
P II YSI CAL R EVI EW VOLUME 126, NUMBER 2 A P R IL 15, 1962

Analysis of Multichannel Reactions
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A method for analysis of multichannel reaction data is presented. We consider a system of n strongly
coupled two-body channels in a particular "partial wave. " The energy dependence of the cross sections is
treated in the effective range approximation; the corrections to the scattering amplitudes due to mass
differences between isotopic spin multiplets and Coulomb scattering are included. "Uncoupled" amplitudes,
which would describe the scattering in the absence of influences of one of the channels, are introduced.
Relations between these uncoupled phases and the actual amplitudes are derived (in a nonperturbative
manner). The use of the uncoupled phase procedure, in conjunction with an effective-range analysis, to test
certain theories of strong interactions is discussed.

I. INTRODUCTION

w E present in this paper a method for analysis of
multichannel reaction data. A system of n

strongly coupled two-body channels in a particular
"partial wave" (i.e., state of total angular momentum
J, s component J„parity, and isotopic spin I) is
considered. The following properties of this system
are treated: (a) the energy dependence of the cross
sections in the effective range approximation; the
scattering amplitudes as corrected for the virtual
electromagnetic effects of (b) mass differences within
isotopic spin multiplets; (c) Coulomb scattering; and
(d) the relation of "uncoupled" amplitudes, which
would describe the scattering in absence of inQuences
of one of the channels, to the actual amplitudes.

In a previous paper, ' A, we developed the multi-
channel effective range theory, remarkably analogous
in form to the familiar one-channel s-wave theory.
Appropriate amplitudes M;, (where in the one-channel
s-wave case, M= k cot5, and in general M is essentially
the inverse of the K matrix) can be accurately repre-
sented by expressions linear in k' where the coefficients
of k' for the diagonal terms M;; are interpretable in
terms of the range of forces and can thus be roughly
estimated a priori, wherea, s those for elements M;,
connecting different channels are small. In Sec. II, we
review the relevant details of this theory.

Even though we assume that the strong interactions
conserve isotopic spin, the electromagnetic interaction
can cause a mass difference to occur between an isotopic
spin doublet. The phenomenon is treated as a kine-
matical one, i.e., the M;, are assumed to be unaffected
by the mass splitting. On the other hand the Coulomb
potential in a channel induces changes in the M matrix.
These effects have been previously considered by

Jackson and Wyld' and Dalitz and Tuan. ' In Sec. III
we present simple derivations which reproduce and
generalize their results.

There is, however, a serious difficulty which will
usually occur in a phenomenological analysis of multi-
channel reactions using the effective range formalism.
In general, data will be available only with certain
channels as initial states due, e.g. , to the instability
of some of the particles. Ke consider the case where
just one initial channel is accessible experimentally.
The complex (energy dependent) scattering length,
a(k), in this channel, directly characterizes much of the
observations. The many amplitudes M, , are, however,
not simply related to a(k) )correspondingly, u(k) in
general has a complicated energy dependence for
multichannel systems). Thus, while only one channel
may be available as an initial state, knowledge of the
M; s, needed for the full effective range analysis,
implies knowledge of al/ the scattering amplitudes. In
the presence of extensive accurate data involving only
one channel as the initial state the energy dependence
specified by the effective range formalism could be used
to gain knowledge of the M; s.

This difficulty of a purely phenomenologica1. approach
leads us to study, in Sec. IV, the relation between
actual scattering amplitudes and "uncoupled" ampli-
tudes about which one may make theoretical proposals
(for example, global symmetry of the pion-baryon
interactions). It must be emphasized that the effective
range theory has no direct connection or dependence
on this messy theoretical problem of relating "un-
coupled" to actual phases. Although the concept of
"uncoupled" phase shifts is quite useful, the definition
of these phases is ambiguous. We tried, 4 in 8, to develop
a workable and meaningful theory. Assume that there
is a finite energy region in which certain strongly

* Supported in part by the U. S. Atomic Energy Commission.
t Supported in part by the National Science Foundation.
'M. Ross and G. Shaw, Ann. Phys. 13, 147 (1961).We shall

refer to this paper as A.

