etc.). These same restrictions apply in the other super-
exchange mechanisms to be considered in the next
section.

For the calculation of the superexchange matrix
elements, then, the functions of Eq. (13) can be ex-
pressed in terms of the primed orbitals and only the
portions retained which form a linear combination of
the determinants of Fig. 9. The same thing can be done
in terms of the coordinate system (indicated by double
primes) pertinent to Mnz++ for use in the calculations
involving states fIz. The relevant transformations are:

Using these results one Ands the significant parts of
4Tg, n and 'T2yn to be

[(~-—-)/6]([~'v'|'" "']—[5'8'i' "'])
= —[(X —v )/6] (g"zl"|'"I"zI"]

)~II Ill II+I-I~II])

'Tz„"~ [(—x„v„—)/6] ([Pv)'g'zz'zI'] (&—'g'l'zzY])
=+[(X —v )/6] ([p"g"t'"zz'Y']

[(II-lit II II II])

Inspection of the above transformations and of Eq. (12)
reveals that 4T2,"has the same form in both the primed
and double-primed representations. This will be seen
to lead to its giving no net contribution to the 6nal
result.

It will be observed that the absence of the determi-
nant [&'g'i'zz'v'] implies a strong dependence of this
effect on m overlap. That this overlap can indeed have
an appreciable magnitude is shown by Casselman and
Keffer." In writing down the integrals corresponding
to the remaining diagrams it is helpful to express the
function y' on S in terms of y" and s".This is done by
means of the coordinate transformation shown in Fig. 10
with cosP= —is. The result is

X'= —(3) (y"+2~»") (32)

The three diagrams of interest are then given in Fig. 11.
From I ig. 11 they are seen to occur with coefficients
—-'„—2%2/3, and 1, respectively. The integrals corre-
sponding to the top and bottom diagrams have the same
value. Denote it by II~ and that corresponding to the
middle diagram by H„. Finally, the value of E' in
Eq. (4) can be calculated in terms of these integrals.
In each case the spin part is given by the angular term
of Kq. (26).

The part E&' of 8' corresponding to intermediate
states fyz is

8,'=2 Re Q [1/(Eg —8 )]{—o. (~)l(cos0 cosy+i sing)[(X„—v„)/6]
n=l

+io „(,) l(i cos —p cos0 si—ny) [—(X„—v„)/6])[—z3H~ (2v'2/3)H„IIt]— —

X[(i/2) sin0 cos0' —(z/2) sin0' cos0 cos(p —p') ——,
'- sin0' sin(p —p')]

—(sin0' cosy' cos0—sing cosy cos0')]
(33)=(t~IDz szxs It~),

where

( 3 (X.-v„)o.
= (9)(2)'*(2H~+&2H )I P — [(sin0 sing cos0' sin0' sin—q' cos0)

(a=i (pg —p„)

f z (~n vn)&n, .

Di.= —(9)(k) '*(4/25&') (2H~+~H-) I 2
(n-z (Pg—P„)

(34)

&,'=(t ID, s,xs, lt

Equation (31) indicates that the terms for states QIz 8'=8&'+Ez' (t~I (D&—DzI t~)——
give =(t I2Dz SlXSzI t~) (36)

( )

where D&
———D&. Thus

' T. N. Casselman and F. Eever, Phys. Rev. Letters 4, 498
(j.960}.
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Mn Mn++
2

FrG. 10.Coordinate trans-
formation from Mn1 system
to Mn& system. (The plane
of the paper is the plane of
the three ions. The x', x"
axis is out of the paper. )
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It is now possible to see why the T2, terms cannot
contribute, since they would give rise to components
Dj,=D2, which would cancel in the above result. Note
that D lies in a [110]direction, perpendicular to the
plane of the three ions as required by the symmetry.

It might seem that this result did not conclusively
establish that the spin-dependent part of the energy
can be completely expressed in terms of an eRective
Hamiltonian D SIXS, for spins larger than -'„because
of the existence of oR-diagonal elements of the Hamil-
tonian connecting different ones of the degenerate states
representing different orientations of the ionic ground-
state spins. A glance at Fig. 11 reveals, however, that
the only states of 5&——» 52———,

' to which the super-
exchange can return the system from its excited state
are the initial state and the three states in which one
or both of the Mn++ electron spins at the end of a
crossed arrow has been Ripped. The three new states
formed in this way can be taken to be identical to the
ionic states JET]. 2 ) M g2 2 ~g]. 2) ~s2 2 j and
~si= 2, Mg2= —', providing these latter states are multi-
plied by the normalizing factor (—,)l. This is because,
for example, the wave function 3fq~

———,
' is a sum of five

Slater determinants all containing the same spatial
orbitals, but each with a different spin Ripped, each of
these determinants occurring with the same coefficient
[hence the factor (~)'*]. Each of these determinants
gives a nonzero contribution to the matrix element only
when an arrow joins its Ripped spin to the appropriate
S orbital, and each of these contributions occurs with
the same coe%cient, establishing the above identity.

