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The usual coupling procedure consists of multiplying the interparticle potential U&(x+), by a coupling
parameter ) and then expanding thermodynamic functions in powers of ) . The Kirkwood variation of this
procedure couples only one particle of the system, resulting in an integrodifferential equation for distribution
functions, which also can be expanded in powers of the coupling parameter. These expansions converge and
are valid only for weakly coupled systems. If the Ursell f bonds are coupled instead of the direct interaction
potentials, we can expand certain thermodynamic functions in powers of the exponential coupling parame-
ters; for actual physical systems these expansions are practically finite low-order polynomials in the coupling
parameters. Integrodifterential equations for distribution functions are derived, and it is seen that distribu-
tion functions are given by ratios of two practically finite polynomials in the exponential coupling parame-
ters. The coetficients in these polynomials are finite even for strongly singular (e.g., hard sphere) potentials.
The method provides a well-defined expansion parameter for the Kirkwood-Salzburg hierarchy and appears
related to the f-bond chain summation and nodal expansion methods. Present and possible future applica-
tions include: theory of fused salts and electrolytes, theory of ferroelectricity, ion pairing in semiconductors,
equation of state of the high-temperature electron gas, and problems of phase transitions. The possibility
of applying exponential coupling to quantum-mechanical systems is noted.

' 'HE device of coupling all or part of interparticle
interactions by multiplying them by a parameter

whose value varies from zero (independent particles) to
unity (fully coupled system) is well known in both
classical' and quantum' statistics. This method suffers
from the disadvantage that the resulting equations can
be solved exactly in the limit of weak coupling only,
that is, through terms linear in the coupling parameters.
Clearly, such solutions cannot describe a great majority
of actual many-body systems, in particular, when the
pair interaction potentials become strongly singular at
small separations. Furthermore, the convergence of the
usual coupling parameter expansions has never been
proved and, in fact, appears doubtful. This note outlines
another coupling method for the determination of
distribution and thermodynamic functions of classical
many-body systems. Expansions in powers of the new'

coupling parameters are applicable even to strongly
singular (e.g. , hard sphere) potentials; moreover, for
realistic physical models, certain thermodynamic func-
tions are given as low order polyrtorrtial-s in the new cou-
pling parameters, while distribution functions are simple
ratios of such polynomials. Besides the formal connection
with the Kirkwood coupling parameter method, ' the
present development is related to the Kirkwood-Salsburg'
hierarchy, the MontroH-Mayer chain summation, 4 and
the nodal expansion procedure. ' ' In principle, it appears
applicable also to quantum-mechanical systems.

The canonical ensemble configuration partition func-
tion ZN of a system of Ã particles in a volume V,
interacting with a potential

N

U(N)=p U(r, t),
i&j
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as an integral of a product of Ursell f bonds:

exp/ PU(N) jdr~= g $1+f(ij )]dr~ (1)
y i&j

with

f(ij)= expL —PU(r;, )7—1.

Now, instead of introducing coupling parameters
directly into the interaction potential U(N), we
multiply each function f(ij) by parameters 0&X;, X,& 1,

When all the X's are unity we recover the actual fully
coupled system; when the coupling parameter X; of
particle i is zero we have a system of E—1 interacting
particles and one free particle i. The distribution
function p(1,2, ,n; 3)=p(r, ,rz, ,r„; 2) of particles

, n is given by

p(1,2. ,n; X)=
(N —n) I g~(g)

g L1+X,X~f(r;;)jdr"—". (3)

N

Z~(y, . . . y~) =Z~(g) = g p+y.y.f(zj)~dr~ (2) On differentiating both sides of Eq. (3) with respect to
y i&2' X~ we have

X,f(1i) 1
lnp(1, 2, ,n; 2) = P +

~=& 1+X~),:f(1i) N n~'=~+—~

X;f(1j) p(1,2, ,n,j; 2)

1+XqX;f(1j) p(1,2, ,n; 3 )

~,f(»)
p(1.,j; X)dr~dr;. (4)

N(N —1) ~'=z v 1+&6;f(1j)
Here p(1,2, ,n,j; 2) is the distribution function of n+1 particles, 1, 2, , n, and j.We now subtract from Eq.
(4) the corresponding equation for p(1, 2, , n —1; 2), introduce the dimensionless distribution functions
g(1,2, ,n; X)=p(1,2, ~,n; X)/p" (with p=N/U), and neglect terms of O(1/N), thus obtaining an integral
equation for distribution functions