' J. Jackson and H. Wyld, Phys. Rev. Letters 2, 355 (1959);
Nuovo cimento 13, 85 (1959).

s R. Dalitz and S. Tuan, Ann. Phys. 10, 307 (1960).
4 M. Ross and G. Shaw, Ann. Phys. 9, 391 (1960). We shall

refer to this paper as S.
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coupled two-body channels are significant. We con-
sidered a theory explicitly involving only these certain
channels, which need not all be open. In principle, there
are interactions (in general not simple potentials)
between these n channels alone which yield agreement
with experiment in this energy region. The uncoupled
phases are taken to be those which would exist if the
couplings to one of the channels (for example, the
"new" channel, i.e., the one with the highest threshold)
were to vanish, the interactions among the other n —1
("old" ) channels remaining unchanged. In 8, it was
then shown how to obtain relations for the actual
amplitudes in terms of these (assumed) uncoupled
phases in the old channels and the (measured) scattering
length and production ratios from the new to the old
channels (if there is more than one old channel). These
relations for the actual phases are fundamentally
nonperturbative approximations. They are based on
approximations having some resemblance to those made
in effective range theory: It is necessary to equate
certain integrals over similar wave functions which are
identical outside the range of forces. In 8, the relation
for the two-channel problem was tested in a computer
experiment involving equal-range square-well potentials
and was found to be eery accurate for this case. In
Sec. IV we outline the derivation of the uncoupled
phase procedure; the results are a generalization of
those presented in B.

The uncoupled-phase method serves two important
purposes. In addition to permitting us to confront
certain theoretical models of strong interactions with
experiment, it enables us to determine all the M
parameters, and thus make the full effective range
analysis. Thus for practical purposes we can combine
the two approximations: The uncoupled-phase method
can provide certain parameters at a given energy which
are needed to utilize the effective range form for the
energy dependence of the scattering amplitude. In
Sec. V, a brief discussion of this procedure, and com-
parison with other approximations, is given for the
two-channel problem.

The formalism presented in this paper is applied to
the s-wave KE system in the following paper.

+'= ll~' j,(&' )8'll. (2.5)

The relation between the nXn matrices T and E is

T=E(1—iE) '. (2 6)

E is Hermitian (when all channels are open) guarantee-
ing the unitarity of the S matrix, and it is symmetric
as a result of time reversal invariance. A diagonal
element of T has the usual form in terms of the
(complex) phase shift 5, :

beyond the "range of forces. " In a given partial wave

y, this form is well known. We write the state vector
as a 1)&n column matrix whose elements, labeled by j,
correspond to the wave function in that channel. For
the outgoing wave boundary condition with incident
beam in channel i, we have, outside the range of forces, '

@"(«) ~ II (pz/p')'L(~'z+iT'z) jE;(& «)

+2'' «;(»«)78 II, (2 1)

for the "principal value" boundary condition,

u "(«)~ II( P/zP)'*L~'~j~, (&'«)+E'~~~, (J'z«)]Szll~ (2 2)

with
pi= ~ioriy

the product of momentum ki and reduced energy cubi

in the center-of-mass system in channel i, and g), are
normalized eigenfunctions of the operators F with
eigenvalues y. Note that the orbital angular momentum
i is one of the channel properties (not necessarily
in y).

The normalization of our T (or scattering) matrix
elements and E (or reaction) matrix elements in (2.1)
and (2.2) is perhaps most conveniently given in terms
of the usual Hamiltonian theory, although no explicit
reference is made to the interactions in deriving
effective range theory. Our normalization is such that~

2(P'P ')'(4' +z4'z' («)), (2 3)

E'z= 2(P*P~)'8—',&z4~"(«)), (2 4)

where Hz is the interaction and P, is the pth partial
wave of a plane wave incident in channel i:

II. MULTICHANNEL EFFECTIVE RANGE THEORY
T =(e'""—1)/2i. " (2 7)

Consider a system of coupled two-body channels.
Let there be n channels. We consider each partial
wave separately. Let p be a set of eigenvalues of the
constants of the motion I', such as J, J„parity, and I
(the corrections induced by the electromagnetic field
which does not conserve isotopic spin are treated in
Sec. III). Consider the state vectors describing scatter-
ing at an energy E where all the channels are open. '
The effective range theory rests entirely on the form
of these state vectors in the position representation

' Our results can all be extended into an energy region in which
not all of the n channels are open.

