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also those in which the uncertainty in the double-scat-
tering corrections is most important.
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By means of a new representation, the Dirac-Coulomb spherical wave functions are treated in a manner
which brings out the close formal similarity between these solutions and the spherical wave solutions for
the free-electron problem. The radial functions in the new representation have the same form as the non-
relativistic radial Coulomb functions, but with an irrational orbital "angular momentum, " l(y). This repre-
sentation is utilized to deduce a general recursion relation for radial Coulomb eigenfunctions, and show the
existence of the Coulomb helicity operator as a constant of the motion. The advantages and properties of
this formulation are discussed brieRy.

I. INTRODUCTION AND SUMMARY

'HE problem of a Dirac electron in a pure Coulomb
field (ctZ/r), as was first shown by Darwin in

1928, is one of the few problems involving the Dirac
equation with external fields, which permits of an
"exact" solution —exact, that is, within the restriction
to the one-particle theory (unquantized fields) for a
point nucleus of large mass. ' The fundamental im-
portance of this elementary problem, and the necessity
for exploring the implications of the solutions need no
emphasis.

It is the purpose of the present work to re-examine
and rederive the Dirac-Coulomb solutions in a repre-
sentation not hitherto discussed in the literature. This
representation is chosen in order to diagonalize (in
Dirac 0 space) two operators, I' (Sec. III) and (R (Sec.
IV), of central importance to the Dirac-Coulomb
problem. The first of these operators I was introduced
by Martin and Glauber'; the second operator (R was
introduced much earlier by Johnson and Lippmann in

~ Supported in part by the Army Research 0%ce (Durham)
and the National Science Foundation.' The classic treatment is that of Arnold Sommerfeld, Atombau
stnd Spehtrattinien (Friedrich Vieweg und Sohn, Braunschweig,
1939), Vol. II, Chap. 4, p. 2098. See also H. A. Bethe and E. E.
Salpeter, Quantum mechanics of One and Two Electron Atoms
(Academic Press Inc. , New York, 1957); and M. E. Rose,
Retatioistec Electron Theory Uohn Wiley tk Sons, Inc. , New York,
1961).' P. C. Martin and R. J. Glauber, Phys. Rev. 109, 1307 (1958).
These authors were concerned with a speci6c calculation, and
primarily with the discrete spectrum, and did not discuss the
representation that diagonalized F.

a brief note. ' The operator R, as we shall show, has the
signihcance of a generalized helicity operator, and is a
constant of the motion for the relativistic Kepler
problem; the operator I' is more dificult to categorize
brieQy, but is connected with a generalization of the
operator psE (where E is Dirac's operator) and is not
a constant of the motion.

The importance of the representation 5 which
diagonalizes the operator F lies in the fact that it
enables us to treat the Dirac-Coulomb eigenfunctions
as the precise analogs to the spherical wave solutions
of the free (Dirac) electron. Moreover, in this repre-
sentation the radial wave functions are surprisingly
simple, being of precisely the same form as the radial
functions in the nonrelativistic Coulomb problem. The
transformation to the representation S makes it
evident that the integer orbital angular momentum of
the free-electron problem, becomes in the relativistic
Coulomb problem a noninteger (irrational) "orbital
angular momentum. "In neither the integer nor the non-
integer case is the orbital angular momentum sharp, yet
it is conceptually helpful in understanding the problem.

The plan of the present paper is to discuss (Sec. II)
the free-electron (plane wave) problem first, employing
techniques which permit generalization to the Dirac-
Coulomb problem (Sec. III). A basic result of this

' M. H. Johnson and B. A. Lippmann, Phys. Rev. 78, 329(A)
(1950). The operator actually introduced by Johnson and Lipp-
mann differs trivially from (R, however. The use of this operator
was originally suggested to Martin and Glauber by K. A. Johnson
(cf. footnote 6 of reference 2).
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treatment of the Dirac-Coulomb problem is the
generalized recursion operator for the radial eigen-
functions, Eq. (25). This relation furnishes a concise
treatment not only of the Dirac-Coulomb radial
functions, but also applies to all special cases, including
plane waves.

