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presumably a pseudotetragonal to true tetragonal
transformation occurs near 329'C. It is interesting to
observe the change of the transformation temperature
in these layer compounds: If we represent these
compounds by (1—x)Bi4TipO»+xBaTiOp, the trans-
for'mation temperature is almost a linear function of
the composition concentration x (Fig. 4). The tetra-
gonal cubic transformation temperature of 120'C is
used for x=1 (BaTiOp).

In conclusion, we have reported a new ferroelectric
compound with a layer structure. This compound
represents a layer structure with a largest number of
layers reported to date. In fact, one of us (P.H.F.) in
collaboration with R. S. Roth, has prepared materials
with a composition such that if they form single phase,
these compounds would have still larger number of

layers, such as the cases vs=6, 7, and 9. Prelimi-
nary results show that aH these materials have two
phases: one is the phase of Ba28i4Ti50&8, and the other
one is a cubic perovskite phase. Therefore, we conclude
for the present that, at least in the system which
consists of BaO, Bi203, and Ti02, prepared in the
ordinary atmosphere, the largest possible number of
layers is 5.
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A study is made of the nature of the anisotropic superexchange interaction of the form D;; S,&(S; re-
cently proposed by Moriya, . This interaction is permitted in PMnS, with symmetry requiring that D;; be
normal to the plane defined by i, j, and the single intervening anion. It is conjectured that this interaction
leads to a screw spin arrangement, with a 90' screw angle; in crystals considered heretofore the Moriya
energy produces only a slight canting. The observed powder neutron diffraction pattern has been interpreted
as indicating ordering of the third kind with spina normal to the ordering axis; this arrangement, however,
does not have minimum dipolar energy. The present proposed arrangement leads to the same diffraction
pattern, and the Moriya energy probably overbalaaces the dipolar.

I. THE NATURE OF THE MORIYA INTERACTION

T has been demonstrated by Moriya' that, under
- ~ certain restricted symmetry conditions, the combi-
nation. of spin-orbit and superexchange interactions
can produce an effective coupling between neighbor
spins S, and S, of the form

(E~);;=0,,"S;&&S,. (1)
I

Here 9,,= —D;; is an axial vector, the precise form of
which 'is derived in Moriya's paper and also below in
Eq. (11).

It is:,illuminating to obtain the Moriya coupling from
elementary configuration interaction. Let the ground-
state configuration G involving neighbor spins S; and
S; already contain whatever configuration mixing is
required to produce an energy of the form

Eg——Cp —2JpS; S;,

t This work was done in the Sarah Mellon Scaife Radiation
Laboratory and was supported by the U. S. Air Force through the
Air Force OKce of Scienti6c Research of the Air Research and
Development Command.' T. Moriya, Phys. Rev. 120, 91 (1960).

where Jp arises from direct exchange and/or super-
exchange, and Co is independent of spin directions. Thus
it is assumed that the various configurations entering
into the usual theory of superexchange' already have
been incorporated into G. The theory is now extended
to include a group of intermediate configurations I„,I in which either atom i is raised to its nth excited
state or atom j is raised to its neth excited state. The
matrix element connecting G and a given configuration
I will be of the form

(I.iaiG)=X„I„, S,—2J„S,"S,+C„,
and similarly for (I

~

B
~
G). Here J„arises from direct

and/or superexchange between configurations G andI, as will presently be discussed; C„ is independent of
spin or orbit operators; and l„g is the appropriate orbital
matrix element connecting the basis ftinctions of G
and I„.

The basis functions of G and I„, in this method, are
to be taken as single products of one-electron orbitals,

2 See, for example, F. Keffer and T. Qguchi, Phys. Rev. 115,
1428 (1959).
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and not as Slater determinants. Thus the orbital matrix
element appears explicitly in (3), whereas the spin is
left in operator form. This is the Dirac-Van Vleck
permutation operator expansion, s P~ HrP, extended
to include spin-orbit coupling terms in the direct integral
Bp„where I'I is the identity permutation.

The above spin-orbit expression is in the form most
appropriate for a single electron and becomes more
complicated if S; is the resultant spin of several elec-
trons. The following paper by Pearson' considers in
detail the problem of Mn~ (spin S= s) in a tetrahedral
environment; fortunately the complex results are not
significantly different from those of the simple theory.