X„f(in)
lng(1, 2, , n 1, 2)+-

1+&,z.f(ln)

V ~=+& g(1, 2, , n —1;2)1+pe,,f(1j) g(1,2, ,n; X)

&~f(1j) g(1,2, ~ ~ ~,zz,j; 2) g(1, 2, , n 1, j;2)—
dr, .(5)

The treatment is similar to that of Kirkwood, ' except
that the term f(ij)/(1+ f(ij)] appears everywhere
instead of U(r;,). As usual in this type of problem,
Eq. (5) is not closed because it involves functions of
order n+1 in addition to those of order n. However, it
can be solved exactly through a given order in the
coupling parameters. We expand g(1,2, ,n; X) and
g(1, 2, , n 1; 2) in X—~, and remember that when
X~=0 we have g(1,2, ~,n; X)=g(2, ,n; 2'), with

X~. Thus we write

g(1,2, ,n; X)=g(2, ,n; ).')

X&~

1+ Q g„(1,2, ,n) . (6)
p&c p!

The functions g(1,2, ,n, j;2) and g(1, 2, , n —1,j;3 )
are similarly expanded in X;. By retaining terms of
appropriate orders in A, ~ and P, we can, in principle,
solve Eq. (5) to a desired order in the coupling param-

eters. The fact that g(1, ,n; 2) can be expanded in &q

is not immediately apparent since the functions
f(ij)/(1+X;X,f(ij)] in Eq. (5) cannot be expanded in
X, for small r,; when f(ij )= —1.We note, however, that
the left side of Eq. (5) involves lng(1, ~,n; 2), not
g(1, ,n; 2) itself. When the equation is transformed
into one for g(1, ,n; 2) it is seen that each term
f(ij)/(1+X;X,f(ij)j is multiplied by the distribution
function involving the corresponding particles. Each
such function contains the factor 1+X,h;f(ij) which
cancels out the corresponding singular denominator.
Furthermore, we should remember that we are expand-
ing the distribution function, not the kernel; the
existence and convergence of such an expansion is
proven in subsequent paragraphs.

Solution through OP, ~) is obtained immediately on
setting X&——0 in Eq. (5), and retaining only terms of
order ); in g(1,2, ,n, j;2) and g(1, 2, , n 1, j;2). —
Setting all A,,=A, for simplicity, and taking the limit

E, V ~ ~, we obtain
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gi(1,2, ,u) =gi(1, 2, , I—1)+X.f(1e)

+hap f(1j)I gi(2, ,e,j)—gi(2, , u —1,j )]dr,

(7)
which is exactly solved by superposition

m

gi(1,2, ,m) = Q gi(li),
i=2

m

g, (2, ,m, j)=g gi(ji).
i=2

The coefficient gi(12) is given by Eq. (7) with n = 2, and
the pair distribution function by

g'(12) =g(2) L1+Xigi(12)j.
This expression is exact through 6rst order in Xj and X2,

and through second order in X;=X, the coupling param-
eters of the remaining particles of the system. ' For
crystals, we thus have two coupled equations, Eq. (5)
for g(2) and Eq. (7) for gi(12). For fluids we have

g(i) = 1, and gi(i) =0. The pair distribution function is
then given by the single equation

f(k)
gi(k) =

1—pf(k)
(10)

where f(k) and gi(k) are the Fourier transforms of

f(r) and gi(r), respectively, and we set Xs ——X=1.
Solution of Eq. (5) through eth order in Xi, in general,
involves m+1 coupled equations (I for fluids). Jn this
connection we note that the linear Eq. (10) is equivalent
to a Montroll-Mayer' summation over f-bond chains
connecting particles 1 and 2, including, however, the
direct f bond f(rrs). Neither the chain summation nor
its generalization by nodal expansions, ' have a recog-
nizable parameter, in contrast with the present pro-
cedure. Furthermore, since we do not use a virial
expansion, or results shouM apply to condensed
phases as well.

We now outline the proof that g(1,2, ,ri; Xi) is the
ratio of fj.nite polynomials in X&, when all the remaining
coupling parameters are set equal to unity (as is actually
done in practical applications). First we note that

f(r) is finite at all values of IrI and yields convergent
solutions for realistic pair potentials with a repulsive
core.

