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The effect of binding and multiple-scattering corrections to the impulse approximation, as well as of
corrections due to the presence of off-the-energy-shell matrix elements, in the case of scattering from a
deuteron or other two-particle system, is discussed. Those binding and multiple-scattering corrections
which have the form of double scattering are evaluated explicitly, with the help of the phase shifts of Gammel
and Thaler, for the case of quasi-elastic p-d scattering at 145 Mev, and their inclusion is found to give good
agreement with the experimental results on the cross section and polarization despite the fact that estimates
of the triple-scattering corrections show they are of comparable magnitude to the effects which were in-
cluded. The double-scattering corrections to the cross section, polarization, and R and 4 parameters for
quasi-elastic #-d scattering at the same energy are also given. The off-the-energy shell corrections are
evaluated numerically, and are found to be too small to be observed because of experimental errors and
uncertainty in the calculation of the multiple-scattering corrections.

I. INTRODUCTION

DETAILED study has been made of the correc-

tions which arise to the impulse approximation,!?
as applied to the case of inelastic scattering from
deuterons, due to the effects of binding and multiple
scattering, and due to the fact that the matrix elements
of two particle scattering operators which enter into the
calculation are “off the energy shell.” The investigation
was undertaken for several reasons. In the first place,
it was hoped to gain additional insight into the validity
of the impulse approximation, especially as applied to
experiments involving inelastic scattering from deu-
terium; such experiments, analyzed by means of the
impulse approximation, provide one of the major
means of studying interactions involving neutrons.
Secondly, the availability of the excellent data of
Kuckes, Wilson, and Cooper?® on p-p scattering studied
by means of inelastic p-d scattering made possible a
convenient comparison of our theory with experiment.
Lastly, it was hoped that this experimental data would
yield information on the change in the matrix elements
of the p-p scattering matrix off the energy shell, and
hence furnish a new type of information on nuclear
forces. As we will see, this last hope proved largely
illusory, due to the experimental errors and to the
difficulty in making an accurate estimate of the other
theoretical corrections.

Section IT contains a summary of the impulse approxi-
mation expansion as applied to the deuteron problem.
In Sec. IIT we discuss the estimation of the effect of
those corrections to the simple impulse approximation
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which have the form of double scattering. Section IV
contains a comparison of the results of our calculation
with the results of KWC on the p-p cross section and
polarization as measured in scattering from deuterons,
as well as estimates of the errors which will be intro-
duced by the use of the impulse approximation to find
the n-p cross section, polarization, and R and 4 param-
eters from the results of p-d scattering experiments at a
laboratory energy of 145 Mev. Section V discusses the
calculation of the difference between the values of the
two-nucleon scattering matrix elements which enter
into the impulse approximation and the on-the-energy-
shell values measured in free p-p scattering experi-
ments. The phenomenological potential of Gammel and
Thaler* is employed in these calculations. Section VI
contains conclusions and some general remarks on the
impulse approximation as applied to scattering from
two-particle systems.

II. THEORY

This section summarizes the impulse approximation
expansion and its application to the problem of inelastic
scattering from deuterium. We consider a particle
incident on a deuteron target. We will call the incident
particle number 1, and the target proton and neutron,
respectively, particles number 2 and 3. We assume two-
body forces, and let ¥V, and V3 represent the interaction
of the incident particle with the proton and neutron,
and V4 the interaction between the two particles making
up the deuteron; K, represents the kinetic energy of
particle 4, and K the total kinetic energy operator of
the system. The Hamiltonian for the system can then
be written

H=K+V+Vst+Va (2.1a)
=Ho+V.+Vs (2.1b)
=HotV. (2.1¢c)

The cross section for scattering into a given final state
is proportional to the square of the absolute value of

4J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957).
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the matrix element between initial and final states of an
operator 7" given by the equation?

T'=V+VGV, (2.2)
where
1
G=lim ——, (2.3)
0 fF— H+ie

E is the total energy of the system, so that if we let b
represent the binding energy of the deuteron

E=K;+b. (2.4)

Henceforth, the indications of the limiting process will
be omitted in equations similar to Eq. (2.3).

Making use of the techniques employed by Chew and
Goldberger in reference 2, we can expand 7’ in the
following form:

T'=totts+toglsttsgtat+D tgtgt+> " tgtgtgt+- - - (2.5)

where

1
te=Vq+ V2—'————’—Vz, (26)
E—K—Vytie
1
= (2.7)
E—K+tie

with #3 and ¢4 being defined similarly to ¢, but with V,
replaced by V3 or V4. We use the notation >_” in Eq.
(2.5) to indicate a summation over all possible combina-
tions of #y, ¢3, and Z¢ in which no two adjacent #’s have
the same subscript, and in which g does not appear at
either the extreme left or the extreme right. The scatter-
ing operator f,(¢) which describes scattering of the in-
cident particle by a free proton when the energy of the
two-particle system is e is

1
Ip (6) = V2+ Ve - V2.
e—Kl—Kz—' V2+’L€

(2.8)

Letting ¢, and ¢., represent, respectively, the scattering
operator for scattering of the incident particle by a free
neutron, and for free neutron-proton scattering, we see
we can make the following substitutions in Eq. (2.5).

t2=tp(E'—K3)>
t3= tn(E—Kz),
td=tnp<E—‘K1).

There is an additional complication which must be
allowed for in our expansion in the case of inelastic
scattering. Suppose we wish to calculate the cross
section for a process in which the wave vectors of the
three particles in the final state are ky/, ky/, and k;'. Let
¢ (ki ks k') be the corresponding plane wave state,
which is not, however, an eigenstate of the unperturbed
Hamiltonian H,, since Hy includes V4. The cross section
is determined by the matrix element of 7" to a state
¥ (k' ko' k;’) which is an eigenstate of Ho and which

(2.9)
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contains in addition to plane waves incoming spherical
waves. ¢ is given by?

1
¢(k1,,k2/,k3/) = <1+———°—tdf>¢ (kll,kdl,k;;’). (2‘11)
E—K—ie

From Eq. (2.10) we see that the cross section is deter-
mined by the matrix element between the initial state
and the state ¢ (ki ks’ ks’) of the operator T given by

1 T
T= <1+—~——th> T
E—K—ie
=tott3ttagtstLsgtattagts

+tagts+> tgtgt+- -+, (2.12)

where the notation > has the same meaning as > in
Eq. (2.5) except that {g may now occur at the extreme
left of the group of #'s.

The simple impulse approximation, hereafter abbre-
viated by S.I.A., consists in keeping only the first two
terms in Eq. (2.12) and in replacing them by their
values for free scattering at the corresponding energy
and angle. This simply approximates the wave scattered
from a deuteron by saying it is the sum of the scattered
waves from a free proton and a free neutron whose
momentum distributions are those of the deuteron
ground state. The corrections to this are of two types.
The most obvious is the higher order terms in the
expansion (2.12), which arise from multiple scattering
of the incident particle, and from the fact that the struck
particle is bound to its partner in the deuteron. The
physical interpretation of the terms in Eq. (2.12) is of
course obvious. The third term, for example, corre-
sponds to double scattering of the incident particle
first off the neutron and then off the proton; the fifth
term represents scattering off the proton followed by
an interaction in the final state between the two
deuteron particles, and so on. In Sec. III, we discuss in
detail the calculation of those correction terms involving
only two of the ¢ operators.

The second type of correction to the S.I.A. arises
from the fact that the initial and final kinetic energies
of the interacting particles are different, even if the
collision is adequately described by the first two terms
in (2.12). For instance, if the process in question is
one in which the incident particle is scattered by the
proton, it is easy to see that the initial kinetic energy
of the two colliding particles is greater than the final
kinetic energy by an amount AE given by

AE=b+2Ey, (2.13)

where I3’ is the final neutron energy. Thus the matrix
element of £, which should be substituted into Eq. (2.12)
is “off the energy shell” and so differs from that
measured in scattering from a free proton. The effects
of this type of correction are discussed in Sec. V.
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One additional complication occurs if the incident
particle is a proton or neutron, in that one must then
consider the effects of the Pauli principle. In the case
of an incident proton, for instance, particles 1 and 2
should be treated on an equal footing, while the
formula for 77, Eq. (2.2), obviously singles out those
interactions involving particle 1. This problem may be
treated in the following way. The initial state, ¥;, may
be written as

V= (®;—®,)/V2, (2.14)

where ®; is an eigenstate of H, with particle 1 in an
incident plane wave state and particles 2 and 3 in the
deuteron ground state, and &, is the same state but
with the roles of particles 1 and 2 reversed. Equation
(2.2) is the appropriate formula for 77 if we wish to
calculate that part of the scattering arising from the
state ®;. To calculate the scattering from ®,/, we would
need a similar formula for 77, but with the roles of V3
and V4 interchanged. If, however, we antisymmetrize
the final state in the coordinates of the two protons,
then the contributions due to scattering from states ®;
and &, will be equal, so that all we need do is to calcu-
late the matrix element of T as given in Eq. (2.12)
between state ®; and the appropriately antisymmetric
final state, and then multiply the answer by V2 to allow
for the antisymmetrization of the initial state in ac-
cordance with Eq. (2.14). This factor is correctly in-
cluded, without further comment, in the equations in
Sec. III.