Moriya' has shown how J' (his b„„b „) arises in
Anderson's' new theory of superexchange. In general,
however, in any theory of superexchange there will be
Coulomb matrix elements, or combinations of matrix
elements, and also overlap integrals, contributing to
S; S; dependent coupling between configurations G and
I„.Examples are given by Pearson. ' For both Jp and
J„ to be appreciable there must exist sizeable intra-
atomic coupling to both the ground and excited orbitals
of atom i. These orbitals are orthogonal; therefore if
Jp has its origin in O.-like bonding, J„must arise from
m-like bonding. Further details on the form of the multi-
electron superexchange coupling are given in Pearson's
paper.

The matrix elements l„g are imaginary, and therefore

A.;—=2 Q„h„9, J„l„g,
A.;—=2Q 6 'X J I g. (6b)

Here C and J are very nearly equal to Cp and Jp,
respectively, but include small contributions from the
C„J„and (J„)'perturbation terms. The brackets repre-
sent negative commutators and equal sA;XS;—and.

iA;XS;, respectively. —The spin-orbit coupling, in
effect, moditms the exchange S; S; so as to bring into
play the additional components A. && S. One may think
of each spin vector as having undergone the canonical
transformation

with T of the form

S'= T-'ST

T=1+Jo '~ S

s J. J. Pearson, following paper LPhys. Rev. 126, 901 (1962)j.
P. W. Anderson, Phys. Rev. 115, 2 (1959).

If the energy separation between ground and excited
states of atom i or atom j is A„or 6, respectively, the
perturbed ground-con6guration energy is, in second
order,

Eg"'=Eg—P &. '(G)H~ J.)(I ~H~G)
—P.~; (G[H[1.)(J.]H[G)

=C—2JS; S;—Lci,"S,, S,] S,
—Lx"S S j S; (5)

where

with

Eg&'&=C—2JS; S;+D,; S;)&S;,

D;;—=s(X;—X;).

(10)

The direction of D (but not the sense) will be deter-
mined by whatever axial vector, or resultant of axial
vectors, is implicit in the geometry of the atomic ar-
rangements. s A simple example will be given in the
next section.

Third order perturbation connects configurations
G—I„—I —G resulting in a coupling containing terms
of the form

P„,„()/~) „()/~)„z„.(S,"I,„)(1„, S,),
where E„ is the combination of Coulomb matrix ele-
ments connecting the basis functions of I„and I .
The sums over m and m are here correlated via E„,
and no special asymmetry is required for nonvanishing
of the dyadic P„,„(X/6)„(X/6) K„Jg„l„g.In fact, this
dyadic has the same transformation properties as
C;,r;;r... and hence this interaction is a source of the
Van Vleck pseudodipolar coupling. Moriya' gives an
expression for the dyadic in the language of Anderson's
new theory of superexchange.

VVe are here principally concerned, however, with
the interaction of Eq. (1). This was introduced by
Moriya to account for the weak ferromagnesium
exhibited by some predominantly antiferromagnetic
crystals, such as nFe203. Dzialoshinski~ had shown pre-
viously by a crystal magnetic symmetry argument that

' We are indebted to Prof. M. Yinkham for pointing out to us
this simple and extremely useful method of locating the direction
of D.

s J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).' I. Dzialoshinski, J. Phys. Chem. Solids 4, 241 (19&8).

which brings the spin energy back into the simple
expression

Eg&'& =Cp—2JpS, ' S,'.

Thus the configuration mixing transforms the problem
into the exchange coupling of the twisted fictitious
spins S'.

Unless some asymmetry is present, the sums (6)
will vanish, and this twisting e6ect will disappear. The
geometry must distinguish between positive and nega-
tive scalar components of I g along some direction.
This direction cannot be simply defined by the polar
vector r;; connecting atoms i and j, because A.; and A.;
are axial vectors. Consequently there can be no Moriya-
type coupling between two isolated atoms experiencing
direct exchange, even if the atoms are nonidentical.
There must exist indirect exchange through some third
atom (or group of atoms) separated from s by the vector
r;3, and then the net A.; will be along the axial vector
defined by the cross product r,3Xr,;.Furthermore, some
asymmetry must exist; the twisting will vanish, for
example, if the indirect exchange involves two identical
ato ms at lr'sl = Ir'41 unle~~ (r,s+r;4)Xr;,~0.