The solution of Eq. (9) is

g, (R)=X,f(R)+X'p f(r)g, (R—r)dr (9)
Z(),) p

Z(hi =0) si

which is analogous to the linearized Kirkwood, ' approxi-
mation —with the important difference that the kernel

Here si ——s(Xi) is the activity of particle 1. l"rom Eq. (2)
we have, in the limit .V, V —+ ~,

Q

~CAPP

ls+~

g(2, 3, , p+1)g f(li)dr~ (12)
u)& pt a=2

For Xi=1, Eq. (12) is just the first equation of the
Kirkwood-Salsburg hierarchy. ' ' For repulsive core
systems (() i) contains a small number m of terms'
because the integrals vanish for p, & m since f(1i)=0 for
large Iri, I

while g(2, 3, , p,+1) vanishes for small
separations Thus th.e thermodynamics function $(hi) is u
loto order polynomial i' Xi (e.g. , for hard spheres m= 12).
This fact may be important for phase transitions where
limiting processes and convergence problems are trouble-
some. From Eq. (3) we similarly obtain

7 This is entirely analogous to the rigorous derivation of the
Debye screening potential for Coulombic systems LJ.G. Kirkwood
and J.C. Poirier, J.Phys. Chem. 58, 591 (1954)j.For such systems
our Eq. (9) yields the Debye potential when the f bonds are
linearized. This also follows from the fact that for the linearized
f bonds our coupling parameter becomes identical with that of
Kirkwood.

'See also J. E. Mayer, J. Chem. Phys. 15, 187 (1947); L.
Sarolea and J. E. Mayer, Phys. Rev. 101, 1627 (1956).

S(Xi)=g(2,3, ,n)

g(2, 3, , n+IJ, ) g f(1i)dr~. (14)
j=n+1

For X~=1 this is the general Kirkwood-Salsburg equa-
tion. The series 5(X&) is a mth order polynomial just like
the $(Xi) series, which proves our statement. Equation
(13) also provides an explicit expansion parameter for
the Kirkwood-Salsburg hierarchy, and, in conjunction
with Eq. (6), yields many useful relations for solving
Eq. (5). The most attractive feature, however, is the
assurance of obtaining 6nite polynomial solutions,
at least by machine computations.

From the above discussion we see clearly the ad-
vantages of exponential coupling as compared with the
usual potential coupling. The individual terms of the
expansion Eq. (6) are all finite even for strongly
singular (e.g. , hard sphere) potentials, where the Kirk-
wood coupling parameter expansion is not valid. The
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integral equation for g(1, ,is) Eq. (5) is likewise
considerably better behaved than the Kirkwood or
Born-Green ones because the kernel goes rapidly to
zero as

~
ri;~ ~ ~. In fact, the actual region of integra-

tion is small, and cell-theory type approximations may
thus be useful in the solution of this equation. This fact
is not surprising when we note that Eq. (5) is entirely
equivalent to the Kirkwood-Salzburg hierarchy. '

It should be noted that, even though the distribution
functions are given by the ratio of two practically
finite polynomials Eq. (13), the expansion of g(1, ,e)
in )I.i is an infinite series because the ratio S(Xi)/$(Xi)
itself is such a series. It is possible to define "activity
distribution functions" which can be expanded directly
in practically finite polynomials in the new coupling
parameters. Many other manipulations with expo-
nential coupling parameters are possible. Thus, for
example, the coupling can be employed in such a manner
as to ensure that g(12) —+ 0 as rrs ~ 0 to any order in
)I. The present approximation does not fulfill this
condition: the distribution function. remains in general
finite and nonzero as interparticle separation goes to
zero. Of course, such a behavior is still better than that
obtained from linearized potential coupling (e.g., the
Debye approximation), when the distribution function

becomes infinite at zero separation. A detailed analysis
of these new approximations will be published sepa-
rately, ' including calculations for hard sphere Quids. A
modified form of the coupling has been applied to fused
salts. " Among further possible applications we should
like to mention ion pairing in semiconductors, equation
of state of the classical electron gas, theory of electro-
lytes, and problems of phase transitions. For this last
application, the assured convergence of exponential
coupling expansions may prove particularly useful since
limiting processes and interchanges of limits prove
troublesome in the critical region. However, the ques-
tion of the physical meaning of exponential coupling is
as yet unanswered, and is at present under investigation.

Finally, we should like to note the possibility of apply-
ing the exponential coupling procedure to quantum-
mechanical systems, e.g., by coupling the reaction
matrix or the Yang-Lee "activity bond. ""
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