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Unitarity Condition and Anomalous Vertex Functions*
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An intuitive prescription is given in perturbation theory for the calculation of the absorptive part of a
vertex function in the anomalous region from the unitarity condition. The relation of the present method
to other known methods is also discussed.

1. INTRODUCTION

N setting up the dynamical 5-matrix theory of
& - elementary particles by means of unitarity and
dispersion relations, one of the complications that one
is frequently confronted with is the presence of the
anomalous threshold. In the presence of the anomalous
threshold the unitarity condition serves to determine
the absorptive part of a certain amplitude above the
physical threshold in terms of other amplitudes, but it
fails to give any direct information about the absorptive
part below the normal threshold.

The determination of the absorptive part in the
anomalous region was studied by several authors' ' for
scattering amplitudes as well as for vertex functions.
In this paper an intuitive method of making a con-
tinuation of the absorptive part of an anomalous vertex
function from the normal region to the anomalous
region is proposed and its connection with other
methods is discussed.

First we shall point out the reality condition as the
most characteristic feature of the absorptive part, and
then, based on this condition general methods —con-
tinuation and dispersion methods —are proposed to
compute the vertex function in the anomalous region
(Sec. 2). Next the unitarity condition for the vertex
function is formulated in perturbation theory (Sec. 3).
As a typical example of anomalous vertex functions
the deuteron form factor is studied in detail. First the
continuation method is applied to this problem and it
is verified that the result of the Feynman perturbation
theory is reproduced. Also its connection with the
method of deformation of the path of integration
proposed by Blankenbecler and Nambu' is discussed.
Then the second dispersion method and its connection
to Cutkosky's methods are investigated (Sec. 4).
Finally another simple example is studied by the
dispersion method (Sec. 5).

2. REALITY CONDITION FOR THE
ABSORPTIVE PART

If a function f(s) is analytic in the upper half-plane of
a complex variable s, f(s) satisfies a dispersion relation

*This work supported in part by the joint program of the
U. S. OfIIce of Naval Research and the U. S. Atomic Energy
Commission.' S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).'R. Slankenbecler and Y. Nambu, Nuovo cimento 18, 595
(1960).

s R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).

1
f(s) =- Im f(x')

dx', (Ims) 0)

provided that f(s) falls ofF su%ciently rapidly at
infinity. In this relation the absorptive part Imf(x) is
a real function of x when x is a real variable, and when
f(s) stands for a physical amplitude Imf (x) is supposed
to be expressed in terms of other amplitudes with the
help of the unitarity condition.

Let us put

A (x)= Imf(x), (2 2)

and regard A (x) as a function of a complex variable x.
Then for real values of x, A(x) is real and calculable
from unitarity above the normal threshold, but below
the normal threshold, which is the branch point of
f(x), A(x) generally turns out to be complex when
continued from above to below the normal threshold.
The reality property of A (x) above the normal threshold
then implies that A(x) be many-valued below the
threshold.

The function A(x) continued from above to below
the branch point along a path in the upper half-plane
will be called A+(x), and similarly it will be called
A (x) if it's continued in the lower half-plane (Fig. I).
If x is real A+(x) and A (x) are the complex conjugates
of each other as required by the reality condition

A~*(x) =A (x) (x: real). (2 3)

Since A (x) calculated from unitarity is not necessarily
real below the normal threshold we cannot identify it
with the real absorptive part Imf(x), but perhaps the
most reasonable ansatz would be the identification

Im f(x) = ReA (x). (2.4)

4sf~a

A-~x

4/x)
FIG. j.. The paths to de6ne two

branches of the function A (x)
below the normal threshold in the
complex x plane.

The justification of this ansatz is the purpose of this
paper and it will be verified in later sections by direct
calculations.