The energy (5) may be expressed in the form
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weak ferromagnetism can be an intrinsic magnetic
property of certain crystals, and that it arises from a
slight canting of the antiferromagnetic sublattices. Ac-
cording to Dzialoshinski's phenomenological theory,
the canting is allowed provided the canted sublattice
arrangement contains precisly the same symmetry
elements (full magnetic group, involving the combina-
tion of crystal symmetry and time-reversal) as does the
uncanted arrangement. This is possible only for certain—generally low —crystal symmetries. Moriya's inter-
action provides the mechanism for Dzialoshinski's
possibility; the symmetry conditions required for the
existence of nonzero D are equivalent to those required
for canting.

Moriya extended the theory to CuCl2 2H20, a
crystal which does not exhibit weak ferromagnetism.
Instead, according to Moriya, it breaks up into fogr
sublattices, arranged in such a double canting pattern
that the total magnetic moment is zero.

Let 0,, be a possible angle of cant between the sub-
lattices containing S;and S;, respectively. In all crystals
considered hitherto, including CuC12 2H20, the Moriya
energy (proportional to sin8;; and hence to 8;, for small
canting) opposes a large ferromagnetic or antiferromag-
netic energy (proportional to cos8;, and hence to
1——,'8@'). Thus as the sublattices bend away from
alignment the lowering of Moriya energy outweighs the
gain of exchange energy until an equilibrium angle of
cant is reached, usually a small angle.

In the next section we discuss the situation in PMnS,
where the Moriya energy is not confhcting with ex-
change energy, and the canting angles between some
of the four sublattices may well be a full 90'.

II. PROPOSED SPIN ARRANGEMENT IN gMnS

The structure of PMnS-cubic is that of zinc blende.
The lattice is composed of an fcc array of manganese
atoms interpenetrating an fcc of sulphur atoms in such
a way that every atom of one kind is surrounded tetra-
hedrally by atoms of the other kind. There exists no
inversion symmetry, and in particular in (110}planes
the disposition of neighbors is that of Fig. 1. A single
S ion lies o6 the line of cation centers. Thus, although
the total crystal symmetry is high, the arrangement of
neighbors allows a Moriya coupling. It is helpful to recall
that if a unit cubic cell of zinc blende is divided into
eight smaller cubes, only four of these have atoms at
the center; if the other four contained center atoms
there mould be a balancing S below the line of cation

FIG. i. Near-neighbor
superexchange in pMnS.
The absence of an anion
below the line of cation
centers allows a Moriya
interaction, with 9 tak-

~ ing the direction of
x

Si+S2+S3+S4=0, (14)

which condition can be achieved in a variety of ways.
The problem is to find the spin arrangement which

minimizes E~+E~ for the entire lattice. It is not suK-
cient to consider a single tetrahedron, since neighbor
tetrahedra overlap, i.e., have Mn~ ions in common.
The variational problem is exceedingly complex, and
we have not been able to find a rigorous solution.

By trial and error, however, we have arrived at a
spin pattern which very likely has lowest energy. It is
shown in Fig. 2 and, more clearly, in Fig. 3.The arrange-
ment singles out a cube axis, which shall be called x.
The spins then lie parallel to {100)planes, with each
plane containing an antiferromagnetic array. The spin
direction of these arrays turns by 90' from plane to
plane, the x axis being a sort of screw axis.

The arrangement obviously satisfies (14) and hence
minimizes the dominant nearest-neighbor exchange
energy. The much smaller Moriya energy is very low.
Of the six spin-pairs summed over in Eq. (12), four
make large noncancelling contributions and two yield
zero, and the spin array is just such that E~ is the same
for every tetrahedron in the lattice. One can easily find
arrangements yielding lower (E~)t,.t in a particular
tetrahedron, but all such that we have considered yield
a higher total E~ for all tetrahedra.

centers of Fig. 1, and no Moriya interaction would be
possible.