III. CALCULATION OF MULTIPLE
SCATTERING CORRECTIONS

A. Spin-Independent Case

We turn now to the inclusion of the effects of binding
and multiple scattering in the impulse approximation.
We shall consider the case of an incident proton, and
for the moment neglect the additional complications
resulting from the spin of the particles; these are dealt
with in Sec. B below. We will also use nonrelativistic
kinematics, which is a good approximation at the
energies at which we will be working. Our procedure
will be to calculate explicitly the contributions of the
next four terms beyond the S.I.A. terms in the expan-
sion (2.12); we will refer to these as double scattering
terms because of their form, although it should be
remembered that two of them arise from the binding
of the deuteron. The hope, of course, is that if these
terms are small, it should be a good approximation to
neglect the remaining terms, although we will see that
the validity of this argument is somewhat questionable.

We write the wave function for the initial state of
the system, ¥, in the form

Y= /d(k2)¢(k1, ks, —ky)dk,, 3.1)

where a(kz) is the momentum space deuteron wave
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function, and the plane wave states ¢ are normalized
to unit probability density per unit volume. In our
calculations we took a(k), following Moravscik,’ to
have the form

1 1
a(k)=C( +
-k (2u0)*+k?
1
_ ) e
PEXNT A

where C is a constant, u;=2ub/%2, u (=1M) is the re-
duced mass of the nucleon-nucleon system, and
pe=06.9u;. The results of KWC with which we com-
pare were computed using the more usual Hulthén wave
function

a(k)=C( (3.2a)

1 .
plHB (5-2m)2+k’> '

The functions defined by Egs. (3.2) and (3.2a) differ
by amounts of the order of one percent in the range of
momenta of interest to KWC; the difference between
the two is somewhat significant for us in that in the
calculation of the correction terms we have to integrate
over momenta; the function (3.2) is presumably a
better approximation for large values of k.

We wish the matrix element of T, Eq. (2.12), between
¥, and a final plane wave state ¢; where

é,=Cl¢ (k' ko' k) — pop (ko ko' Js') 1/V2,  (3.3)

with p=-+1. We look first at the S.I.A. terms in Eq.
(2.12). If we let f,(ef) represent the amplitude for
scattering of a proton by a proton through a center-of-
mass angle § when one of the protons has kinetic energy
e in the rest system of the second, we may write for the
matrix element of £, between the states ¢ (ki ke ks) and
¢ (ki ko' ,ks’) the following relation:

ta (ke ko' ks ; ko ko k)

= (2m)* (ko' —ks)t, (ky, ks’ 5 ko k),  (3.4)
= (27!') 7h26 (k1’+k2,— kl——' kz)
X 8(ks'—k3) f»(e0,00)/1e, (3.4a)
where
eo=72(ky/—k,")2/2M, 3.5)

and 6, is the angle between the vectors k;—k, and
ky'—k,’. We ignore for the moment the error in Eq.
(3.4a) due to the fact that the matrix element of £, is
between states of unequal energy. We can thus write
the matrix element of ¢, between initial and final states

as
tori=— (2m)"H2a(ks") o (€0,00)/ - (3.6)

There will be a similar contribution from the term #3
in the expansion (2.12) but with a(ks’)fp(eo,00) re-
placed by a(k2') fn(¢/’,6""), where fnis the n-p scattering

5 M. J. Moravscik, Nuclear Phys. 7, 113 (1958).
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amplitude and ¢’ and §" are defined similarly to ¢, and
6o but with particle 3 replacing particle 2. We will,
however, be interested in experimental cases where the
momentum transfer to the struck proton, and hence
ko', are large enough that we will neglect the term
involving f; because of the small size of a(ky’). The
error thus introduced will be much smaller than others
involved in the calculation.

We now turn to the next four terms in Eq. (2.12).
We label these as follows:

tagta=C1
tagtz= C3

tagts=C2, (3.7)

t2gt3=C4

We also define, for future convenience, the vectors d,
a, and h, where

d=k,—k/=ky/+ky,
a=k;—ky'=k/+ky,
h= k1’+k2’= kl—kgl.

We consider C1 as an example of the method of com-
putation. The operator #; satisfies relations analogous to
Egs. (3.4) and (3.4a) with p-p operators replaced by
the corresponding 7-p operators. C1 connects the final
state with the state ¢(ki,ke,—k;) through the two
possible intermediate states ¢(ki, ko++d, —k,) and
¢ (ky', kot+a, —k;). The matrix element of Cl can
therefore be written

(3.8)

1
Clym— / ik, a(kz)l:tn(kz', ky'; kot-d, —ky)
(20"

1
P B 220 Dy (ko )l T ie
sty (k' kort-d ki, k)
—pta(ky, ki ; kot-a, —ks)
1
X B G220 [+ (ko ayH ke

Xty (k! keta; ku, k»]. 3.9)

We might note that when one considers the sum
C1;;+C3y;, one finds it is symmetric or antisymmetric
combinations, e.g.,

tp (kl', k2+d, kl, k2)—Ptp (k2+d7 kll; kl; k2)

ALLEN EVERETT

of matrix elements of ¢, which enter the double scatter-
ing correction.

In order to evaluate (3.9) one must replace the two-
particle scattering operators ¢ by constants and remove
them from under the integral sign. This is necessary
not only because the #’s are available only in numerical,
not analytic, form, but also because the variables on
which the dependence of the #’s is known, i.e., the energy
and angle of scattering, are related in an algebraically
very complicated way to the integration variable k,.
Thus failure to make this approximation leaves one
with a completely unmanageable numerical integration.
The choice of appropriate average values for the
operators f, as well as the error introduced by this
approximation, will be discussed in detail below.

Once one has made the approximation of neglecting
the dependence of the ¢ operators on ks, the integral
C1;; can be evaluated. We will discuss the evaluation of
the first of the two terms on the right of Eq. (3.9),
which we denote by I, to illustrate the method used.
The second term, as well as the matrix elements of the
other double scattering correction terms, is obtained in
the same way. In what follows it will be convenient
for us to define the following quantities:

Q) =k2—k2—22—2Mb/%2,
z1(@)=3{—2+[2+20(x) ]},
z2(%) =3 —2—[2+20() 11,
p1(@)=[u’+30(x)]/=.

We define also p»(x), ps(x), and pa(x) analogously to p1
except with pi® replaced by us?, (u+us), and (2us)?,
respectively. The first step in the evaluation of 7; is to
rewrite the energy denominator by observing

E—72[ky"*+ (ko+-d)24-£2]/2M
=W —2k?—2ke-d+Q(d)]/2M. (3.11)

We then make use of the well-known identity,
1/(E—H+ie)=—ird(E—H)+P1/(E—H),

where P stands for principal value. The two resulting
integrals are most conveniently done by working in a
system of cylindrical coordinates with the z axis
parallel to the vector d. Iy, the delta function part of
I, can then be evaluated straightforwardly, and yields
the result

(3.10)

To=im*CMid,L(d)/7d, (3.12)

where

[21(d) = $1(d)1[21(d) — pa(d) 122 (d) — p2(d) J[z2(d) — p3(d) ]

L(d)=In

and £, and i, indicate the average values of the two
scattering operators.

[21(@)— $2(d) 1z1(d) — $3(@) 1 z2(d) — $1.(@) Jza(d) — pa(d) T

(3.13)

The principal value integral, 7,,, may also be evalu-
ated in the same coordinate system. The integrand is
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proportional to the expression

dodka.dkar koy———
pi kel 4kl .

X )
ke 2+ ko’ +dke,—3Q(d)

plus similar terms arising from the other terms in the
momentum distribution. ks, and ks, in (3.14) refer to
the components of k, parallel and perpendicular to the
z axis, that is, to d. To carry out the integration, we
make a partial fraction separation of the two fractions.
The partial fraction separation fails for the case where
the denominators of the two fractions are equal so that
in integrating the terms separately we must take the
principal value at the point ke,=[u2+30(d)]/d as well
as at the pole in the energy denominator. The integra-
tion over the azimuthal angle ¢ and over &, can be done
immediately. One is then left, for the k., integration,
with a number of terms of the form /' [In(c+x)/x]dx,
which can be evaluated approximately by expanding
the integrand in power series in x/¢ or ¢/x. The integrals
corresponding to the separate terms in the momentum
distribution are divergent at infinity, so that in order to
carry out the integration term by term, an upper cutoff
for ks must be introduced.