The partial cross section from channel i to channel j
is given by

4m. 2J+1

k,2 25,+1
(2 g)

where 5, is the spin of the initial (unpolarized) channel.
We emphasize that all of these relations apply to a
single partial wave.

Neither of the scattering states P+, P& is directly
convenient to derive a useful effective range theory.

~ The symbol —+ will be used to indicate equality outside the
range of forces.

7 We use units 5=@=1.
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f,~ has the essential property that outside the range
of forces, there is an irregular function only in the
channel i. (It is shown in A that because of this property,
oe1y the matrix M has a simple effective range expan-
sion. ) The rzX rz matrix of coefFicients M,, is given by

M=k'+2E 'k'+s (2.10)

where (k'+l), ;=5;,k, "+l. M (essentially the inverse of
the E matrix) is an even function of all the channel
momenta and thus remains real and symmetric when
all the channels are not open. (Note that we still use
the e)&e matrices which explicitly refer to all the e
channels even when some are closed. See Sec. VI.)
The relation between M and T is

T—k 3+3 (M zk2 l+i)—lk l+2

If there is only one channel,

M =k"+' cot5.

(2.11)

(2.12)

Before going on to the effective-range formalism, we
list some useful properties of M and E. It is useful to
introduce a complex scattering "length" [having the
dimensions of length raised to the (21„+1) power]
as function of energy a(k), in the rzth channel. ' We
define the scattering length by

T» ———k„""+'[1/a(k)+zk„""+'] ' (2.13)

so that for a one-channel system

—1/a(k) =M,

(note the minus sign). We find that

(2.14)

—1/a(k) =M„„+gP„„—' g M„.,gg;„, (2.15)

For this purpose we consider the scattering sta, te 1t,M

which approaches outside the range of interaction

1M'

P,~'(r) —& — [k, '—M, ,j &, (k, r)
GO&

+5,,k,"+'zzi,. (k,r)]Q, . (2.9)

where Pt, , is the i, j minor of (1—zE). Finally, the
production amplitude from channel m to i has a simple
dependence on u, besides being a function of those
elements of M excluding M „and one M, , i Wrz (or a
similar set of elements of E).That is, for i (and j)&zz,

T = [k ""+'Iml/a( k)]'[1/a( k) +i k„""+'] '

Xf,(M,y,M g/M '), (2 19)
and

(2.20)

M =M (Eo)+isR(k' —k'(Eo))1 (2.21)

where R is a real approximately energy-independent
and dhagonal matrix, and the diagonal elements are
roughly interpreted in terms of the "range of forces. "
We have

where
M, ,=M;;(Ep)+-', 5;,R;;(k,s—k,s (Ep)), (2.22)

R =C ( R""'+' .Co ——1 Ci ———3 (2.23)

with R; a measure of the range of forces in the ith
channel. Ke emphase that R was found to be approxi-
mately diagonal even for R;, greatly different from R;;
and for t,&l;. The derivation of the results (2.21)—(2.23)
depended only on the form (2.9) for 1|,~ outside the
range of forces. It did rot involve the use of non-
relativistic kinematics or the introduction of a
Schrodinger equation. The accuracy and applicability
of the effective range formalism is discussed at some
length in A (especially Sec. VI). See also Sec. VI of
this paper.

It is seen from (2.15) that the energy dependence of
1/a(k) is not in general simple. In fact, the "zero-
range" approximation, i.e. , taking the matrix R—=0, is
not equivalent to constant scattering length; there is
explicit dependence in (2.15) on the momenta k;, z4rz.

Below the threshoM of the ith channel, all relations
are extended by

The role of a(k) in T;; (i,j Arz) is complicated.
According to the effective range theory developed

in A, 3E has the following energy dependence near any
energy Eo.

and
iWn k, —&i~;, I(.&0. (2.24)

n

det(M —ik"+') = P M.;K;„
i=1

= —K .[1/u(k)+ik ""+'7 (2.16)

where K;; is the i, jminor of (M zk"+') S—imilarly . for
E: —a(k) =E..+(K..')—' P E„,K,„', (2.17)

iWn

The cusp behavior' of the cross sections in the vicinity
of a threshold is contained in the above formalism.
Near the ith threshold, and in the partial wave y in
which channel i is in an s state, the cross sections cr, I,

where jWz will contain terms proportional to
~
k,

~

and
will exhibit infinite derivatives as a function of energy E
at k,=0 [since (dk, /dE)s, . p

——~].