The geometry of Fig. 1 defines an axial vector in the
direction of RiXR2, i.e., normal to the plane of the
figure; and, from the argument of Sec. I, it is clear
that D» must lie in this direction. The Moriya energy
of Eq. (1) will be a minimum when Si and S2 are
orthogonal, as shown in the figure. We have arbitrarily
taken the sense of Di2 as opposite to that of RiXR2, i.e.,
as into the plane, and we shall maintain the convention
throughout the lattice. If the actual sense, which cannot
be determined from symmetry arguments, is out of the
plane, the direction of SiXS2 must be reversed Th.is
will have no significant eGect on our conclusions, merely
causing the proposed spin array to thread around in
the opposite sense.

Let us now consider the four Mn~ neighbors sur-
rounding a given S, such as is shown in the lower
left of Fig. 2. Let r; be a unit vector in the direction of
R; and note that all r;Xr; are of magnitude (8/9)&.
Then the Moriya energy of the tetrahedron is

(Eir)t,„——(9/8) i
D

i P;&,(r;Xr;) . (S;XS,). (12)

Since all Mn~ pairs are subject to the same isotropic
superexchange, the exchange energy may be written

(EE)t,.) —2J p;&——;S; S;
=—JL(Si+S2+Sa+S4)'—4S(S+1)j. (13)

For negative J (antiferromagnetism) this energy will
be a minimum if
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It should be pointed out that the spin directions of
Figs. 2 and 3 have been drawn arbitrarily along the y
and z axes. The pattern can be rotated by any angle
about x without change of energy.

The Moriya energy automatically sets antiparallel
the next-neighbor Mn++ ions along the x axis. Our
arrangement has the same total near-neighbor plus
next-neighbor exchange energy as does Anderson's'
"improved ordering of the first kind" (now called order-
ing of the third kinds). In fact, Anderson's pattern can
be achieved if in Fig. 3 one rotates all spins which point
along &y so that they point along +s (i.e., so that all
spins lie parallel or antiparallel to a single axis), a
process that obviously does not alter condition (14),
although it reduces the Moriya energy to zero.

The observed powder neutron diffraction pattern of
PMnS-cubic has been interpreted as indicating ordering
of the third kind. "However, the arrangement of Fig. 3
yields the same powder pattern, since the structure-
factor cross terms between the set of z-directed spins
and the set of y-directed spins average to zero in a
powder. All that can be determined is that each of these
sets of alternate (100) planes has spins oriented normal
to x. Single-crystal neutron diRraction can distinguish
between our arrangement and uniaxial ordering of the
third kind; however single crystals of PMnS-cubic
would be exceedingly difBcult to prepare. The nMnS is
the stable form, and furthermore PMnS-cubic usually
contains a high percentage of PMnS-hexagonal and also
stacking faults.

We have not discussed PMnS-hexagonal, which has
a powder pattern indicating a spin arrangement very
similar to that of PMnS-cubic, differing in fact only in
the stacking requirements of hexagonal and cubic
close-packing. " It is probable that the Moriya inter-
action also produces a screw arrangement in the hex-
agonal crystal.

It is unlikely that next-neighbor superexchange is
very large in PMnS, since it must be routed through two
intervening S ions. Therefore it is gratifying that the
Moriya interaction of itself can cause the observed
antiparallel orientation of those Mn++ ions which are
next neighbors along x.

FIG. 2. Cubic cell of PMnS.
Only the sulphur in the lowest
left front corner is shown. The
proposed arrangement of man-
ganese spins is indicated by
the arrows. (Also see Fig. 3.)

' P. W. Anderson, Phys. Rev. 79, 705 (1950).' J. S. Smart, Phys. Rev. S6, 968 (1952).
' I. Corliss, N. Klliott, and J. Hastings, Phys. Rev. 104, 924

(1956).
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g 1.97', 2.02, 2.07 (16)

for n, P-cubic, and P-hexagonal MnS, respectively.
To estimate the size of iD

~

we shall take (g—2)/g
=0.01 and, from an analysis of Smart, " J'/k= 10.5'K.
Then

i
D

i
1.5&&10-"erg. (17)

Pearson's more detailed calculation' yields a very rough
result of about an order of magnitude smaller.