The evaluation of the principal value integrals is
quite tedious. It is, however, simplified by several
considerations. First, the major contribution to the
integrals comes from %, lying in a sphere of radius 3u;.
In view of this, one can make use of the simpler mo-
mentum distribution (3.2a) without making a serious
error. This also means that approximating, as we do,
the matrix elements of the ¢ operators by their average
value on the energy shell is reasonable, since most of
the integral comes from a range of k; which does not
involve large violations of energy conservation in the
individual collisions. Moreover, the dependence on
kinematic parameters describing the particular final
state in question is not strong. Thus, in comparing with
the KWC data, the principal value integrals were
calculated for a particular final state (one in which the
two protons scattered through 90° in their center-of-
mass system and the spectator neutron came off with
zero energy) which lay in the middle of the range of
experimental data, and this value used throughout.
Lastly, but most important, the contribution of the
principal value integrals is only about 209, of the con-
tribution of the delta function terms, so that a rather
large error in the principal value terms can be tolerated.
The final result for I, is, for the final state chosen,

(3.14)

Ioi=2.1MxCi.i,/#d. (3.15)
We now need to evaluate {, and #,. We have
t,=— m)2f, 32 (ky/ —ko—d)2/2M )/,

» ( 7") fp( (ks 2 )%/ )/ 1 (3.16)

b= — (22 2 (k' — K'Y/ 2M,0') i,

IMPULSE APPROXIMATION
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TaBLE I. Approximate laboratory energies and center-of-mass
angles at which the scattering amplitudes in Eq. (3.18) are
evaluated. fpi (8, ¢) means fpi (0, ¢)— p foi(x—8, ¢-+180°).

Energy Polar Aximuthal

Amplitude Mev) angle angle
foi (i=1,2, 3) 130 90° 0°
o (=1, 4) 70 20° 0°
Foz 130 90° 0°
Tui (1=3,6) 70 160° 0°
Fos 130 90° 180°
Tur 130 0° 0°

where 6 is the angle between the vectors k;—k, and
ki'—k,—d, and ¢’ the angle between the vectors 2k,+d
and ky'—k,’. The quantities appearing in (3.16) all
have to be averaged over k, wherever it appears.
Because of the momentum-space wave function of the
deuteron, the main contribution to the integrals comes
from the region k2<3u;, while for most of the experi-
mental data with which we are concerned, k¢, &2/, and
d are all of order 8u;; consequently the variation in the
energy and angle arguments of the scattering ampli-
tudes in (3.16) as k. varies is not too large. A more
careful consideration of the kinematics leads to the
conclusions

e0—40 Mev <72(ky'— ka—d)?/2M <eo+20 Mev,
Bp—20° <6 <0-+20°, (3.17)
—45°<0'<45°,

so that the scattering amplitudes in Egs. (3.16) need
to be averaged over these ranges of their arguments.
Carrying out a similar calculation for the remainder
of the double scattering terms, one finally arrives at
the following relation for T'ss;, the sum of the double
scattering contributions to the matrix element of 7.

Topi=[(2m)h*/p]LH (@) (forfr1t fr2fas)

+H (@) (foofna—pfrsfne)+H(R)purfps], (3.18)

where

H(x)=[4L(x)+2.1/77]/2x.

The scattering amplitudes appearing in (3.19) must be
averaged over ranges of their arguments similar to
those given in relations (3.17). The amplitudes in (3.19)
may be approximated by being evaluated at the energies
and angles shown in Table I, while once the final state
is specified, the quantities d, @, and %, and thus H(d),
H(a), and H (k) may be found.

The calculation can be carried out in a similar way if
we remove the restriction of nonrelativistic kinematics.
Two changes are needed in the calculation. In the first
place, in the relation between the matrix elements of
the operators ¢ and the scattering amplitudes f, the
reduced mass u must be replaced by the relativistic ex-
pression E E,/[2(E:+E,)], where E; and E, are the
total energies of the two particles in their center of mass
system. Secondly, the relativistic relation between

(3.19)
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energy and momentum must be used in the energy
denominators. As an example, consider the process in
which a relativistic pion of mass m undergoes double
scattering from the deuteron, with the first scattering
being from the proton. We will assume the nucleons
remain nonrelativistic for simplicity; no additional
complication is introduced if this is not so. The energy
denominator occurring in the calculation of the matrix
element for this process is

E—H=2M—b+ (m?c*+2k3c?)}
_ [m264+h2c2 (k ot a)z:]%
—2ME—72 (ks k) /2M.  (3.20)

The terms involving k, in the second square root in
Eq. (3.20) are relatively small compared with the re-
maining terms, so that the square root may be expanded
in a power series. The variable of integration ks then
no longer appears under a square root sign, and the
integration can be carried out by a procedure similar
to that for the nonrelativistic case.

We can now get an estimate of the double scattering
corrections by using Egs. (3.6) and (3.18) and replacing
scattering amplitudes which appear in them by square
roots of the corresponding p-p and #-p differential cross
sections, experimental values for which are tabulated
in reference 6. Doing this for the case of scattering of
the incident proton from the target proton at rest
through an angle of 90° in their center-of-mass system,
and choosing the values of d, ¢, and % in Eq. (3.18) to
correspond to this case, one finds Tasi/ts;;=0.17.
Estimating the amplitudes in this way allows us to say
nothing about the sign of the correction, since it arises
principally from interference between single and double
scattering and their relative phase is unknown. If we
were to assume that the first- and second-order terms
are of opposite sign, then our estimate would say that
the experimental cross section for this case should be
about 699, of the value predicted by the simple impulse
approximation; KWC find their measured cross section
to be about 839, of the S.I.A. value.

B. Spin Dependence

To obtain the sign and a more accurate value of the
magnitude of the double-scattering correction, as well
as to find its effect on the polarization and triple scatter-
ing parameters, we need to take into account the spin
of the three nucleons involved in the process. Since we
are dealing with a system of three spin-} particles,
there are eight possible spin states for the system. The
cross section for scattering from initial to final coordi-
nate or momentum space states labeled by indices 7
and f is proportional to Y. oY sp(s)| Tysr,is|2, where s
and s’ are indices indicating initial and final state spins,
and p(s) is the probability for finding the system
initially in the spin state s. The multiple scattering

6 J. L. Gammel, R. S. Christian, and R. M. Thaler, Phys. Rev.
105, 311 (1957).
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expansion, Eq. (2.12), can be applied to each of the
Ty s separately; the calculation of the double scatter-
ing corrections to each one will now involve not only
an integration over the momentum coordinate of the
intermediate state but a sum over its spin coordinate
as well, but otherwise will proceed just as above. Thus
Eq. (3.18) becomes a set of equations of the form

Toreris=[2m)5/u] 2o [H(@) (M porrsM st s
+M'ns”sMns’s”)+' * '], (321)

where, for example, M /s represents the matrix element
of f, between the spin states s and s”'.

It was decided to obtain the p-p and #-p matrix
elements entering into Eq. (3.21) from the phase shifts
of Gammel and Thaler.*7 Fortunately, Prenowitz and
Palmieri at the Harvard Cyclotron Laboratory had
available a program for the IBM 704 which produced
the matrix elements M, given a set of phase shifts,
using the formulas of Stapp.® They very kindly made a
series of runs with the Gammel-Thaler phase shifts
which provided a grid of values of the matrix elements
as functions of energy and angle. The range of energies
and angles over which the various matrix elements are
to be averaged is unchanged by the introduction of spin,
and is still indicated approximately by Table 1.

The Stapp formulas give the matrix elements in a
representation where the spin is quantized along the
z axis, taken to be parallel to the direction of motion of
the incident particle. For our purposes it is convenient to
transform the matrix M to obtain its matrix elements
in a representation where the spin is quantized along
the y axis, the normal to the scattering plane. We will
designate the matrix elements in the latter representa-
tion by M ;. The use of the matrix elements M” is con-
venient, both because the incident beam is polarized
along the y axis, and because the plane of scattering
can be reasonably taken to be the same for the two
collisions in a double-scattering process, (this is once
again true because of the small target momentum)
while the direction of relative motion is not the same
in the two collisions.