Thus the three off-diagonal matrix elements diff er
only by the factors (s)', (s~)&, s from the corresponding
elements in the one-electron case. Since it is known that
d sIXss gives all the one-electron elements correctly,
it follows that D SIXSI gives all the elements in the

sPin-ss Problem [the numerical factors being given
exactly by the difference in factors in front of the raising
and lowering operators for spins -', and -', in Condon and
Shortley's' Eq. (3'3)].This fact is not surprising, since
the most general operator which changes 3fqj and Mq2
by no more than one unit of angular momentum can be
written as a bilinear form in the spin components.

A note may also be appropriate at this point about
the peculiar choice of phase factor in Eq. (15). Once it
is decided to use the phases implied in Eq. (19) for

~ g) and
~ g) it becomes imperative to choose the phases

in Eq. (15) consistently with them. That this has been
done can be seen by noting that Eq. (15) can also be
obtained by performing a coordinate rotation (which
introduces no phase factors) on the orbitals and trans-
forming the spin functions by means of Eq. (19).

VIII. OTHER SUPEREXCHANGE MECHANISMS

Although the Yamashita mechanism is algebraically
simpler, other mechanisms, notably the Anderson
mechanism, are probably more important. The Ander-
son mechanism has one further advantage —that of
giving a nonzero result even when the simplifying (if
unrealistic) assumption of orthogonal orbitals (zero
overlap) is used. Schematically this mechanism is that
shown in Fig. 12, as compared with the ordinary super-
exchange case given in Fig. 7. Notice that no more than
two arrows go between diRerent ions in any one matrix
element so that a nonzero result is obtained even if the
overlap integrals (but not the exchange and transfer
integrals, of course) vanish. The angularly dependent
spin integrals, (g~~)(~~ f), are the same as before, so
the only difference is in the orbital integrals, which are
calculated as a straightforward extension of the previous
section's work.

The more complicated mechanisms such as this may
raise questions concerning the place in the general
perturbation scheme of the additional excited states
where an electron is transferred from the S to an
orbital on an Mn++. Such states can, however, be ex-
pressed in terms of the unperturbed picture of a free
ion placed in a crystal field, although this field no longer
has the symmetry T&. The transfer of the electron re-
duces the symmetry around both the S and the Mn++
involved to that of the threefold rotation group C3
around the axis joining the sites of the two ions. The
ionic states of interest must correspond to 5=2 on the
Mn++ (at least, by Hund's rules the lowest lying ones
must) and to 5= s' on the S . These states are degener-
ate with respect to the Coulomb interaction (since they
correspond to L=2 on the Mn~ and L=1on the S )
and the Mn states are split by the crystal field into three
levels, one of which is made up of the degenerate func-
tions [ggfleg] and [)gung]. A similar situation occurs
on the S,with the two states of interest occurring in
a two-dimensional representation, and the new states
can be regarded as merely extending the order of the
perturbation theory.
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Pn
&n

&n
X

jvg jv„

0.144—0.156
228 cm ~

0.977
18950 cm ~

0.597
0.801
132 cm '
0.040

34200 cm ~

0.788—0.580—427 cm '
—0.208

42700 cm '

With these values, Kq. (34) gives a D of the order of
4X10—' a.u.

The purpose of this calculation has been, however,
not so much to obtain a numerical result for D, but to
demonstrate in detail the existence of a Moriya inter-
action in this crystal, and, more generally, to outline in
detail the mechanism by which such an interaction may
take place in crystals with more than one electron in

IX. NUMERICAL ESTIMATE AND
SUMMARY OF RESULTS

It is very difficult to calculate the integrals and energy
denominators with any accuracy since the assumption of
ordinary atomic wave functions and near-neighbor
point-charge crystal fields is known to give answers
greatly in disagreement with experiment for problems
of this kind. The more accurate use of empirically de-
termined Racah parameters and crystal field strength
is impossible because of the lack of optical spectrum
data for this crystal. Order-of-magnitude estimates may
be made using the optical parameters given by Koide
and Pryce" for other Mn crystals and the estimates of
superexchange integrals by Keffer and Oguchi. "Values
of the parameters estimated from these sources are
(2IIi+&2H ) 10 ' a.u. and

S 1 2 3

FIG. 12. Anderson's mechanism ap-
plied to aniso tropic superexchange.

the d shells and with higher symmetry than heretofore
considered.

In summary, it has been shown that an anisotropic
bilinear interaction of the form D SiXS2 takes place
between the ionic spins of neighboring Mn++ ions in
PMnS. The mechanism is similar to that proposed by
Moriya for the case of ionic spin —„involving a perturba-
tion process in which one ion is excited by the spin-
orbit interaction to a higher crystal-field state, and the
return to the ground state is accomplished by means of
superexchange between the two ions via the intervening
S . The existence of the interaction has been shown to
depend on the anisotropic crystal field (note that for
zero crystal field X = v in Eq. (43) and the interaction
vanishes) and the existence of m overlap between the
Mn++ 3d electrons and the p electrons on the S
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