In order to calculate ReA(x) below the normal
threshold one can use two difFerent methods. (I) Simply
continue ReA(x) from above to below the normal
threshold. This method, however, is not always appli-
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cable as we shall see later and in some configurations
the unitarity condition gives only the imaginary part
of A (x). In such a case one can use the second method.
(2) Assume that A+(x) is analytic in the upper half-
plane and likewise A (x) in the lower half-plane, then
one can write down a dispersion relation

P
ReA (x) =— ImA (x')

dx ) (2.5)

where

aild
ReA (x) =ReA+ (x)= ReA (x),

ImA(x)=ImA+(x)= —ImA (x).

3. UNITARITY CONDITION FOR THE
VERTEX FUNCTION

The absorptive part of a vertex function can be
expressed in terms of other amplitudes by means of the
unitarity condition. Since, however, at least one of the
three external momenta must be oR the mass shell, the
generalized rather than the ordinary unitarity condition
has to be used. This was already discussed by Muraskin
and the present author4 in connection with the repro-
duction of the Feynman perturbation theory based on
the generalized unitarity condition and parametric
dispersion relations. In that paper this problem was
discussed in con6guration space and everything was
straightforward, but from a practical point of view it
is more desirable to study this problem in momentum
space although one encounters some difhculties associ-
ated with the presence of the anomalous threshold,
which motivated the present work.

Consider the meson-nucleon vertex function g
corresponding to the Feynman diagram in Fig. 2. As
for the definition of b we refer to MN.

The absorptive part of this third-order vertex func-
tion can be expressed in terms of lower order Green's
functions as discussed in MN. Assuming the Yukawa-
type interaction between the scalar nucleon 6eld and
neutral meson 6eld with the coupling constant g, the

At the anomalous threshold which is below the normal
threshold ReA(x) jumps discontinuously and vanishes
on the unphysical Riemann sheet. The dispersion
relation (2.5) implies one subtraction and the subtrac-
tion constant is determined subject .to the continuity
condition that ReA(x) be continuous at the normal
threshold when continued below it.

In this paper the above-mentioned methods are
checked for the third order vertex function, but the
extention of these methods to higher orders is feasible.

Furthermore the vertex function is a function of
several physical parameters, and the connection of the
present approach to other methods will be found by
appropriate choices of the parameters as the variable
x in this section.

absorptive part of g is given by

gs
Imp= — p d'q 5$(q+ ps)'+M')

2 (27r)' .y.~

6 (p20+g0)j)(p10 QO)

X~L(V—P )'+~'3
q'+m' —ie

I)( g0 p20)~(g0 p10)

q'+m'+is
(3.1)

where M and m denote the nucleon rest mass and
meson mass, respectively, and P,y, q means a sum over
the diRerent ways of inserting intermediate states into
the vertex function. In the present case there are three
terms corresponding to three different channels

1 ~~2+3,
2+~ 3+1,
3 ~+—1+2.

(3 2)

It is easy to verify in this case that Eq. (3.1) reduces to

g3
Imp=-', P

cyor (2s )
de 5L(q+ps)'+ M')

g3
A=-', P

ayah (2s')s
A ~L(V+ps)'+~'3

X~L(Q —p )'+~'3 0( ps' 4jif')— —
q'+m'

First of all one can recognize that in the physical
configurations only one of the three terms can survice,
since corresponding to the three channels in (3.2) one
of the following three mutually exclusive conditions
must be met:

(—prs) 1)(—pss) &+ (—pss) 1, (channel 1)

(—Pss) &) (—Pss) &+ (—PP) & (channel 2)

(—p,')1) (—pP) &+ (—ps') & (channel 3)

FIG. 2. Feynman diagram for
the third-order vertex function.
The straight lines represent nu-
cleon lines and the wavy ones,
meson lines.