It is necessary to make use of three different sets of
eight spin states in doing the calculation. We designate
the 7th member of the three states by vy, v2;, and vs,,
respectively. The states v;; are labeled by the eigen-
values of the y component of the spin of particle 1, and
by the eigenvalues for the square and y component of
the total spin of particles 2 and 3, i.e., particles 2 and 3
are in either a relative triplet or singlet state; the other
two sets of states are defined similarly in the obvious
way. The necessity for the use of the three sets of states
comes from the fact that the matrix elements of the
operator £, are known between the states vs;, those of 3
between the states v;, and those of ¢; between the v;’s.
If we are interested in the scattering of an incident beam

7]. L. Gammel and R. M. Thaler, Phys. Rev. 107, 1337 (1957).

8 H. P. Sta[;p, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 (1957).
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of polarized protons off the proton in the deuteron, the
initial states over which we must average are the three
v1;’s which correspond to finding the incident proton
with the appropriate spin direction, while the remaining
particles are in the three possible triplet states corre-
sponding to the three possible orientations of the
deuteron. We take the final states over which to sum
to be the states v3;; this is convenient both because the
single scattering matrix elements (those of /) to these
states can be easily found, and also because the spatial
symmetry or antisymmetry of the final state, i.e., the
value of p in Eq. (3.9), is known. In obtaining the cor-
rection terms, then, we must evaluate such spin sums as

(var| tata| v1ny=(var| v1:)v1| ta] v13)(v1;] var)
X<7)3k| o I 113[><‘2)31 I 'Dl.,,,>. (322)

Once one has written this sum out in terms of the
matrix elements, it is easy to obtain the corresponding
result for the other products of two-particle scattering
operators by making use of symmetry properties of the
coefficients {v;;| vx7) for different values of 7 and k.

The corrections in experimentally observed quantities
due to double scattering may now be obtained. To find
the ratio of the predicted cross section for scattering to
a particular final state, with double-scattering effects
included, to that predicted by the S.I.A., one need only
find the ratio of Yo D5 p(s)| Tssr.55|2 with

Ty is=torsr,is+Tapsr is,

where, as before, T's represents the sum of the double-
scattering contributions, to the value of the sum with
only the contribution from {, included. (We are once
again considering final states containing two fast
protons, so that the contribution from the #5 term in
the multiple-scattering expansion may be neglected.)

IMPULSE
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We may compute the correction to the left-right
asymmetry, which gives the polarization, in the follow-
ing way. The asymmetry, P, is defined by

P=(or—o1)/(ortor)=(cr—0L)/20,

where oz and o represent the differential cross sections
for right and left scattering. In terms of the matrix
elements M’, o is easily shown to be, in the case that
the incident beam consists of particles polarized so
that the y component of their spin is +3,

or=3%|Mu'| R2+3| M_i'|

+iMo'| 245 M| 2
where we have followed the usual subscript notation of
Stapp?® to indicate the spin states to which the matrix
elements refer. [Mo turns out to vanish identically,
which accounts for its absence in Eq. (3.24).] o1, is of

course given by a similar formula. Mo’ and M, turn
out to have no left-right dependence, so that

P=(G| M| R—3| M| 2
+3M i [R5 M '] 1)/ 20.

(3.23)

(3.24)

(3.25)

Equation (3.25) also gives the asymmetry that would
be observed in a scattering experiment from deuterons
if the S.I.A. were valid. Suppose that the effect of the
inclusion of double-scattering corrections is to change
the cross section for scattering into a final state where
the two protons are in a triplet state with y component
of total spin +1 to 3a| M| #? and $(a+da)| M1'| 12
for right and left scattering. Let us similarly define 8
and dpB for the case of scattering to a final state with z
component of spin —1, and say that the double-
scattering corrections change o to ys. Then the change
in the polarization will be

AP={[(o/m) =11 (I My | = | M1/ [ D) +LE/M) - 1B ([ Mt | = [ M_n'[ 1))}/ 20

As may be seen from Eq. (3.26), the corrections
affect the asymmetry parameter P in two ways. In the
first place, the corrections may simply be different for
right and left scattering, as represented by the second
term on the right of (3.26), which involves da and dg.
Secondly, the corrections may tend to make those terms
in the cross section which have an asymmetry either
larger or smaller relative to the entire cross section.
This effect appears in the first term of (3.26), which
vanishes if the ratios o/ and 8/ are both equal to 1.

The effect of the corrections on the other nucleon-
nucleon scattering parameters can be similarly deter-
mined. As an example, suppose one wishes to measure
the parameter® R for #n-p scattering by means of a
triple scattering experiment in which the second
scattering was that of a beam of polarized protons off
of a deuteron target leading to a final state containing
a fast proton and a fast neutron, as has been done by

—[5(da/v) | M| 243 (dB/y) | M1y | 121/ 20.  (3.26)

Thorndike et al.° In this case, the polarization of the
incident proton is in the scattering (xz) plane, along the
x axis, rather than along the y axis, and we are interested
in the polarization of the scattered proton in the scat-
tering plane and perpendicular to its direction of motion,
i.e., in the direction of the vector u= (k;Xk;) Xk,
The main additional step which must be made in order
to obtain R is to compute the matrix elements of T
(which in this case will be approximated by #;+7') and
the #n-p scattering amplitude M, in a representation
where the initial and final state spins are quantized
along the x axis and the direction of the vector u, re-
spectively ; we designate these by M’ and T, ; they
can be obtained straightforwardly in terms of the
matrix elements calculated above in the representation

9 R. A. Hoffman, J. Lefrancois, E. H. Thorndike, and Richard
Wilson, Bull. Am. Phys. Soc. 6, 288 (1961), and Phys. Rev. 125,
973 (1962).
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Experimental points
of Kuckes et gl,

]l

% Theoretical points

70 80 90 100 1o
Angle between counters
o= 45°

Fic. 1. Experimental values, obtained by Kuckes, Wilson, and
Cooper, reference 3, and theoretical values, with the inclusion of
double scattering corrections, of the ratio of d%s/d2,'dQ,’ to the
value (d?¢/d'dQ,"), predicted by the impulse approximation for
the case of quasi-elastic p-d scattering at 145 Mev, for the ease
in which one of the protons emerges at an angle of 45° in the
laboratory system, plotted as a function of the angle between the
emerging protons. The errors on the theoretical points indicate
the uncertainty in the calculation of the correction terms, as
described in the text.

with both spins quantized along the y axis. Let us
designate by o; and o_ the partial cross sections for
scattering into final states in which the spin of particle
1 is parallel or antiparallel, respectively, to u in the
case of free n-p scattering. Ro, the correct value of R, is
then given by

Ro=(04—0.)/(04+0 )= (01—0_)/0".

Let us call the values of the partial cross sections
obtained in an experiment with a deuteron target
(1—a4)o4 and (1—a_)o_. Then the value of R which
will be obtained in the deuteron experiment will be

(3.27)

_ (I1—ap)oy— (1—a)o
(l—ap)o+(1—a)o_

_ (1—ap)oy—(1—a_)o_

(3.28)
(1—a)o’
Hence R will differ from R, by
1—a (ey—a)o_
Ro—R=AR= (1— +>R0— . (3.29)
1—a (1—a)d’

The approximate value of a; and o, and hence of AR,
with double scattering effects included can be calculated
once the matrix elements 7';;” are known.

IV. RESULTS OF MULTIPLE SCATTERING
CORRECTIONS

A. Proton-Proton Case

We now apply the theory of the preceding section to
the case of proton-deuteron scattering at 145 Mev. We
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consider first the case of quasi-elastic p-p scattering
(i.e., events in which two fast protons emerge, so that
the neutron is viewed as the “spectator” particle) so
that we may compare the predictions of our calculation
with the experimental results of KWC.

The quantity measured in the KWC experiment is
do/dQy'dQ,/dEY, i.e., the cross section for scattering of
one proton into the element of solid angle dQ,’ and
energy dE:, with the other proton scattered into dQ';
because of the constraints imposed by energy and
momentum conservation d@i, d@,’, and dE,’ com-
pletely specify the state of the system following the
scattering; we will abbreviate this cross section here-
after by d’s. Because of the statistical error which arises
in considering the number of particles scattered with
a given Ei, and also because of the uncertainty in
energy measurement, it is easier to consider the result
for the cross section integrated over Ei’, which we
designate by d?%/dQ,'dQy’, abbreviated hereafter by d%s.