Section IV utilizes the general radial recursion
operator to deduce and define the Coulomb helicity
operator R. The final section, V, discusses some ad-
vantages and properties of the representation S.

The structure of the solutions to motion in a Coulomb
field are not without intrinsic interest, for this structure
exhibits invariance properties whose origins lie quite
deep. For the nonrelativistic problem, this symmetry
is that of rotational invariance in a space of four
dimensions. 4 It is well known that this symmetry is
spoiled for the relativistic case—yet for the Dirac
electron, the symmetry is not completely spoiled and
it is of interest to inquire as to the implications of such
invariance as still exists. Although such questions
motivated the present work, they may be disregarded
here; we hope to discuss them more systematically
elsewhere.

II. STRUCTURE OF THE DIRAC PLANE WAVE

The plan of the present work is to compare in detail
the Dirac-Coulomb problem and the Dirac plane wave
in order to show explicitly the similar structure of both.
Since it would defeat our purpose simply to refer to
the many places where one may find the required
answers, we shall develop the desired results from the
beginning.

The Dirac plane wave 4 is a solution to the equation

(pzrr V+psE/Ac+me/5)4=0. (1)

To solve this equation, consider the second-order
(iterated) equation, that is,

8 8+C = (psa p'+p, E/5c —mc/5)

)& (psa ~+psE/lzc+mc/5)C

1 c) r) L'——r'——+k')@=0. (2)
r2 Br Br r~

LIn Eq. (2) the usual definition, k'=(E' —zn, 'c')l/Ac,
has been introduced. 7 Every solution of (1) is at the
same time a solution of (2), but not conversely; we
distinguish the solution of (2), therefore, by another
symbol C.

The Legendre operator L' may be put into spinor
form using the identity

L'= (e L+1)'—(rr L+1). (3)

With this identity, it is then clear that the second-order

V. Pock, Z. Physik 98, j.45 (1935); V. Bargmann, Z. Physik
99, 576 (1936). See also, L. C. Biedenharn, J. Math. Phys. 2, 433
(1961).

which, in addition to satisfying relation (4), are ortho-
normal, have sharp j (=!ir!——',) and js (=zz), and
obey the relation

According to (3), the orbital angular momentum is
given by

E(s) = [s J+-', Lsgn( )—17. (&)

Hence we may write the solutions C~ to Eq. (2) which
have sharp E and p3 in the compact form:

(j&(—~) (~r)

0
alid

The essential point to be utilized next is that solutions
to the first-order equation (1) may be obtained from
the solutions (g) by exploiting the fact that 8 and 8+
commute. In fact, the solutions to Eq. (1) (with a
given sign of the energy) may be associated in a one-to-
one fashion with solutions of Eq. (2), having the same
sign of the energy and the appropriate sign of p3. ' It is
conventional to choose for electrons of positive energy
(negatons) the solutions of Eq. (2) having ps

———1 in
order that the "large component" be associated with
the lower component in p space.

With these conventions one finds that the wave
function associated with C is given by

+= (p,rr V+psE/Ac mc/5)4==8 C . —

The operator 8 in Eq. (9) commutes with E but not
p&, and hence causes "mixing" in y space. Explicitly
this operator has the form:

(E—mc'

lzc

r) (1—s))
!zrr r" —+

ar r

ci (1+a))
!

—zrr r —+
ar r )

(E+mc')

ac )

~ (1o)

'This statement assumes that (L' —mc') does not vanish, in
order that the mappinj, be one-to-one.

equation, Eq. (2), possesses as constants the com-
muting operators p, and rr L+1. Alternatively, and
conventionally, it is most convenient to classify the
solutions to Eq. (2) by the eigenvalues of Dirac's
operator E=ps(rr L+1) and ps.