The strength of the Moriya interaction for the ar-
rangement of Fig. 3 is, per atom and per cm',

E=-', (8) (0.707) (-s')'i D i

=17.7 [D i

25&&10 "erg/atom
5.7&& 10' erg/cm', (18)

or perhaps an order of magnitude smaller (Pearson).
The only other anisotropy energy not dwarfed by

"J.S. Smart (to be published).

FIG. 3. Proposed spin arrangement in PMnS-cubic.

III. MORIYA ENERGY VERSUS DIPOLAR ENERGY

Because Mn~ is in the state '5;, there is probably
very little anisotropy present in MnS other than the
Moriya coupling and the magnetic dipole. As Moriya
points out, anisotropy of the form (1) is first order in

P,/A) whereas single-ion and also pseudo-dipolar anisot-
ropies are of order (X/6)'. Since the fractional shift of
the spectroscopic splitting factor g is also of order
(X/6), Moriya estimates that

IDI-
I (g—2)/el~. (15)

This should be multiplied by a geometric factor related
to the amount of asymmetry present, since (cf. Fig. 1)
the S ion is far from the line of centers, the geometric
factor will be close to unity.

In all forms of MnS, (g—2) is very small. The value
of the Curie-gneiss constant is not a reliable key to the
value of g; nevertheless it gives a rough indication of the
order of magnitude of (g—2). From the Curie constants
given by Corliss, Klliott, and Hastings, " we estimate
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this will be the magnetic dipole. Elsewhere" we have
shown that the classical dipolar interaction energy of
an array exhibiting uniaxial ordering of the third kind
is given by

gD= (~~lVp) L6 296—jg.g90n $ (j,9)

where E is the number of dipoles per cm', p, is the mo-
ment of each dipole, and n is the direction cosine be-
tween the common spin direction and the ordering
axis (which we have taken along x). In PMnS-cubic
this energy becomes

E=4.36(1—3n') X 10' erg/cm'. (20)

It was pointed out" that this sizeable energy is a mini-
mum if the dipoles are parallel to x, whereas the neutron
diffraction data" give unequivocal evidence that the
dipoles are perpendicular to x. We stated that we did
not understand the source of an anisotropy large enough
to overcome this dipolar energy.

We now propose that the Moriya energy twists the
spins around into the arrangement of Fig. 3.The dipolar
energy of this arrangement is given by Eq. (20), with
n=0. Thus the net dipolar energy to be overcome is

DEn=1.3X10s erg/cm', (21)

which is smaller than (18), but larger than Pearson's
estimate. The situation is admittedly nip and tuck;
but if E~ is not sufFicient to bring the spins into a pat-
tern consistent with the neutron diffraction results,

» F. Keger and W. O' Sullivan, Phys. Rev. 108, 637 (1957).

then we still don't understand this paradoxical situa-
tion. Surely any crystal-6eld type single-ion anisotropy
would not prefer some direction in the y2' plane, when
from symmetry it could as well pick out an equivalent
direction with 0./0 and thus take advantage of the
dipolar energy. And besides, as we have pointed out,
such an anisotropy should be much smaller than E~.
Furthermore, large pseudodipolar anisotropy seems out
of the question.

If E~ only slightly exceeds AED, the spin arrange-
ment will be some compromise, which might be hard to
distinguish by neutron diffraction. Furthermore, the
temperature dependence of E~ will be different from
that of ED, and the ordering arrangement may bend
with temperature.

It is interesting to consider the situation in iVnnS2.

The pyrite structure has inversion symmetry through
the center of the unit cube and also through any Mn
site. This results in E~=0 for the arrangement of Fig. 3.
Perhaps other slightly canted arrangements are possible,
with small E~. There does exist an asymmetry, such
as shown in Fig. l, in the disposition of nearest neigh-
bors. However, the next-neighbor superexchange should
be large in this lattice; and an antiparallel next-neighbor
ordering along x, together with the inversion, would
make large total Ej/I impossible. It is therefore signifi-
cant that the neutron diffraction experiment" reveals
ordering af the third kind with spins parallel to x, i.e.,
minimum dipolar energy.

"J.Hastings, N. Elliott, and L. Corliss, Phys. Rev. 115, 13
(1959).