Let us designate by (d%/dQ,/dQs")o, or d?co, the S.IA.
value for d’%, i.e., the value obtained by keeping only
the term #; in Eq. (2.12). d%0 can be computed entirely
from the experimentally measured free p-p cross sec-
tion; hence, in contrast to the correction terms, it is
not dependent on the assumption of a particular set
of p-p phase shifts. In Fig. 1 we show the results of
KWC on the ratio of the measured values of d% to d%s¢
for cases in which one of the protons emerged at an
angle 0," of 45° with the incident beam direction (in
the laboratory system) plotted as a function of the
included angle between the counters, i.e., the angle
between the outgoing protons. If the target proton is
at rest, and no energy is imparted to the neutron in the
collision, then the angle between the two protons will be
about 87.5° (slightly less than 90° because of the
deuteron binding energy); thus the average initial
momentum of the target protons (and thus of the
emerging neutron) becomes higher the more the in-
cluded angle differs from 87.5° if the S.I.A. is approxi-
mately correct. As will be seen, the experimental points
are uniformly less than those predicted by the S.I.A.,
and in general the ratio becomes smaller as the in-
cluded angle becomes different from 87.5°. Figure 2

F1G. 2. Same notation
as in Fig. 1, but for the
— case in which one of the
l protons emerges at an
angle of 35° in the lab-

oratory system.

d%/d d, da’,
(d%/da’dal),
i
el

70 80 90 100 Ho
Angle between counters
Qv 35°
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presents the same sort of experimental information for
the case where 6,'=35°.

Figures 1 and 2 also show the ratio of the theoretical
values of d%s, with the effects of the four correction
terms discussed in the previous section included, to
d?0o. The corrected values were obtained as follows.
The values of ki, k2, and k3 were obtained for the
given values of 8’ and the included angle and several
values of E/, using the kinematic tables available in
KWC. Once these are known, the ratio of d®c with the
effects of the corrections included to its S.I.A. value for
the particular value of E, in question can be obtained
using the theory of Sec. ITI. The change in values of the
ratio, for a given 6, is due mainly to the kinematic
factors, especially the factor a(k;) which appears in the
first order matrix element, Eq. (3.6). Hence the same
set of average values for the nucleon-nucleon scattering
matrix elements was used throughout the calculation
for a fixed 6,/ so that the very tedious summation over
intermediate spin states of products of matrix elements
was done only once for a given angle. The ratio of
corrected to uncorrected values of d?s was then ob-
tained by averaging the ratios of d°c over energy, with
the weighting factors in the average being obtained
from the experimental cross sections at the appropriate
values of E,'.

Figures 1 and 2 indicate the estimated error in the
computation of the corrected theoretical results, arising
from the approximations made in calculating the
double-scattering terms, as well as the experimental
error. The principal source of error is the variation of
the two particle scattering amplitudes with angle and
energy, thus making it difficult to know the correct
average values to substitute for them. This is especially
true of the n-p amplitude in the vicinity of 70 Mev,
which varies rather rapidly with both energy and angle.
The uncertainty thus introduced was estimated by
means of the grid of values for the scattering amplitudes
obtained from the Prenowitz-Palmieri program. Other
sources of error in the calculation, which turned out to
be rather less important, are uncertainties in the deu-
teron wave function and the noncoplanarity of the
intermediate state momenta. The deuteron wave func-
tion is uncertain primarily for large values of the
momentum, a range which does not contribute strongly
to the double scattering integrals, while, as mentioned
earlier, the noncoplanarity is not important because of
the small momentum of the target particles. The net
result is that the error in the double scattering contribu-
tion to the matrix element of T is of the order of 209,
producing the indicated uncertainties in the ratio of
corrected to uncorrected cross sections. It will be seen
that the agreement between the experimental and cor-
rected theoretical points is quite good. The only excep-
tions are the point with 6,'=45° and large angular
separations between the counters. The reason for this
discrepancy is not clear. It is difficult to imagine theo-
retical effects which would mainfest themselves in an
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effect of this magnitude at these angles and not else-
where. As KWC point out, there is some experimental
problem at these angles, due to the possibility of
detecting elastic scattering events.

It may be of interest to consider qualitatively why the
double-scattering corrections have the effects shown.
Let us consider the matrix element of T between given
initial and final spin states. The single-scattering
contribution, which we can call 7'y, is just proportional
to the corresponding matrix element of the p-p scatter-
ing matrix, i.e.,

Tij=KiM s, 4.1)

where K; is a constant determined by Eq. (3.6). If we
direct our attention for the moment to the double-
scattering terms C1 and C3 [Eq. (3.7)], we find that
the spin summation appearing in them also contains
a term proportional to M,; evaluated at nearly the
same energy and angle as in the single scattering term;
it turns out also that these are the largest terms in the
summation over intermediate state spins. Hence, con-
sidering only the contribution of these terms in C1 and
C3 to the double scattering, we can approximate the
double scattering contribution to 7';; by

T2ij= KoM i psj, (4.2)

where K, is another constant determined by formula
(3.21). Hence
T2ij/ Trij= KoM nii/ K1. (4.3)

As we have remarked before, the main contribution to
K, comes from the delta-function part of the double-
scattering integrals; this is because the principal value
integrands are rather symmetric about their singu-
larities. If we consider only the delta-function parts,
then K,/K, turns out to be positive imaginary. Since
the double-scattering contributions are small, we are
interested mainly in the interference term between
single and double scattering, which will be destructive
in the event that the imaginary part of M, is greater
than zero. This is, however, assured by unitarity in the
forward direction, and the second scattering is con-
fined to an angular region about the forward direction
where the sign of M,; persists. Thus, because of
unitarity, these correction terms cause a removal of
particles from the outgoing beam, rather than adding
particles to it. As for the other correction terms, the
scattering amplitudes describing the first collision in the
correction term C2 are close enough in phase to the
single scattering term that C2 also gives rise to de-
structive interference for similar reasons; C4 is very
small, both because the quantity /% appearing in the
denominator is rather large and because both of the
scattering amplitudes are evaluated at high energies and
are small. Physically, C4, or at least those terms in C4
in which the matrix element for the first collision is
diagonal in the spin, corresponds to the removal of
particles from the incident beam by the neutron, i.e.,
to the “shadow effect” which has been discussed in
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connection with slightly different experiments by
Glauber.® Again unitarity tells us that particles are
removed from the incident beam, and hence C4 will
interfere destructively with the single scattering. Hence
the tendency for the interference between single and
double scattering to be destructive, so that the inclusion
of double scattering leads to a predicted reduction in the
cross section, is related to the unitarity of the two
particle scattering matrices. It also depends, however,
on the specific details of these matrices, i.e., on which
particular terms in the summation over intermediate
state spins furnish the main double scattering contribu-
tions, and on how fast the phase of the matrix elements
varies as one goes away from the forward direction.

The reason the reduction in cross section is more pro-
nounced for large or small angular separations between
the outgoing protons arises from the fact, mentioned
earlier, that single scattering at these angles requires,
on the average, a more rapidly moving target particle
and hence is suppressed by the deuteron wave function,
i.e.,, by the factor a(ks’) in Eq. (3.6). The double
scattering terms, however, involve an average over the
initial momentum of the target particle, and hence are
quite insensitive to the particular kinematics of the
final state. Hence the double scattering becomes rela-
tively more important for final states in which the in-
cluded angle differs widely from 87°.

Lastly, we remark on the qualitative variation as
6.’ becomes different from 45°. There are two reasons for
variations in the importance of the correction terms.
In the first place, all of the terms in C1, C2, and C3 are
propertional either to the quantities 1/d or 1/a, defined
in Eq. (3.8), and hence essentially to either 1/sinf," or
1/cosfy’, respectively. Hence, half of the terms will
increase and half will decrease as 6" becomes smaller;
the increase, however, will be faster than the decrease.
Moreover, the energies at which the #-p matrix elements
describing the second scattering are evaluated are
roughly proportional to d? or @% Since the #n-p cross
section increases quite rapidly at energies below 70 Mev,
once again this means the terms involving d increase
rapidly as 6" becomes small, while those involving a
decrease more slowly. (Physically, of course, this is
saying that as 6, becomes small the energy of the recoil
proton becomes small, and its final state interaction with
the neutron becomes important.) Similarly, for large
angles the terms involving ¢ increase rapidly. Since the
identity of the two protons guarantees that at 45° the
terms involving d and a are of the same size, this means
that the effect of the double scattering corrections will
be a minimum at 45°. The effect of this can be noticed
by comparing Figs. 1 and 2, for it will be seen that
both the experimental and corrected theoretical points
are somewhat lower for the 35° case. To obtain the
corrections at 8;'=20° requires a knowledge of the n-p
scattering amplitude at an incident laboratory energy

10 R. Glauber, Phys. Rev. 100, 242 (1955).
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of 15 Mev. Approximating this amplitude by means of
the values given by Blatt and Weisskopf" on the basis
of effective-range theory yields the result that at this
angle the double-scattering contributions to 7T have
increased from about 109, at 45° to about 259, and
hence the maximum value of d%s at 20° would be about
609 of the value predicted by the simple impulse
approximation.