IIE. CHARGE-DEPENDENT EFFECTS

det(1 —zE) =K„'[1+za(k)k ""+'] (2.18)

8 Note that the channel e singled out does not have to be the
channel with the highest threshold or even the highest open
threshold.

In this section we consider two effects which the
electromagnetic field can have in altering the formalism

' G. Hreit, Phys. Rev. 107, 1612 (1958};R. Newton, Phys. Rev.
114, 1611 (1959}.
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of the Sec. II which treated the strong interactions
which conserve total isotopic spin. The phenomena of a
mass splitting between isotopic-spin multiplets and
Coulomb scattering have been previously treated by
Jackson and Wyld' and Dalitz and Tuan. ' We present
simple derivations which reproduce and generalize their
results.

First we treat the mass splitting induced by the
virtual electromagnetic field. In the absence of mass
splitting, consider the channels A and 8 which are
members of a charge multiplet so that'

IA)= I,-)+ l,p),

I 8)= —r
I

zz,n)+s I
zz,p),

(3.1)

f r'a '+szap 'rs(ap —'—a —'))

mrs(a ' —a~ ') s'a '+r'a —')
from which we obtain

T~~ k~21~+'(rzas+——s'a +i—k +22'a as)D, (3.3)

Tg12 rs(kgkI1) ' +&(a ——ap) D, — (3 4)

where

D '= 1+iaq (s'k22""+'+r'k~""+') +ia (r'k22""+'

+s2kA2ln+1) (k k )21a+1a as (3 5)

Consider now the actual (zz +2') X (rz +2') M matrix
which can be written as

where Irz, n) and
I
zz,p) are eigenfunctions of the operators

F with I=n and I=P (the other eigenvalues being
the same), and s'+r'= 1.There are rz coupled channels
with I=n and 2' with I=P. However, the virtual
electromagnetic field (which does not conserve isotopic
spin) may produce a small mass difference between
channels A and 8 so that k~/k~. This phenomenon is
treated as purely a kinematical one, more specifically,
we assume that the 3fI are unaffected. Then to 6nd any
T-matrix element one evaluates a big (rz +rzs)
X (zz +re) matrix instead of a rz X zz plus a zzpX rzp.

If we are only concerned with T-matrix elements
from channel A, then simple relations may be obtained.
The elastic T~~ and charge exchange T~~ elements are
found by using non-Hermitian M~ to describe channel-e
reactions alone: Mr= —1/aq where a is the complex
energy-dependent scattering length for channel e.
The M matrix for channels A and 8 alone is

Tg =k~'"+~k "+l[det(M —ik2'+')) '
X[—ik2121"+' det(N —ik21+')~g((E~);;)

+terms independent of k~, k22), (3.8)

for channel i(/zz) having I=n. Then simply by noting
the two forms (3.3) and (3.7) for T~~ and using the
fact that the P depend. ence of T~; must drop out as
k~~k~ we have

Tg; = (1+zapk2221"+') DF (n)

where F(n) is independent of k21. Thus the inelastic
matrix element from A to channel i(Wzz) having I=n

TQ j s (1+iask122'"+1).(1.+ia k&2'"+1)DT ~ (3.9)

or for I=P
Tg;= r(1+ia.k2221"+') (1+iapkg21"+')DT s

(where the T are the isotopic-spin-conserving scattering
matrices).

The other phenomenon we treat is the case when
there are "charged" channels, i.e., channels with both
particles charged. Then, in addition to the total
(includes all partial waves) scattering amplitude for
channel i with particles having charge Z;~e and Z;2e,

where

csc'(0/2) 2i
exp in[sin(tt/2)) I,)k;8;

(3.10)

8;=—(Z,,Z;zezo1 ) ' (3.11)

the "strong interaction" partial wave T amplitudes are
altered to some new values T'. We assume that there
is a radius E; outside of which the strong interaction
can be neglected, whereas for r(R; the Coulomb
interaction can be neglected.