The spinor solutions to the eigenvalue problem

(e L+1)X„s= ~7r„s,

are the two-component Pauli spinors

X."=2 (f s p, —r rl jp)Yi '(r9, p)Xt',
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Since -', (1+ps)%' must satisfy Eq. (2) this shows that
there exists, according to (10), an operator identity
for the spherical Bessel functions. Indeed, one knows
that

/' a (1+)r))
I

—+ Ig«„)(kr)=k sgn(s) ji& „)(kr). (11)
Ear r i

Hence the solution 4' to Eq. (1) associated with the
solution C of the second-order equation is given by

~ ~

~

i,k sgn(~)j «,)(kr)X „s

—(kc) '(s+mc')j i &(k(r)x.") (12)

These solutions are (aside from normalization) just
the usual spherical wave solutions for the free electron;
they have sharp E, j3, and parity. The present deri-
vation is not completely new; in fact, a related deri-
vation and an accompanying notation (based upon
Sommerfeld's) were presented by the author several
years ago. 6

1 a a L' 2nZg (crZ)s
e t)+4= ——r'——— +

r' Br Br r' her r'

inzptrr r"

+ks Ii=0. (14)
r'

Introducing Dirac's operator E, by means of (3), one
finds that (14) takes the form

1 a a E' (crz)' 2ctzZ———r2——
r Br Br r' Acr

1
+ (psE+t'nzpirr r)—+k' 4 =0. (15)

r

Let us now introduce the operator, F, defined by
the relation

I'= psE+inzpirr r'.

Since p3K and p~ e r" anticommute, it follows that
Fs=Es—n'Z'. This operator already appears in (15).

~ M. E. Rose, L. C. Biedenharn, and G. B.Arden, Phys. Rev.
85, 5 {1952);L. C. Biedenharn and M. E. Rose, Revs. Modern
Phys. 25, 729 {1953).

III. STRUCTURE OF THE DIRAC-COULOMB WAVE

The Dirac equation for motion in the Coulomb field
(az/r) differs ostensibly very little from Eq. (1); this
equation is

I ps@ V+ps(E/hc —nz/r)+mc/57%'= 0. (13)

(nz positive corresponds to a repulsive field. )
Just as before, the first step is to obtain the corre-

sponding iterated equation. This equation is easily
found to be

I
In Eq. (1/) the relativistic analog of Sommerfeld's

(nonrelativistic) parameter ))N a.= Ze'/tv has been
introduced by the usual definition: )l =azL~'/Sck. j

Equation (17) suggests that one ought to introduce a
noninteger "orbital angular momentum" /(y) in formal
analogy to the integer orbital angular momentum I (~) of
Eqs. (2) and (7).r To accomplish this one first takes
I' to have a sharp value. Let F—+y=&

I
()t' —n'Z')lI,

and then define the "orbital angular momentum" l(y)
by the relation F' —F=/(I+I), i.e. , the analog to
L'= (e L+1)'—(e L+1) of Eq. (3). The explicit
solution is the analog to Eq. (7):

t(v) =
I v I+lCsgn(v) —13. (18)

(To do this without ambiguity, it is necessary to note
that F commutes with E.)

Thus, exactly as for the plane-wave case, we find
that the second-order Dirac-Coulomb equation pos-
sesses an additional commuting operator F which also
commutes with E. In this sense, F is to be considered
a generalization of the operator p3E of the plane-wave
case.

That this is actually so can be seen by diagonalizing
the operator F. The transformation which accomplishes
the diagonalization is readily found to be

where
S=expL —spse r tanh '(nz/E) j,

SI'S '= p,EI I 1——
( Z/E)'jlI.

(In defining the operator S it should be noted that
ps e r" commutes with E.)

In the representation defined by the transformation
S, the operator F/yIsIg nEis now just the ps of the
plane-wave problem.

The solutions of Eq. (17) are easily obtained, for it
is clear that this equation Dor F' —I' —+ l(l+1)j is
exactly in the form of the nonrelativistic radial Coulomb
problem. The normalized continuum wave functions'
are thus given by

F,(,) „(kr)= C, ()i) (kr) ) & er-)' s

)& iFi(I+1—i)i, 2l+2, 2ikr), (21)

Ci())) = (2'e ""IF(I+1+i)7)I/F(2l+2) j,
where /(&) is defined by (18), and ti =nZE/ Ack,

~ This important observation was also made by Martin and
Glauber (reference 2).