X&L(q—px)'+~'$ 0(—ps' —4~') (3 3)
q'+m'

This equation gives the absorptive part of g correctly
only in the physical con6gurations and the right-hand
side fails to give the correct expression for Imb in the
unphysical configurations. Therefore let us define a
new function 3 by

M. Muraskin and K. Nishijima, Phys. Rev. 122, 331 (1961).
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In the physical configurations one of these inequalities
and the threshold condition must be satisfied, but in
the unphysical configurations often none of them is
satisfied. In order to continue A from a physical
configuration to an unphysical configuration it is
perhaps reasonable to retain only one term in the
summation on the right-hand side of (3.4) provided
that one selects the correct channel. ' The selection of
the correct channel is, however, not unique, and in
some unphysical configurations A can be continued
from any one of the three channels. Under such circum-
stances, we can give one convenient way of selecting
the right channel. That prescription is to pick up the
largest member of the three invariants

PA P21 Pl~

where

Q= 8(q2+a) J 'dq„dq„

8(qP,g ) P, P.
8(ql, q )

(3 &)

(3.8)

and consequently

J2
P' PD

(3.9)
Pd

We used the metric AB= AB—ApBp. Q is then given by

first. In the latter case we choose t and x axes in the
space I and choose qP, qD, q„, and q, as the variables
of integration. Then one finds

and if, for instance, —P22 is the largest continue A to
the unphysical configuration starting from

P' PD ~&
(3.10a)

1 g
A3 ———

2 (22r)'
d'q b L(q+ p2)2+M2]

X&((q—pl)2+M2](q2+2222) '

In this integrand we dropped 8(—P22 —4M') since
—P2' —4M') 0 is the threshold condition in the channel
3 and we are continuing A3 down below the threshold
into the unphysical region. In this way the problem is
decomposed into two steps: (1) the selection of an
appropriate channel, and (2) the continuation of A

into the unphysical region.
In order to study the integral (3.4) it is convenient

to introduce an auxiliary expression I defined by

if a+q, 2 —q42(0 and
Q=O, (3.10b)

where

P' Pd, ~-*'-

Q= ~ —
I

&(-D),
S2 i

q2 qP. qh
D= qP P' PA,

qA P'6

(3.11)

(3.12)

if tl+q, 2—q42)0. An algebraic calculation shows that
the result can be expressed in a compact form

I= d4q b[(q+P2)2+M2]

where m" need not be positive. Then A3 is given by

1 g dm
Ag ——— I(F4")

2 (22r) 2 22l2 —222'2

with the understanding that the expressions involving
the vector q be expressed in terms of E, 6, u, 6, and c.

When the metric of the space I. is given by (+, +)
XbL(q —p,)2+M2]b(q2+222"), (3.4') the integral diverges, but we can de/me Q by (3.11)

even in this case. Then Q is real for (+, —) metric
and purely imaginary and double-valued for (+, +)
metric.

(3 5) With the help of the formula (3.11) the integral I is
given by

and the problem reduces to the evaluation of the
integral (3.4'). By combining the arguments of the
three 8 functions in the integrand, the integral (3.4')
can further be transformed into the standard form

Q= d4q b(q2+a)b(qP+b)b(qh+c) (3.6).

1 1 2

i
~(-D),

P1P2 P2

q qPl qP2

D= qPl Pl' PlP2 ~

qP2 PlP2 P2

(3.13)

(3.14)

The two four-dimensional vectors P and 6 span a
two-dimensional vector space I., and the metric in this
space is given either by (+, +) or by (+, —). In the
former case the integral Q diverges owing to the
hyperbolic character of the argument of the factor
8(q2+a), and therefore we shall study the latter case

' The author owes this point to Dr. Muraskin,

It is worth noticing that the first determinantal factor
is symmetric in Pl, P2, and Pl, i.e.,

Pl PlP2
1 2 3

PlP2 P2 —2pl'p2' —2p2'p2' —2p2'p, '), (3.15)

where we used pl+p2+pl ——0.
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Inserting (3.13) into (3.5) one finds the complete
expression for the function A3. In the next section we
shall study this integral for the deuteron form factor.