KWC also measured the left-right asymmetry in
quasi-elastic p-p scattering. In contrast with the cross-
section results, they found the experimental asymmetry
to be in excellent agreement with the predictions of the
S.I.A. Their measurements cover a range of values of
61’ from 35° to 60°, with the angle between the counters
near 87°. The experimental observations are in accord
with the fact that the double-scattering corrections to
the asymmetry, over the range of angles used, change
the predicted asymmetry by less than 39, of its own
value. In this case both terms on the right of Eq. (3.26)
for AP, the change in the asymmetry due to the in-
clusion of the correction terms, turn out to be small.
The effect of the corrections tends to be the same in
all spin states, so that «/y and 8/v are both nearly 1,
while the asymmetry in the correction terms themselves
must be small for scattering angles near 45° because of
the indistinguishability of the two protons in the final
state.

As pointed out before, the uncertainties shown in
Figs. 1 and 2 for the ratio of corrected to S.I.A. value
of the cross section include only the estimated errors
in the calculation of the double-scattering terms. A
rough estimate was also made of the triple-scattering
terms in order to get some idea of the error introduced
by neglecting the higher order terms in Eq. (2.12). To
do this, suppose we consider a typical triple-scattering
term, e.g., fsglagls. We note that we can write this as

tzgtdth‘——“tggClE Ta, (4:4:)

where C1 is defined by Eq. (3.7). The matrix element
between initial and final states of T'3 can now be calcu-
lated by the methods of Sec. ITI. Keeping only the
delta function part, one obtains the result

T=% l ki —ky | <fp (0’— GH)CI (0’/»&%

where C1(f”’) is the matrix element of the correction
term C1 to an intermediate state in which the total
energy of the two protons is the same as in the final
state, but in which they have undergone scattering
through an angle 6” in their center-of-mass system,
while the scattering angle in the actual final state is 6'.
It is difficult to estimate the result of the average over
6" because of the rather wide variation of the matrix
elements; a rough numerical estimate of these quantities
was attempted, however. The result is that the total
contribution of the triple-scattering terms is about 759,

(4.5)

1 7, M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952), p. 176.
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TasLE II. Double-scattering corrections to #-p scattering parameters. Column 2 gives the ratio of the predicted value of the cross
section d%c/dE,'d2,'dQ,’ with double-scattering effects included, for the case in which the spectator proton is at rest and the center-of-
mass scattering angle of the incident proton is that given in column 1, to the value predicted by the simple impulse approximation.
Succeeding columns give the values of the parameters P, 4, and R predicted by the impulse approximation, and the predicted change
in these parameters due to double-scattering effects. Uncertainties shown are those arising from the computation. All results are based

on the phase shifts of reference 7.

Angle o /dPay P AP R AR 4 AA
90° 0.8740.03 —0.05 —0.024-0.02 —0.02 —0.01+0.02 0.8 0.03-+0.03
40° 0.7 +0.05 0.52 0.05+40.03 0.29 —0.2 +0.05 0.05 0.17+0.06

of that due to double scattering and of the opposite sign.
The opposite sign is not surprising, in view of the fact
that triple-scattering terms are, from Eq. (4.4), seen
to be related to the double-scattering terms in much
the same way as the latter are related to single scatter-
ing. Although the estimates are very rough, the general
conclusion that the triple scattering is of the same
general magnitude as double scattering is probably
correct. The good agreement between the double-
scattering theory and experiment thus appears to be
due to a cancellation between the triple and higher
order scattering contributions. It appears that the
effects of successive orders of multiple scattering will
tend to be in opposite directions, so that there will be
a tendency for such cancellation to occur.

B. Neutron-Proton Case

Since one way of obtaining information about the
neutron-proton interaction is by the analysis of quasi-
elastic #n-p scattering from a deuterium target using
the S.I.A., it is of interest to estimate the difference,
due to neglect of the higher order terms in the multiple-
scattering expansion, in the #-p parameters obtained
in this way from their true values as measured in a free
n-p scattering experiment. We have therefore calcu-
lated the double-scattering corrections to the cross
section d?¢/dE.dQ,'dQ;’ and to the polarization and
triple scattering parameters R and A for a proton
energy of 145 Mev and center-of-mass scattering angles
of the proton of 90° and 40°, corresponding to the ex-
periment of Kuckes and Wilson'? and Thorndike ef al.
This can, of course, only be done by assuming a set of
n-p scattering amplitudes and we have again made use of
those obtained from the Gammel-Thaler phase shifts. It
seems likely that these will give qualitatively correct
information concerning the nature of the double-scatter-
ing corrections. If the data are used in a phase shift
analysis it would of course be possible to use the
amplitudes which result from the analysis to recalculate
the corrections; it is, however, by no means clear that
the accuracy with which the corrections can be calcu-
lated would warrant this procedure.

The results are shown in Table II, which gives the
effect of the inclusion of the four double-scattering

( 2 A. F. Kuckes and Richard Wilson, Phys. Rev. 121, 1226
1961).

terms on the values of the cross section, the polarization,
and parameters R and A4 for two different scattering
angles. At 40° the energy of the recoil neutron is suffi-
ciently small that the effects of both of the single-
scattering terms, ¢, as well as #3, have been included in
the calculation. It might be noted that the ratio of cross
sections in column 2 is also approximately the ratio of
the integrated cross sections d%/dQ,dQ,’ in the case
that the angle between the emerging neutron and fast
proton is near 87°. The uncertainties shown in Table II
are the estimated uncertainties arising in the calcula-
tion of the double scattering terms from causes similar
to those discussed in the -p case. There is the additional
uncertainty due to the higher order terms in the
multiple-scattering expansion. Although these appeared
to have little effect on the p-p results, this seems to be
due, as mentioned above, to a cancellation among
successive orders of multiple scattering. This cancella-
tion may have been fortuitous; there appears to be no
way in which one can be assured that the cancellation
will occur as completely in the #n-p case. A rough esti-
mate of the triple-scattering terms in the #u-p case
indicates that they are again quite appreciable, and,
as in the p-p case, tend to have the opposite sign from
the double-scattering terms. One can say, in view
of the fact that successive orders of multiple scatter-
ing tend to have opposite signs, that the double-
scattering corrections, as tabulated in Table II, prob-
ably represent the maximum corrections to the impulse
approximation.

V. CALCULATION OF PROTON-PROTON
SCATTERING MATRIX OFF THE
ENERGY SHELL

We next consider the second type of correction to the
simple impulse approximation, that which arises from
the fact that the two-nucleon scattering operators in
the single-scattering terms connect states in which the
two particles have different kinetic energies. (Of course
there will be similar corrections to the double-scattering
terms, but the effect of these corrections will be small
and we shall neglect them.) We shall confine ourselves
to the study of these effects in the quasi-elastic p-p ex-
periments of KWC. The p-p scattering matrix elements
which enter the single-scattering terms have the form

Mﬂ: —“<k,7fl tp (e) lk7i>/27rh27 (51)
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where p is the reduced mass of the two protons, k, 7, k’,
and f refer to the initial and final relative wave vectors
and total spins of the two protons, and e=7%2k"2/2M. Also

#Wk2/AM —hk"2/AM = AE (5.2)
where AE is defined in Eq. (2.13). The use of the
measured free p-p cross section in calculating the single-
scattering contribution corresponds to evaluating the
matrix elements at AE=0; we wish, therefore, to study
their dependence on AE.

In Eq. (5.1) we can replace /,(e) acting to the left
on a plane-wave state of energy e by  acting to the left
on the stateyx, s, where V is the proton-proton poten-
tial, and ¥y, ;) is an exact eigenstate of the two-proton
Hamiltonian consisting of a plane wave and incom-
ing spherical waves. Hence we need to evaluate
w1 | V| k,i). This could be done perfectly well, but as
one is more accustomed to dealing with outgoing wave
solutions, we can make use of the time-reversal trans-
formation to replace this by (—k, —¢|V|¢_x, ).
Hence My; is given by

Myi= (—#/21rﬁ2)/d1’ 2=k, —i[r, —i)

X(I‘, _tl Vl I, S"Xr; sllllp—k',—f(+)>' (53)
If we expand the wave functions in (5.3) in terms of
radial functions multiplying spin-angle functions which
are eigenstates of the total angular momentum, we can
carry out the angular integration and spin summation,
and are then left with a sum of radial integrals multi-
plied by somewhat involved expressions depending on
i, f, and the scattering angle. A typical one of these
radial integrals will have the form

18)= / do 71(Bo)F (D) Re(p), (5.4)

where p=*£'r, Bk’=Fk, Ry ; is the radial function in ¢y
which multiplies the spin-angle function for total
angular momentum 4 and orbital angular momentum
'; the form of F(p) depends on the radial dependence
of the potential. / and /' are either equal, or else they
may differ by two because of the presence of a tensor
force.