Tables of Coulomb Functions, National Bureau of Standards,
Applied Mathematical Series No. 17 (U. S. Government Printing
Ofhce, Washington, D. C., 1952).

9It is useful to note that for q=0, we have the relation
F$, & p{kr)= j~{kr).Moreover, in the limit c ~ 00, the F/ „become
just (kr) ' times the usual nonrelativistic Coulomb functions as
discussed by Breit and collaborators.

We may therefore write Eq. (15) in the very suggestive
form

/' 1 a a F (F—1) 2kti——r- yks Ic=0.
kr' ar ar r
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k= (E'—@Pc')'/Sc. Asymptotically one has

F)(»,„(kr) (kr) ) sinLkr —2)) lnkr+0((q)$, (22)

with a((rl) = argl'$l(y)+1+irI j.
In the representation in which I' is diagonal, we find

the explicit solutions to the iterated equation to be

second-order equation, the corresponding solutions of
the first-order equation. Just as earlier, this is accom-
plished by the operator 8 =p2n V+p3(E/hc nZ—/r)—mc/k, but now we must remember to transform the
operator 8 to the new representation. That is

0 =SGM-'4,
{P„-„,,„{kr)x .

)0

0

{Pg(,&,,{ki)x.")

(1+vp3) (kw3)
SOW '=pm(r r —+

(23) c)r r

7
These solutions have sharp E, with sgny= sgna.

The final step is to generate from solutions of the Explicitly, in p space this operator becomes

S8M-'=
(Sc)

—'(E{{jy —mc')

( 8 (1—7) kg
zc' r

&ar r

t{'8 (1+y) kg &—zc r"— +
&Br r

—(kc)
—'(RK/y+mc')

(24a)

Since the projected components 2 (1+pa)% must
satisfy Eq. (17), we may deduce from Eq. (24) an
operator identity for the radial wave functions,
F{(»,„(kr). This relation is found to be:

k)) d (1+y)——+—+ F((»..(kr)
dr r

(=k sgn(y)
~
1+— F(( ) „(kr), (25)

where y= a
~

P{('—(nZ)')l ~.
The identity given in Eq. (25) constitutes a complete

definition of the Dirac-Coulomb radial functions. For
y negative, we have a "raising operator"; for y positive,
a "lowering operator"; together, of course, they imply
Eq. (17). The plane-wave case as well as the non-
relativistic Coulomb case, are all contained in Eq. (25)
as special cases.

It remains to detail the actual solutions in this
representation. One 6nds that:

~

~

~

ik sgn({()F(( „) „(kr)x „&

—(Sc) '({(E/y+mc')F((», „(kr)x„&l

The solution given by Eq. (26) has positive energy
E and sharp values of E(={{),j (= ~{{~

—~), and 'ja
(=p), as well as parity L= (—)'("'j. {Note that the
convention sgn(y) = sgn({{) has been adopted, i.e.,
y=l{~L1—(nZ/{{)'~'.) Aside from normalization, this
solution is precisely that corresponding to the usual
result, transformed, however, to the new representation.

The complete analogy between the Dirac-Coulomb
solution given by Eq. (26), and the Dirac plane wave
result of Eq. (12) is manifest.

IV. COULOMB HELICITY OPERATOR

The general radial recursion operator as given by
Eq. (25) is not only a most concise formulation for the
radial Coulomb functions, but has the interesting
consequence that it implies an additional constant of
the motion for the Dirac-Coulomb problem, and for all
its limiting cases as well.

That this is possible may be seen in the following way.
The general recursion operator has the property that it
changes a radial function. appropriate to y into a radial.
function appropriate to —y. Since the operator e r"

similarly changes the Pauli central field spinor &„& into
X „~, it is then clear that a product of these operators
will produce from an eigenfunction belonging to ~ an
eigenfunction belonging to —I(.. Since, however, the
energy is the same for both &{{(the familiar Dirac-
Coulomb degeneracy), we see that this procedure, by
construction, furnishes an additional operator which
necessarily commutes with the Dirac-Coulomb
Hamiltonian.