4. DEUTERON FORM FACTOR

The method described in Sec. 2 will be illustrated by
the calculation of the deuteron form factor in the
perturbation theory. The corresponding Feynman
diagram is given in Fig. 3, and we assume that all the
particles participating in this process are of the scalar
type.

If we select the channel corresponding to the virtual
process

Fro. 3. Feynman diagram for the
deuteron form factor. The thick
straight lines represent deuteron
lines, thin straight lines nucleon
lines, and the wavy line the
virtual photon. The dotted line
indicates where the intermediate
states should be inserted.

In what follows we shall put

s= —k'

in order to make comparison with other papers easier.

A. Continuation Method
(4.1)k —+ N+N —+ d+d,

I. s&4M',

II. 4M2&s&4m2,

III. 4m'&s,

dm'2eg2 0(—D(m") )
A=

16zr m' —m" [k'(k'+4M') ]»
(4.2)

In the following arguments we introduce three

then the function A defined in Sec. 3 is immediately domains of s as defined by

given by

F(s) is given in the domain I by

where M and m are the rest masses of the deuteron where M&m is assumed. If we define F(s) by
and nucleon, respectively, and g and e are the scalar

A=~e 2~&6~ J. scoupling constants for the vertices d —+N+N and
k —+ N+N, respectively.

(4.6)

This is the support condition expressed by the presence
of the»» function in the integrand of (4.2).

The function A can be used to calculate the absorp-
tive part Imp only for time-like k since a space-like k

implies the selection of a different channel. Therefore
let us assume

k2&0.

Then the inequality (4.3) reduces to

m"+2m" (m' —M') + (m' —M')' —m" (4m'+ k') (0
or

where
my (m' &m2

(m"+m' —M'~'—D(m") =k'
!

!2)
k'—

—m"! m'+ — &0 (43)
4

It is not hard to continue this function down into the
domain II since the physical threshold s=4M' is not a
branch point.

Fzz(~) =
[s(4M' —s) ]»

[[4M'—s) [s—4m')]')
tan '

~

~

s—2M'
(4.8)

Fzz(s) vanishes at the normal threshold s=4m' if
2m'&M', but survives there if 2m'(M' as is in fact
the case. In the latter case we have to continue F(s)
into the domain III passing through the branch point
s=4m'. It is sometimes more convenient to write

1
Fz(~) =

[s(s—4M') ]»

g —2M2+ [(s—4M') (s—4m')]'
y, ln (4.7)

s—2M' —[(s—4M') (s—4m')]'*

mz2 =M'+ m'+-'k' —-'[(4M'+k') (4m'+ k') ]'*

m '= M'+m'+-'k'-'+[(4M'+k') (4m'+k')]'.
(4.4)

The m" integration must be carried out from mI to
m2' and the result is given by

Fzz(s) =
[s(4M' —s)]'

2M' —s
X «n-'! +-, (4.9)

k[(4M' —s) (s—4m')]'* 2

k'+ 2M' —[(4M'+k') (4m'+ k') ]»
Xln (4 3)

k'+ 2M'+ [(4M'+ k') (4m'+ k') ]»

in which case the tan ' part can be understood in the
sense of the principal value. In the domain III, the
function Fiii depends upon the path along which it is
continued from the domain II. We shall call Fzzz(s)
as Fzzz'+'(s) or Fizz' '(s) according to whether it is
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continued along a path in the upper half-plane or in proposed. to deform the path of integration in the
the lower half-plane (see Fig. 4). dispersion relation. The results obtained here are in

accord with those of the Feynman perturbation theory.
2

This expression is valid as long as the numerator of the
argument of the logarithm is positive, i.e.,

or
2M —s—[(4M'—s) (4m' —s)]'*)0,

s) sp
——4M' —M4/m'.

sp is the anomalous threshold and (4.10) is valid in the
redefined domain III:

III. So&s &4m'.

In order to call so an anomalous threshold, however,
it is necessary to show that ReF(s) vanishes at s=sp.
Examination of formula (4.10) shows that this is not
the case, and a trick is needed in order to call sp an
anomalous threshold. Continue Fizz&+'(s) around the
point so counter-clockwise and backward along the
real s axis as shown in Fig. 5. Since so is a logarithmic
singular point, Fzzz~+) defined by the above prescription
is obtained as

Fzzzi+i (s) =
[s(4M' —s)]'

2MP —s—[(4MP —s) (4m' —s)]I
Xln . (4»)

2M' —s+[(4M' —s) (4m' —s)]&

The function Fizz'+&(s) is purely imaginary and hence
ReFzzz(+) vanishes at s=so, although E is on the
unphysical Riemann sheet. This function vanishes at
s= 4m' as shown by Blankenbecler and Nambu. '
Taking the real part of Fzzz we completed our continu-
ation procedure.

ReFiii(s) =2n/[s(4M' —s))'*. (4.12)

The absorptive part Imp(s) is then given by

Imzz(s) = ReA (s) = (eg'/16') ReF(s). (4.13)

The function F(s) is real in the domains I and II.
It is perhaps worth noticing that ReFzzz is given by

ReFni(s) =Fizz+'(s) —Fizz+&(s). (4.14)

This relation proves the equivalence of the present
approach to that of Blankenbecler and Nambu' who

so

FH)
F~ Fx

2
F(-) 4~2 4M
3K

FIG. 4. The pahts in
the complex s plane along
which two branches
PzII(+& and FIII ) are
defined,

Fin + (s) =
[s(4M' —s))'*

( i 2M' —s—[(4M' —s) (4m' —s))*)
y~ zr+ —ln (4.10)

2 2M' —s+[(4M' —s) (4m' —s))&J

F(~)=[ r( r—4M'~)]:—

2M $—sg —[(s& 4M'P) (s—P—4m'))'*
Xln

2M ( s(+[—(s( 4M'$—) (sg 4m')—]'
1

[s(s—4M'))I (
2M' —s—[(s—4M') (s—4m'/t) ]l

Xln (4.15)
2M' —s+[(s—4M') (s—4m'/()) I

In the domain I, i.e., for s&4M', the first factor is real
and the absorptive part Img is simply given by

Im gz = (eg'/16zr) Fi (1). (4.16)

In the domains II and III the first factor is purely
imaginary and double valued, whereas the second factor
is real due to the absolute value symbol in the argument
of the logarithm. In order to get ReF(1) in those
domains we have to use the dispersion relation

P dp
ReFzi, zzz(1) =— ImFzz, zzz($). (4.17)

7r

The scale transformation does not allow F to attain
the physical domain I thus preventing the application
of the continuation method. The imaginary part of

' This dispersion method has an interesting application to the
deuteron problem. This will be discussed at another opportunity.

B. Dispersion Method

In the previous subsection Imp was determined as a
function of s by means of the continuation method.
This simple method fails, however, when Imp is
regarded as a function of some other variables, and in
this subsection the second method will be introduced. '

The absorptive part A as determined by the unitarity
condition is a function of s and M when M is regarded
as a variable, and it will be denoted by A (s,M'). Then
let us introduce A(s), M'$) as a function of $ with s
and M' fixed. The analyticity properties of the b
functions as functions of the scaling parameter $ have
been discussed in a series of papers and in this con-
nection it is perhaps interesting to regard A as a
function of $. In this calculation we confine ourselves
to only positive values of $ since otherwise we have to
take care of channels other than the one considered so
far.