The evaluation of the matrix elements was carried
out by means of a program written for the IBM 704
computer. The computations were performed at the
MIT computation center. The program solved the
Schrédinger equation with the Gammel-Thaler poten-
tial to obtain the radial function Ry j; performed the
integrals of the form (5.4) numerically for the value
B=1, and also evaluated dI/dg. It then evaluated the
spin- and angle-dependent functions, and computed
My; and dMy;/dB for 3=1 and a given value of the
scattering angle for the six combinations of f and 2
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which yield independent matrix elements; details of
the calculation are given in reference 13. The parameter
B is given by

te+AEN\? AE
B=( " > ~ 14—, (5.5)
3€ 4
For =1, we have therefore
dM yi=M;:(8)— M ;i(1) =~ (M 1:/dB) |p=1(AE/e).  (5.6)

The detailed calculations were for e=140 Mev and a
center-of-mass scattering angle of 90°, appropriate to
the analysis of the data presented in Fig. 1. For 6,’=45°,
the average values of AE/e are 0.05 when the included
angle between the protons is 75° 0.02 for an included
angle of 90°, and 0.08 for an included angle of 105°. The
values obtained for the matrix elements and their
derivatives were, using the notation of reference 8,

M .= —0.0714+0.0637,
M ,,/dB=+0.056—0.053,

My=—1.20 —0.118i,
dM o/ dB=~+0.240—0.302i,

M 10=+40.33740.1854,
dM 10/dB3=40.961—0.013;.

(5.7)

(The remaining p-p matrix elements and their deriva-
tives are identically zero at 90°.)

Unfortunately, we feel sure only of the qualitative
correctness of these results. The phase shifts obtained
by our program, while they had the same general
magnitude and variation with angular momentum as
those reported by Gammel and Thaler, differed in
detail from the Gammel-Thaler values by amounts of
the order of 309,. This is reflected in similar differences
between the values of the matrix elements given in
(5.7) and those obtained from the Palmieri-Prenowitz
program. Regrettably a change in the type of computer
at MIT made our program obsolete before the source
of this discrepancy could be tracked down. Errors of
this magnitude will not affect our general conclusions.

The effect of using the off-the-energy-shell values of
the matrix elements as computed from Egs. (5.6) and
(5.7) is to lower the value of the theoretical curve in
Fig. 1 by about 0.01 at the maximum, 0.03 at 75°, and
0.04 at 105°. These changes are obviously much less
than the uncertainty in either the experimental or
theoretical results, even neglecting the unknown effect
of higher order multiple scattering.

These results are again dependent on the specific
form of the Gammel-Thaler potential. It had been
hoped to investigate the sensitivity of the variation
with 8 to the specific form of the potential, but this was
also largely prevented by the change in the MIT com-

13 Allen Everett, Ph.D. thesis, Harvard University (un-
published).
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puter. The only change in the potential whose effect we
had a chance to study was a decrease in the radius of
the repulsive core by about two-thirds; this resulted
in an increase in the cross section by about a factor of 2,
and changed the ratio of the cross section evaluated at
B=1.08 to that for =1 from 0.96 to 1.09.

Since the foregoing results are dependent on Eq. (5.6),
one run was made with a small change in the program in
order to compute directly the value of the matrix
elements at 8=1.1 in order to ascertain whether it was
in fact reasonable to represent them by the first two
terms in their power series expansion in 8. This yielded
the result that the change in the cross section was
about 1.5 times the change predicted by Eq. (5.6). This
effect is clearly of no consequence in the present case
because of the experimental and theoretical uncertain-
ties, especially since most of the experimental data
involve values of 8 which differ from 1 by 0.05 or less;
it does suggest, however, that the range of 8 over which
Eq. (5.6) is adequate is quite limited.

VI. CONCLUSIONS

We now summarize the conclusions from the fore-
going discussion. We begin by considering the im-
portance of the various terms in the expansion (2.12),
first of all as they affect a calculation of a differential
cross section for scattering from a deuteron or some
other two particle target. In the one case in which we
have made a direct comparison of theory and experi-
ment, namely the quasi-elastic p-d scattering as meas-
ured by KWC, we have found that we could obtain
reasonable agreement with the experimental results by
taking into account, in addition to the simple impulse
approximation terms in (2.12), those terms which corre-
spond to double scattering, and those arising from the
final state interaction of the particles in the deuteron
which have the form of double scattering. This is
evidently true because of cancellation among the higher
order multiple-scattering terms, since the triple-scatter-
ing terms seem to be of rather comparable magnitude
to the double-scattering terms which we have included.
This result, therefore, does not seem necessarily to
justify the adequacy of the single- plus double-scattering
approximation in other situations.

It is easy, from our previous discussion, to make a
general estimate of the ratio of the magnitudes of the
single- and double-scattering terms. Let f be the
scattering amplitude entering the single-scattering
process, and suppose we consider one of the double-
scattering processes, defined in Eq. (1.7), in which two
of the particles undergo an interaction described by the
scattering amplitude f’, and one of them recoils with a
wave vector of magnitude k, assumed to be much
larger than u;, the typical wave vector of nucleons in a
deuteron, and interacts, with amplitude f”; with the
remaining particle. Let us also suppose k3, the wave
vector of the “spectator’” particle in the final state is
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essentially 0, so that a(ks")=~1/u®~ R?, where R is the
average separation of the particles in a deuteron. Then
it is easy to see from Egs. (3.6) and (3.18), together
with the definitions of the vectors d, ¢, and % in Eq.
(3.8), that the ratio of the double-scattering term to the
single scattering is given by numerical factors times the
parameter 7, where

r= "/ N{"/R)(1/kR).

The numerical factors, e.g., the logarithm in (3.13),
depend only on the kinematics and turn out to be of
order unity, so that an estimate of the importance of any
given double-scattering process can be made by finding
the parameter 7 associated with it. Since the numerical
factor multiplying 7 turns out to be positive imaginary,
if 7 is small, one is interested mainly in Im(7), which
determines the size of the interference term between
single and double scattering. If one takes spin into
account, then the quantity f’f"’ really stands for a sum
of terms resulting from the summation over inter-
mediate spin states. Equation (6.1) tells us that the
double scattering will be small if the amplitude f’ is
small compared to f, if /<R, i.e., if the deuteron is
rather transparent to the recoil particle, or if AR«K1,
that is, if the wave length of the recoil particle from the
first collision is much smaller than the deuteron radius,
in which case one gets considerable destructive inter-
ference when one averages over the separation.of the
deuteron particles. It is pointed out in references 1 and
2 that 7 is the appropriate parameter for estimating the
importance of true double-scattering corrections; we
note that in the present case it also determines the
magnitude of the lowest order corrections due to the
binding of the deuteron.

As pointed out in our earlier discussion, the fact that
unitarity determines @ priors the sign of the imaginary
part of some of the scattering amplitudes allows one to
conclude that some of the double-scattering terms will
interfere destructively with the single scattering and
hence lead to a reduction in the cross section. Since
the remaining terms are, a priori, as likely to increase
as to decrease the cross section, one would expect that
on the average the effect of the double-scattering correc-
tions will be to reduce differential cross sections, as
they did in all of the calculations presented in this paper.
In the analysis of the KWC data, the imaginary part
of the parameter » was about 0.015 for C1, C2, and C3,
and about half of that for C4. However, the fact that
all of the interference terms had the same sign, coupled
with the effect of the numerical factors, meant that
the net effect of the corrections was to lower the ampli-
tude by about 109, {from the S.I.A. value.

As was pointed out, these results can easily be
generalized to the case of relativistic kinematics. If one
carries out the calculation indicated in the discussion
following Eq. (3.20), allowing also for the fact that the
mass of the incident particle may be different from the

(6.1)
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nucleon mass, one finds that the double-scattering
term describing a process in which a particle emerges
from an initial collision with a total energy E’ and then
interacts with the remaining particle whose total
energy is E” should be multiplied by the factor
E/(E/+E,)/2E/E,”, where the subscripts L and ¢
refer to the laboratory system and the center-of-mass
system of the two particles undergoing the second
collision. At the energies at which our calculations were
done, this changes the correction terms by only about
59, of their own value. Of course a more serious effect
at relativistic energies may be the necessity of including
in the sum over intermediate states, involved in calcu-
lating the correction, states containing a different
number of particles than the initial and final states,
which is a more difficult problem to deal with by the
methods which we have employed.