It is useful to carry out the indicated procedure for
the various limiting cases of the general recursion
operator, since in this way a clearer view of the method
is achieved. Consider 6rst the plane-wave (free particle)
limit. We see from Eqs. (25) and (4), that the operator
(RJ, defined by

~ 8 1+paEq
Rr—= (M)—'( ) i

—+
her r i'
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has by construction the desired properties that

(a)

(b)

(c)

[H,~]=o,
[e,z],=o, (27)

(d) [e.,rI],= o,

(where II is the parity operator). The operator (Rr, how-
ever, is quite obvious, for it is none other than the
helicity operator, o.p.

Consider next the less trivial example of a non-
relativistic spin-~ particle in a Coulomb field. The
eigenfunctions for this case are the two-component
spinors given in Eq. (23). We may construct the
operator (R now to be

(RN.a.= (haik) '(1+vP/~') '*o r[8/Br+o L/r

+nZmc/5(o L+1)]
= (nZmc/hk)[(o L+1)~+vP) '

(Note that in this equation all quantities, e.g. , k, p,
that relate to the energy operator refer to the trans-
formed Hamiltonian, H=SHS '.)

By construction, the (relativistic) Coulomb helicity
operator 8, satisfi. es Eq. (27) (a) through (d) [where
H in Eq. (b) refers to H]. The operator R is thus an
additional constant of the motion for the Dirac-
Coulomb problem, whose existence is directly related
to the twofold degeneracy of states having opposite
signs for Dirac's operator E.

The operator S is rather complicated in appearance,
even though its properties are easily seen from its
derivation. Although the representation S is particularly
adapted to deriving and interpreting the Coulomb
helicity operator, this operator assumes a simpler form
in the usual representation. Transforming to this
representation, one finds

oe=s 6ts=-(ak) [E: -(z)—+n']-~

a 1—r
X p3o r' nZH+r —+

~

. (31)
ar r )

$QZssc

(~ L+&)(~ u))X &r"+
~ ~

~ (2g) The operator in brackets can be simplified by further
manipulation and one Gnds the result

This operator has the same abstract properties, [Eq.
(27), (a) through (d)], as the operator 6tr previously.

To put this operator into a more recognizable form,
one notes that [e L+1, o y]+——0 and hence

(o L+1)(o y) =-', ~o (LXy—yXL).

Thus the operator SN.R. takes the form

(RN.a.= (nZmc/hk)[(o" L+1)'+g'] le A, (29)

where
A= r+ (2nZmc) '(LXp —pXL).

The vector A is the familia, r Runge-Lenz vector which
is a vector invariant of the nonrelativistic Coulomb
field. Thus the pseudoscalar invariant S for a Pauli
particle in a Coulomb field is the spin measured with
respect to the vector A."

It is clear now that the operator S is a generalized
helicity operator, for which the name "Coulomb helicity
operator" seems reasonable.

It remains to derive the relativistic form of the
Coulomb helicity operator, (R. From Eq. (25) it is clear
that the desired operator is

txZ
(R= (kk) '(y'+q') iver r p3H+

~ y ~ pa sgn(E—)
Ac

-a 1—p, ~~(sgn(IC)-~
X —+ i. (30)

Br r )
' A behaves as an angular momentum operator and has a

measurable direction only in the classical limit. In this limit, for
bound states, A becomes the direction of the semimajor axis and
of length equal to the eccentricity of the elliptic orbit.

Epg (H—p3mc')
(nZ) '( )= o r"+

nZtsc

The operator given in Eq. (32) is also a constant of
the motion and diGers only trivially from the operator
S. That such an operator exists was erst shown by
Johnson and I.ippmann, ' who gave the result contained
in Eq. (32). By means of the representation S we have
succeeded in further interpreting this important result
of Johnson and Lippmann.

It might be noted that our derivation indicates that
it would be profitable to consider a problem inter-
mediate in complexity between the two-component
Pauli particle in a Coulomb Geld and the Dirac-
Coulomb problem. Such a situation results if we apply
Eq. (25) to a Dirac particle which in the representation
S has integer orbital angular momentum. This case is
none other than the Sommerfeld-Maue-Furry approxi-
mation, and our construction leads to an alternative
way to approach their results. A more detailed dis-
cussion belongs elsewhere, however.