First we shall define the function F from A by (6,4).
so that
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(&

—1
ZmFzz, zzz (g) =

II and III is given byF ) ill the domains II an (4.23) we put

t tobeso that I turns out to

(4.24)

2M' s——[(4M' s) (—4m'/g s—
4M' —s) (4m /$—

(4.18)
2M s+[(

17 is not the correct one,
one subtraction

p

'
n relation in order o

d bt th
li1

continuity o
I and II, i.e.,

1 at s=4M'ReFzz(1) =ReFz(1) «s=4M . (4.19)

ReFzz, zzz (1)

tegral convergest case the dispersion in e

l constant to e n
8) is a kinematic

ke t even in the p
h dnd therefore, t etraction, an, e

is given by

2Ãdx
ln

x' s—4m' a+xp x s

4x'dx dG
+zrC.—4' 0 x —u'2 g

(4.25)=P

+zrC. (4.26)
2(x'+s —4m') (x'—a

' II 4M»s&4m2.
d I d toPut b= (s—4m')&, an r

I= da
0

2x dx

„(x'+b') (x'—a')

0 x+s
'

n of x we shallis an even function o xSince the integrand is an eve
write I as

1 F d$

[s(4M2 —s)] 5(1—5)

2M' —s—[(4M2—s) (4m2/g —s))&

1
Xl

1 I
[s(4M2 s))& zr-

n constant, anndthe subtractionwhere C is e

(4.20)

= 2mb
dc

+zrC
a2+ P

= 2zr tan —'(a/b)+zrC

2M' —s
1

= 2zl 'tazl

[4 —s

s to determineco
' '

4.19) enables us econditionThe boundary co
C.

C=m.

alld

I=P
1

d$ a—(4m'/$ —s *

(1—
&) a+ (4m'/( —s &

II 4m~&x.
P t = '— dI d toPut b= (4m' —s), an

2x dx

If we put

2a = (2M' —s)/(4M' —s

m" = (m2/(),

(4.21)

(4.22)

I= du
0

+zrC
„(x'—b') (x'—a')

I looks likethen the integral I b a b)+b (a+b))da+—zr2

+ C. (4.23)"—m' a+ (4m"—s)'*
I=P

m

with respecnw tis ersion relation w'
g "" 'pThis is not ing

n mass. In orto the in e
' t mal nucleon m . I or

=zr'[e(a b)+1)—
=zr'[8(s —so)+1]. (4.28)

e ath indicated inFIG. 5. Along the pa

h
' 1R'

function zzz

o an unp ysitinued onto
sheet to de6ne zzz

r..~-S
At

(~)F~

the anomalous thresho
domai n is given y

s(4M' —s)]&, (so)s)
that obt dp ression as th

thod if th tfrom eth continuation me
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required.
Fzo. 6. The path along which
FIII(+) is continued to PIv&+& ~ Fzz(s =4m') =2zr/[4m'(4M' —4m')$l (4.33)

So

the real axis in the upper ha, lf plane (Fig. 6). We must
discard Fz&, however, since the discontinuity of ReF
at s=sp is an indication that we continued the function
F to this domain from a wrong channel.

C. Mixed Use of Both Methods

gives the boundary value of ReFzzz at s=4m', and this
must be incorporated into the dispersion relation. The
imaginary part of Fzzz (m, ) in the domain III is given by

dm
ImFzzz(ma )=

[s(4M' —s)]l m, '—m"

X[8(m"—m ') —8(m"—m2') j (4 34)

The absorptive part Imp was regarded as a, function
of s, f, and m', and two kinds of methods were proposed
to complete the real part of F. In this subsection we
shall propose the third method which lies between two
previous treatments.