Unfortunately, as we have noted, the usefulness of
our approximation of including single- and double-scat-
tering-like terms is lessened by the fact that the triple-
scattering terms, which can only be estimated roughly,
appear to be of the same order as the double scattering.
It does, however, at least seem likely that the double-
scattering approximation will give a relatively reliable
estimate of an upper bound to the correction to the
simple impulse approximation, in view of the tendency
for triple and double scattering to interfere destruc-
tively, just as the latter tends to interfere destructively
with single scattering.

It is, at first sight, surprising that the ratio of triple
to double scattering is not roughly the same as that of
double to single. The reason this is not so can be seen
from Eq. (4.5), which indicates that the ratio of a triple-
to a double-scattering term in the expansion, rather
than being governed by the parameter 7, is instead of
order fk, where f and % represent the relative wave
vector and scattering amplitude for the third collision;
thus it does not decrease as the deuteron radius becomes
larger. Physically, this arises from the fact that, in order
for double scattering to occur, one must find all three
of the particles involved relatively close to one another,
and the liklihood of this obviously decreases as the
deuteron becomes bigger. However, once double scatter-
ing has occurred, the particles are close together, and the
chance of a third collision, involving two of the same
three particles, no longer depends on the size of the
initial target nucleus. This is to be distinguished from
the sort of triple-scattering process, which could occur
in a larger nucleus, in which an incident particle collides
successively with three different target particles. The
liklihood of this kind of triple scattering would decrease,
compared to the liklihood of double scattering, as the
radius of the nucleus increased.

The effect of the corrections on the double- or triple-
scattering parameters, e.g., P or R, can be seen by
analogy with the treatment in Eqs. (3.27)—(3.29). The
value of any of these parameters, let us call it X, ob-
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tained by a measurement with a deuterium target may

be written analogously to Eq. (3.28) as
X=[(A-a)or—(1—a)o_]/(1—a)s, (6.2)

where the appropriate partial cross sections for the

parameter in question are chosen. Thus AX, the differ-
ence between X and the true value X, has the form

1— —a_)o_
( a+)>__(a+ ) C 63)

AX=X o<1—

(1—a) (1—a)e
We assume, for the purposes of estimating the behavior
of AX as compared with that of the cross section, that
ay, a, and « all have somewhat comparable magni-
tudes, and, for the sake of definiteness, that o, =0_. It
will be seen that AX consists of two terms. The first is
simply proportional to X,, and introduces a relative
error which one would estimate to be of the same
general magnitude as that introduced in the cross
section, i.e., , which we have already discussed. The
exact magnitude depends on the relationship of «y. and
a, and hence on the details of the matrix elements. One
can say, however, that as X, becomes very large, the
percent error introduced by the first term will go to
zero, since a large X, implies o;>>0_ and hence ay.~o.
The second term, however, is not proportional to X,,
and hence does not necessarily become small as X,
becomes small; one would estimate its absolute magni-
tude to be of the order of a for small values of Xy, again
depending on the details of the relationship between
a; and a. The second term will also vanish as X becomes
large, as then ¢_<o,. Hence, in general, the values of
one of these parameters measured in an experiment
with deuterons should be quite accurate if the value of
the parameter turns out to be very large. On the other
hand, if the parameter is small, one might expect
absolute errors of the order of a. An exception to these
remarks occurs for the KWC experiment in the case of
the correction to the left-right asymmetry, where the
fact that one has two identical particles coming off at
nearly equal angles in the laboratory system implies
that the second term in (6.3) must be nearly zero, so
that the error in the asymmetry becomes small as the
asymmetry becomes small.

Finally, as to the corrections due to the fact that the
matrix elements involved are off-the-energy shell, it
appears that these corrections are small compared to
those due to double scattering. They are, in fact, about
comparable with the uncertainty in the double scatter-
ing corrections, so that it seems that the possibility of
measuring the off-the-energy-shell effects in an experi-
ment of the type we have been discussing is rather
remote. Unfortunately, those final states in which the
off-the-energy-shell effects are most pronounced are
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also those in which the uncertainty in the double-scat-
tering corrections is most important.

ACKNOWLEDGMENTS

I should like to express my sincere appreciation to
Professor Paul Martin, who suggested this problem to
me, and whose help and encouragement were invalu-

PHYSICAL REVIEW

VOLUME 126,

845

able. It is also a pleasure to thank Dr. J. N. Palmieri
and Edward Prenowitz for making available the
Gammel-Thaler scattering amplitudes calculated by
their machine program, and to acknowledge the helpful
discussions which I have enjoyed with Professor
Richard Wilson, Dr. Alan Cromer, Dr. Arthur Kuckes,
Dr. E. H. Thorndike, and Dr. J. Lefrancois.

NUMBER 2 APRIL 15, 1962

Remarks on the Relativistic Kepler Problem*

L. C. BIEDENHARN
Duke University, Durham, North Carolina

(Received November 16, 1961; revised manuscript received December 18, 1961)

By means of a new representation, the Dirac-Coulomb spherical wave functions are treated in a manner
which brings out the close formal similarity between these solutions and the spherical wave solutions for
the free-electron problem. The radial functions in the new representation have the same form as the non-
relativistic radial Coulomb functions, but with an irrational orbital “angular momentum,” I(y). This repre-
sentation is utilized to deduce a general recursion relation for radial Coulomb eigenfunctions, and show the
existence of the Coulomb helicity operator as a constant of the motion. The advantages and properties of

this formulation are discussed briefly.

I. INTRODUCTION AND SUMMARY

HE problem of a Dirac electron in a pure Coulomb

field (aZ/r), as was first shown by Darwin in

1928, is one of the few problems involving the Dirac

equation with external fields, which permits of an

“exact” solution—exact, that is, within the restriction

to the one-particle theory (unquantized fields) for a

point nucleus of large mass.! The fundamental im-

portance of this elementary problem, and the necessity

for exploring the implications of the solutions need no
emphasis.

It is the purpose of the present work to re-examine
and rederive the Dirac-Coulomb solutions in a repre-
sentation not hitherto discussed in the literature. This
representation is chosen in order to diagonalize (in
Dirac g space) two operators, I' (Sec. IIT) and ® (Sec.
1V), of central importance to the Dirac-Coulomb
problem. The first of these operators I' was introduced
by Martin and Glauber?; the second operator ® was
introduced much earlier by Johnson and Lippmann in

* Supported in part by the Army Research Office (Durham)
and the National Science Foundation.

1The classic treatment is that of Arnold Sommerfeld, Atomban
und Spekirallinien (Friedrich Vieweg und Sohn, Braunschweig,
1939), Vol. II, Chap. 4, p. 209ff. See also H. A. Bethe and E. E.
Salpeter, Quantum Mechanics of One and Two Electron Atoms
(Academic Press Inc., New York, 1957); and M. E. Rose,
Relzit;ivist'ic Electron Theory (John Wiley & Sons, Inc., New York,
1961).

2 P. C. Martin and R. J. Glauber, Phys. Rev. 109, 1307 (1958).
These authors were concerned with a specific calculation, and
primarily with the discrete spectrum, and did not discuss the
representation that diagonalized T'.

a brief note.® The operator ®, as we shall show, has the
significance of a generalized helicity operator, and is a
constant of the motion for the relativistic Kepler
problem; the operator I' is more difficult to categorize
briefly, but is connected with a generalization of the
operator p;K (where K is Dirac’s operator) and is not
a constant of the motion.

The importance of the representation S which
diagonalizes the operator I' lies in the fact that it
enables us to treat the Dirac-Coulomb eigenfunctions
as the precise analogs to the spherical wave solutions
of the free (Dirac) electron. Moreover, in this repre-
sentation the radial wave functions are surprisingly
simple, being of precisely the same form as the radial
functions in the nonrelativistic Coulomb problem. The
transformation to the representation S makes it
evident that the integer orbital angular momentum of
the free-electron problem, becomes in the relativistic
Coulomb problem a noninteger (irrational) “orbital
angular momentum.” In neither the integer nor the non-
integer case is the orbital angular momentum sharp, yet
it is conceptually helpful in understanding the problem.

The plan of the present paper is to discuss (Sec. IT)
the free-electron (plane wave) problem first, employing
techniques which permit generalization to the Dirac-
Coulomb problem (Sec. III). A basic result of this

3 M. H. Johnson and B. A. Lippmann, Phys. Rev. 78, 329(A)
(1950). The operator actually introduced by Johnson and Lipp-
mann differs trivially from ®, however. The use of this operator
was originally suggested to Martin and Glauber by K. A. Johnson
(cf. footnote 6 of reference 2).