V. FURTHER DISCUSSION

A. Some Advantages of the New Representation

The representation defined by the transformation S
is designed to make obvious the close analogy between
the Dirac-Coulomb spherical solutions and the Dirac
plane wave spherical components. Since the trans-
formation S is unity in the absence of the Coulomb
Geld, it is clear that the plane-wave solutions are indeed
simply special cases of the more general Dirac-Coulomb
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functions, and the relationship is completely obvious
without calculation (in marked contrast to the situation
with the customary representation). It is equally clear
that the transition to the nonrelativistic limit has been
made just as obvious and natural as the usual plane-
wave discussion, provided that one works within the
new representation. One avoids thereby the necessity
for appealing to analysis for various contiguous rela-
tions of the confluent hypergeometric functions neces-
sary to perform either of these limits when using the
customary representation.

While these advantages of the new representation
are principally of utilitarian value, it is nonetheless
satisfying that a fundamentally simple problem has
an equally simple and readily understood solution.
Because of the close relation of the new representation
to the nonrelativistic and plane-wave forms, it is
tempting to speculate that further understanding of the
Pryce-Foldy-Wouthuysen transformation in the pres-
ence of the Coulomb field may be obtained. No in-
vestigation of this point has been attempted, however.

One can, of course, go from the solutions in the new
representation back into the customary form, simply
by inverting the transformation S. The usual results
then appear as linear combinations of the two radial
functions J ~(~),„and J ~( ~),„. These can be further
transformed by means of the contiguous relations into
the usual (Sommerfeld) form.

Rather than transform the S-representation solutions
into the Sommerfeld form, it is more advantageous to
transform the desired operators themselves into the S
representation. This is straightforward and need not be
discussed here.

Goertzel" has shown how to translate the Wigner-
Eisenbud dispersion theory into a form appropriate to
discussing Dirac electrons (without quantization). It
is useful to note that the new representation greatly
facilitates the introduction of penetration factors and
the like for this problem —in a manner formally
analogous to the functions introduced for the non-
relativistic problem. It is to be expected that such a
treatment will present methodological advantages.

Feynman and Gell-Mann" have proposed that the
invariance to transformation by p& of the iterated
equation, Eq. (14), for arbitrary electromagnetic fields
might be exploited for beta decay. These authors
postulate that projected solutions of the iterated
equation having p& sharp may be taken as fundamental,
and this then implies the currently accepted chirally
invariant formulation of the Fermi interaction. Since
the use of the iterated equation is closely related to the
present work, one might expect the S representation to
be useful in the Feynman —Gell-Mann formulation of
beta decay.

ii G. Goertzel, Phys. Rev. 73, 1463 (1948).
'2R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193

(t958).

It will be seen at once that the operator I' also com-
mutes with p&. Rather than taking E sharp, as in Eq.
(15), one may instead project out two-component
solutions of the iterated Dirac equation which have p&

sharp. These solutions are automatically in the form
given by the new representation. Thus the Feynman-
Gell-Mann proposal leads directly to a very much
simpler formulation for treating beta decay in the
presence of an external Coulomb field. "A more system-
atic treatment of this formulation is in preparation.

=nZK f(J') (33)

Introducing this into the expression for S, one finds
that

S=exp[—-', nZf(J')pspsn r(n L+1)7
=exp[iznZf(J')pi(n rXL in r)7. —(34)

This result indicates that for states of a definite angular
momentum magnitude, the transformation S is in the
form of a Lorentz transformation, i.e., exp(zypio" 6).
To the extent to which such a conclusion is valid one
finds that the angle x of the transformation is given by
nZf(J') (J'+4)'*, and the direction is given by
&= (rXL ir)/(J'+4i)» The —fact that the .direction is

' L. C. Biedenharn, Nuovo cimento 22, 1097 (1961).

B. Nature of the Transformation S

The transformation S=exp[—z pen r tanh '(nZ/E) 7
is defined by the requirement that this transformation
is to diagonalize the operator I'= psE+inZpitr r". It is
not immediately clear just what this diagonalization
implies, and the purpose of the present section is to
discuss those properties of the transformation which
have been found to date.