Consider the situation when the charged channels i
are in s states. Then just inside r=R;, P;~ has the free
asymptotic form (2.9):
y;2z =

II (o1,/oo, )&[k;-'~M;,j1,(k,r)

+~;;k,"+'2z, (k'r))S, II, (3»)
whereas just outside r=R;, p,~ has the Coulomb-
corrected form

(rz —1) column vector (with U~ its transpose). Then

Tgg =k~21"+'[det(M —ik"+')) '

X[ —ik22""+' det(X —ik"+')I det(X —ik"+')~

+terms independent of k~, k22), (3.7)

=&'ll(& /o1;)'[(M 'Fo/k r+& Go/r)0.

+ (k
—'~M, 'j 2 +&,,k,'*+'zz&,) (1 &.;))I;~~, (3.13—)

N
0
rgb

. sU
where C; is a normalization constant, 0„.is 1 if channel

j is in a charged s state and zero otherwise, and Iio and
Go are the 1=0 regular and irregular Coulomb wave
functions. Matching the wave functions (3.12) and
(3.13) and their derivatives with respect to k,r, denotedwhere E is an (zz —1)X(zz —1) matrix and U is a

0 —rU sU
NP sU~ rU~

s U& (r'M +s2M~) „rs(M~ M)„„—
r U& rs(M~ M) „(s'M—+r'3P) „„.

(3.6)
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C; '=sin(k;R;)/Fo(k, R;). (3.16)

Expanding in terms of the small parameter R;/B, , we
have for k,R,&(1 (the Coulomb corrections are appreci-
able only for small k,),

Fo=c,k+, (1 R,B, '—+ ),
Fo'=c, (1—2R;B, '+. ),

(3.17)

with

and

Gp=c 't1 —2R,B. '(5 —1)1.
(3.18)

Go'=2) (k B,c,) '+—
cP= 2m.k; 'B, 'l 1—exp( —27rk;

—'B,—'))—' (3.19)

$,= ln(2k, R,)+0.577

+(k,B,) ' Q {nial m'+(k, B,) ')) '. (3.20)
m=1

Putting these expansions back into (3.14)—(3.16), we
obtain'0

M;,'=c; '(M;,+2B, '$,)8„+M,;(1 8„), —(3.21)

M; = [c; '8„+(1—8„))lc; 8„+(1 8„))M,; —(3.22).

by primes, we have the Coulomb-corrected relations

M, = {M,,LGo —Gp' tan(kQ, ))
—k,LGp'+Gp tan(k&, ))}
&& {M;;lFp' tan(k, R;)—Fp)

k~[—Fp tan(k, R,)—Fp')) '8„
+M, ,(1—8.;), (3.14)

M,,'= [G, i8„-+(1 8„)—)t,C, '8„-+(1 8„—))M... (3.15)

develop in 8 the method of "uncoupled phases. " We
want to make predictions on the basis of simplified
interactions that would exist if other interactions were
not present. The concept of turning oG interactions is
complicated and not exact. Indeed, articles on basic
interactions do not usually discuss this difficult point,
e.g., renormalization of the pion-hyperon interactions
due to the presence of the kaon interaction. " Our
de6nition of the amplitude association with the "un-
coupled" interaction may not correspond to other
definitions. In B, we considered our procedure in some
detail in the case of simple potentials. There the
definition of uncoupled amplitudes was relatively
unambiguous and we found reasonably accurate
relations, as checked by a numerical program, between
them and observable amplitudes.

We now outline a derivation of our method. Consider
a system of e strongly coupled, two-body channels for
which experiments can only be initiated in the eth
channel. ' Thus we want to construct observable
amplitudes, which contain oi (e'+n) real numbers,
from rt real empirical parameters Li.e., the complex
scattering length and the production ratios from the
eth channel into the other channels and the other
io(rt' —m) real numbers that would describe all the
reactions if the eth channel did not exist). The guide
we have in mind is the model of an m)&e potential
matrix Hr (with elements H;;) coupling the I channels
which would yield agreement with experiment. We
work at a Axed energy and so make no restrictive
assumption at all about these potentials. Consider an
energy where all e channels are open. ' In the partial
wave y we consider the E-matrix elements (2.4):

The strong-interaction scattering amplitudes cor-
rected for charged s-wave charged channels is

E' = 2(t 't i)'(O', H—dr),
where the 1)&e column matrix

(4.1)

T'= ck'+'*(M i k"+'c) 'k'+'*c, —
where the diagonal matrices c and c are given by

c,;=cP+i2(; (B,k~)-',

(3.23)

(3.24)

1t' = ll(t»/t')'C8' ji, (k.r)+&' g')Stll
and outside the range of forces

a'~ ~ «, (4r).