If one writes down the perturbation expression for g
one finds that g is an analytic function of each internal
mass variable, and so let us consider g as a function
of the mass of the nucleon exchanged between the
deuteron-antideuteron pair (Fig. 7). The variable mass
of this nucleon will be denoted by m, then the function
F(m.') is given by

The real part of Fzzz is then given by the once-sub-
tracted dispersion relation

dm 2 dm
n. ReFziz(m') =

[s(4M' —s))l m' —m ' m"—m '

X[8(m" m'—) 8(m—" mP—)j
+"subtraction constant" . (4.35)

Since the dispersion integral is convergent without
subtraction, the once-subtracted dispersion relation

(4 30) can be written in the above form. If the integration
over m ' is carried out first, one finds

dzzz" 8(—D(m"))

m. ' m" [s(s—4—M') j-:
F(m.') =

where 8(—D(m")) has been defined by (4.3) or more ReFizz(m')
explicitly by

8(—D(m")) =8(m"—mP) —8(m"—m~') (4.31)

and mi' and m2' are given by (4.4).
In fhe domain I, (4.30) is immediately integrated

and Fz(m') is equal to the previous result as given by
(4.7). Next we notice that the expressions for mi' and
m2' imply

(s—4M') (s—4m') )0. (4.32)

Thus, if s&4M', s must be smaller than 4m' no matter
whether [s(s—4M')$l is real or imaginary and Fzz(m')
=0 results from (4.30). Therefore, in order to get
Fzz(m') one has to continue Fz down to the domain II
with respect to the variable s. Then in order to get Fzzz
or more precisely ReFzzz we can use either the continu-
ation method as described in A or the dispersion method.
We shall illustrate the latter for some later purpose.

In applying the dispersion method the continuity of
ReF at the border between domains II and III is

dm'9 (m' —m")
[s(4M' —s) ]&

X[8(m 2 m22) —8(m 2 mP)]+C

[8(m' m22) 8—(m2 —mP)+C—j (4.36).
[s(4M' —s)]l

ReFzzz(m ) = at s =4m'. (4.37)
[s(4M' —s) J'*

Comparison of (4.37) with (4.33) yields

C=2,

and hence we find for s&4m'

(4.38)

C must be independent of s, and if we put s=4m' then
m&'=m2' and ReFzzz is given there by

ReFzzz (m') =
[s(4M' —s) j&

Fzo. 7. The assignment of
rest masses to lines in the
Feynman diagram given in
Fig. 3.

where
X[8(m' —m2')+8(mP —m')+1j (4.39)

2 (m' —m2') =s 2M' [(4M' s) (4m—' s) )—&——
2 (mP —m') = 2M' —s—[(4M' —s) (4m' —s) j'.
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In the domain III the first expression is negative and This expression survives only in the domain
the second one is positive if s&so. Thus we find

0&s&4m2.
ReFnr (m') = 22r/Ls (4M' —s) ]&, (4.40)

This suggests the relation

2
ReFrrr (m') = ——

7l J m m

dma
ImFrrr (m.'), (4.41)

and if we go back to the original expression (3.3) and use

dma
= trrli(ms+f2),

m~ m I7 +m~—

which is identical with (4.12).
This result can be compared with the unsubtracted

dispersion relation with C=O which gives instead of
(4.40)

—2r/Ls (4M' —s)]t.

In order to calculate ReF(s) we have to use the once-
subtracted dispersion relation. In the presence of the
physical region the subtraction constant is determined
by the requirement that ReP be continuous at the
border between physical and unphysical regions. In
the absence of the physical region, however, this
boundary condition is not available, and in order to
overcome this difficulty the solution of the deuteron
form factor problem will be utilized. ReF(M') is
obtained by putting s= M' in the deuteron form factor,
i.e.)

ReF(M ) =Ref'rrr(M ) =22r/LM'(4M —M ))i (5 4)

This gives the proper boundary condition to determine
the subtraction constant in the present problem.

The unsubtracted dispersion relation with respect to
the scahng parameter $ gives

we find that the absorptive part in the anomalous
region is given by

"ReF(s)"=— ln
$'—1 V3sg'

—s+ $3s (4m2/g' —s))'*

—s—L3s(4m2/f' —s)]i
g3

A = ——Im d'q SL(q+p,)'+M']
4x

4ms/s

v3s 2r p

X/L(q —p,)2+Ms)$(q2+m2). (4.42) —
s+ L3s(4m2/(' —s) 7&

Xln —s—L3s(4m2/$' —s))&

(5 5)
This is exactly the same result as that of Cutkosky'
who gave the simple rule that the replacement

1/(/l'+m') ~ 22riii (q'+m')
One could write down a dispersion relation in the vari-

(4.43) able s as well. r The correct once-subtracted dispersion
relation gives

reproduces the correct absorptive part in the anomalous
region III.