It is useful to note that F is not a Hermitian operator.
It is, however, symmetric in the representation where
E is diagonal, and therefore a transformation to
diagonal form exists. Besides commuting with p~ and
E, the operator F also commutes with Wigner time
reversal (io sKs) and with the parity operator II
(psXreflection). As might be expected, I' does not
commute with charge conjugation (iysKo)

It can be easily verified that the operator S does
indeed bring F to diagonal form. Although this con-
stitutes an adequate demonstration, it is useful to note
further that the transformation S is well defined in
that: (1) the inverse of Dirac's operator K—since the
eigenvalues of E are nonzero —involves no difficulties,
and (2) the inverse hyperbolic tangent may be restricted
to the single branch where the hyperbolic cosine is
positive.

The operator K has the property that K'= J'+~i.
We may thus write the series for tanh '(nZ/K) in the
form

uZE ) (uZ)')
tanh '(nZ/E) = l1+ s I+

J'+-,'1 J'+-')
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complex, and moreover an operator, indicates that the
conclusion is not completely justified. Ke may, however,
avoid these difhculties by considering instead the
classical limit of this expression, in order to obtain some
insight into the nature of the transformation S.

In this limit, J (=L) is large and becomes an ob-
servable vector. The transformation then takes the
form

5 —+ expt ~i(nZ/I)pio rXL]. (35)

Thus one sees that the classical limit of the trans-
formation S is a I.orentz transformation along a
direction tangent to the electron orbit with the velocity
v= (aZ/L)c.

In the relativistic Kepler problem the classical orbits
are confined to a plane but do not have a fixed orien-
tation, the perihelion advancing at a regular rate. This
precession arises from the variation of mass with
velocity, combined with angular momentum con-
servation. (If the problem also involves spin (through
a magnetic moment) this will also contribute to an
orbit precession. $ The orbits, as well as the precession
rate, are functions of the angular momentum. In his
discussion of the relativistic Kepler problem, Som-
merfeld remarks that in a properly chosen rotating
coordinate system, the orbits, for a given angular
momentum, are ellipses —exactly as in the nonrela-
tivistic Kepler problem. Sommerfeld showed that the
polar angle f measured in the rotating system must
be (1—(nZ/L)2]'* times the angle in the fixed system.
Expressed in terms of the time required to increase the
angles by 2m, the rotating system shows the longer
period in the ratio (1—(nZ/L)'] '.

Returning to the I.orentz transformation given in
(35), one notes that this transformation causes a time
dilation between the fixed and transformed systems,
in the Dirac problem, by exactly the same factor:

t 1—(e/c)'] &= [1—(nZ/L)'] —'. Thus it seems reason-
able to conclude that the transformation S—at least
in a classical approximation —is electively a Lorentz
transformation for the Dirac problem in some sense
equivalent to Sommerfeld's rotating coordinate system.

The existence of this close relationship between the
transformation S and Sommerfeld's treatment of the
relativistic Kepler problem is helpful in understanding
the long-standing puzzle as to reasons why Sommer-
feld's quantization of the relativistic Kepler problem
(by the Kilson-Sommerfeld quantization rule) gives
exactly the correct (Dirac) energy levels.

The transformation S is not unitary, but this is in
accord with the fact that Lorentz transformations for
the Dirac equation are also not unitary. The proper
requirement is that (~) remain invariant, which is
indeed the case, since p35'tp3 ——S '.

It is interesting to note that the operator I' = (o.L+1)
+inZpio r' is quite similar in appearance to an angular
momentum operator appropriate to rotations in four-
dimensional space. In E4, the generators of the rotations
are the vector operators L and A, with the commutation
rules L&&L=iL and AXA=iL. The principal quantum
number operator X may be defined as E=a"L+1
+o"A, and from the commutation rules it follows that
e L+1 and e A anticommute. The analogy to I' is
thus rather close, but not complete, for a complete
analogy would require r" to possess noncommuting
components.
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