(4 2)

(4.3)

for channeli charged and 3;=0, and

Cps= Css= 1~ (3.25)

Inserting the explicit forms (2.5) and (4.2) for P, and
1tp into (4.1), we have e' equations for the E;; as
linear inhomogeneous equations in the E, s themselves:

for channel i uncharged. The corrections induced by
charged channels with l;)0 may be obtained from
expressions similar to Eqs. (3.14)-(3.16).

IV. THE UNCOUPLED PHASE METHOD

The desire to confront certain special theories of
strong interactions, such as global symmetry of the
pion-baryon interactions, with experiment led us to

~o Both the derivation using the state vector ~ and the resulting
expressions for the Coulomb-corrected M matrix are simpler than
the corresponding results for the E matrix found, in reference 3,
by matching the principal-value wave function p&.

(4.4)

In the matrix potential model, the coeKcients J;; are
radial integrals over the potential H;; coupling channels
i and j with radial wave functions normalized im-
dependertt of the Asteractiorts outside the range of forces:

J,,~ ~ j &, (k r)H, ,gi„(k,r)rodr,

"See M. Gell-Mann and F, Zachariasen, Phys. Rev. 123, 1065
(1961).
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and

I,,& ~ j i, (k,r)H, ,j,, (kp)r'dr/J, , ~

We define uncoupled quantities (printed in boldface)
as those that wouM exist if there were no coupling to
the nth channel, the interactions among the e—1 other
channels being unchanged. Then we have the relations

—K,,=(I, J,;+ P J,, 'K„)(1—S,„)(1—S,„). (4.5)

Now we adopt the approximations (a) that the
coefFicients J;~

'
are insensitive to details of the g;I, well

inside the range of forces so that we drop both the
boldface and superscript notation for J (and I), and
(b) in addition I;, is independent of s. Indeed we expect
that

I;.=In—= ji„(k~&~)/ni„(k~~~), (4.6)

for some suitable range R . These approximations
appear to be accurate for simple potentials. See results
of computer experiment in B.

Using these approximations, we have from (4.4)
and (4.5), for all jbuti/n

(4.8)

where

Qi;= Es,—Ks, (1—5,„)(1—8g„)+I 5s„8; . (4.9)

In order that a solution of (4.8) exist, we readily
establish that all 2&(2 submatrices (formed by elimi-
nation of n —2 rows and n —2 columns) of the matrix R
must have zero determinant. There are rs (n' n)—
independent relations of this kind, for example, the
n —1 relations

pE;, K,; E;„—
detI I=0,

E,„E„„+I)

—(E K),,=I„—J,.b,.+ p J;1,(E K)s;, (4—.7)
k=1

which may be written as

Ei2s= —ks'"+' Ima(1+E ')

E„=—ks"&+'(Rea+ImaEii),

where we have defined Lsee (4.6)j

(5.3)

(5.4)

Isks—(&4+i) g &&a+&/(2)s+ 1) t i(2t& 1) I l (5 5)

V. EXAMPLE: UNCOUPLED PHASE METHOD FOR
TWO-CHANNEL PROCESSES

Let us consider the case of two interacting channels,
assuming that it is not necessary to take into explicit
account the effects of other open or closed channels in
order to describe these reactions in a limited energy
region. We suppose that just one of the channels is
suKciently stable to be available experimentally as
the initial state. Take this to be the new channel. The
complex energy-dependent scattering length is the
convenient quantity with which to describe the experi-
mental results. At a given energy, one other real
parameter is needed to specify all three amplitudes
among the two channels. Indeed, this third parameter
enters into the phase of the nondiagonal amplitude,
T2~, and in the diagonal amplitude in the old channel,
TJ~. Additional importance of this parameter arises
from the fact that the effective range procedure for
specifying the energy dependence of any of the ampli-
tudes requires knowledge of all of them at one energy.