S. ANOTHER EXAMPLE

In the previous section the deuteron form factor was
studied in many diferent ways. In this section let us
study the vertex function in a special configuration

4ms/s

ReF(s) =
V3s 2r s

(s/3) &—(4m2/f —s) &X», +C, (5.6)
(s/3)'+ (4m2/(' —s) &

x= (4m2/(' —s) &,

where the subtraction must be done so as to keep the
1 2 2 s.

kinematical factor 1/v3s. Introducing a new variable
e

In this case the function F is obtained from (4.7) by
replacing M' by s, i.e., (5.7)

—s+ —3s s—4m'L ( )]
F(s)= ln

V3is —s—L
—3s(s—4m'))&

(5 2)

the integral then looks like

ReF (s) = (1/VS )I,s
where

This expression is imaginary for real values of s, and
the continuation method cannot be applied to this
example. Therefore the dispersion method will be
applied to it.

1 SdS 8—XI—— ln
„x2+s—4m' a+g

a= (s/3)&.

+C, (5 8)

ImF (s)=— 1 —s+(3s (4m' —s)]&
ln (5 3)

%3s —s—L3s (4m' —s)7'*

' If we write down the dispersion relation in the variable s and
put s'=sg', we get the dispersion relation in g' as given by (5.5)
or (5.6).
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FIG. 8. Generalization of
the Feynman diagram given
in Fig. 2. The dotted line
indicates where the inter-
mediate states should be
inserted.

ReF(s) =
&3s

4m'& s

s I
2 tan —'

~

— +C, (5.9a)
E3(s—4m')

ReF (s) = (I/&3s) L~e(s —3m')+Cj. (5.9b)

Comparison of (5.9b) with (5.4) gives

We shall summarize the results as follows:

(5.10)

This integral is exactly the same as (4.25) and is
immediately evaluated. s &4m'

0. DISCUSSION

1. In the text we limited ourselves to discussion of
the third order vertex functions, but it is easy to extend
our methods so as to cover more general diagrams as
those given in Fig. 8. Even in those cases the phase-
space integration reduces to the form (3.6) provided
that further integrations are to be done over a, b, and
c with a weight function of a, b, and c. Then we first
carry out the q integration, apply the present method
and then integrate over a, b, and c. This enables us to
include the rescattering corrections into the deuteron
form factor just as done in the work of Blankenbecler
and Xambu.

2. When no anomalous threshold is present, the
function Ii becomes purely imaginary just below the
normal threshold, whereas in the anomalous case F
becomes complex, i.e., neither real nor purely imaginary.

3. From the expression (4.2) it is clear that a branch
point is determined by

D(m') =0. (6.1)

ReFrr (s) =
&3s

+~,, (
&3(s—4m') i

for s)4', (5.11)

ReFrrr (s) = 2m/V3s, for 4m') s) 3m', (5.12)

and

ReFqv(s) =m/v3s, for 3m')s)0. (5.13)

In this example the physical region is absent. s=4m'
is the normal (but unphysical) threshold as before, and
s=3m' is the anomalous threshold. Below 3m', the
function ReFD should be omitted as before; then the
above results are again in accord with those of the
Feynman perturbation theory.

This is exactly the I andau-Cutkosky condition' to
determine the singularities of a given Feynman ampli-
tude (the third order vertex function in this case).

Most of the results obtained in this paper are already
known, but the author hopes that in this paper under-
standing of the anomalous vertex functions is served
in an intuitive pedestrian way.
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