We take this third parameter to be the uncoupled
phase which would describe the reaction in channel 1
in the absence of coupling to channel 2. Thus all the
amplitudes at a given energy are expressed in terms of
the scattering length (of channel 2) and uncoupled
E-matrix element in charm. el 1, Kii. It is convenient
at the same time to compare these results with other
approximation schemes having the same aim. For these
purposes we exhibit not the actual amplitude T, but
E and M.

In terms of the E matrix, we find after some algebra,
from (4.10) and (2.17),

Ima(k)+I Rea(k) —JjKii
EIg= (5.1)—Ima (k)K»+ Rea (k) —L

or

tan —'E,= tan 'Kii+tan 'I Ima/(Rea —I.)], (5.2)

for i A n, and the s (n —1)(n—2) relations

~E;; K;;—
detI

~E,,—K,,

E;,—K;,i
E;;—K;;i

(4.11)

for i, j/e. The number of independent relations is
equal to the number of uncoupled amplitudes K;;.

Given the uncoupled amplitudes K;; we can then
construct the actual E matrix if we know the experi-
mentally-measurable (n —2) production ratios T„;/T„;
and complex scattering length a(k). The procedure
then is to calculate M from E (at one energy) and use
eBective range theory to describe the cross sections
over a large energy region.

the latter if our energy corresponds to small t|;2. A

weak-coupling approximation sometimes used instead
of the standard but often trivial weak-coupling approxi-
mation in T (in which Tis ——0) is "weak coupling in E"
in which E» is replaced by K» in (5.1)—(5.4). In
comparison with our uncoupled phase results we see
that weak coupling in E will be satisfactory" if

IIma(k)/I Rea(k) —I.3l« I
K» I (5 6)

~~ Properly said, there are conditions under which it coincides
with the uncoupled phase procedure. The latter is a nonperturba-
tive'approximation which we have numerically tested and found
satisfactory for a wide range of interaction strengths (see 8).
Thus we are con6dent that the uncoupled phase method has a
much wider range of validity than either of the other approximation
schemes discussed here.
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and

I
Ima(k)/[Rea(k) —L] I

«
I Kill

' (5 7)

For practical purposes the condition may be given as

~
Ima(k)/[Rea(k) —L](((1. (5.&')

A subtler approximation has been proposed by
Matthews and Salam. "To discuss it and to go on to
combine the uncoupled phase results with effective
range theory, we write the 3f-matrix elements according
to the uncoupled phase procedure:

real numbers describe the directly available experi-
mental data at a given energy (ignoring possible
interference effects with other isotopic spin states),
five real numbers occur in the effective range expressions
(the two ranges may be roughly specified a priori).
One notes that the efIective range expression energy-
dependent scattering length [—1/a(k) is shown in the
square brackets of (5.15)] consists of the familiar
one-channel result:

—1/a, (k) = const+ —2,R[k2' —k2'(Eo)], (5.16)

or

Ima '(Rea ' —L ') '+K—1$ 2l1+1

1—K11Ima '(Rea ' —I ') '

tan —1~ —1$ 2l 1+1

=tan 'Kit+tan ' Ima '(Rea ' —L ') '

M12'= kl"'+' Ima '(1+M lpkl ""+")
M = —Rea '+M k ""+"Ima '

(5 9)

(5.10)

(5.11)

(5.12)

(where R is real and interpretable as a range) p/us
additional energy dependence. If we can establish in a
particular case that M122 is sufliciently small, or

~

M»
~

large, or that k& varies sufficiently slowly with respect
to k2, then the one-channel effective range from (5.16)
can be used to express T22 and

~
T12~ as functions of

energy, with great attendant simplification.

VI. DISCUSSION

Matthews and Salam propose a "weak-coupling
procedure for 3f":

fol z) gQ'8. (5.13)

That is, for the two-channel system, replace 3f» by
Mll (—=k12"+'Kit) in (5.9)—(5.12). Referring to (5.9),
we see that the condition for the weak-coupling M
procedure is

11ma '/(Rea '—I. ') I((IK»l ~

(
Ima —'/(Rea —'—L—') ](([K„(—'

or for practical purposes,

~

Ima '/(Rea "—L—") ~(&1. (5.14)

Our proposed scheme for analyzing the two-channel
reaction data is to evaluate the 3f, s at a given energy;
for example, the threshold of channel 2 and to substi-
tute them into the effective range expressions (2.22).
Then, with the ranges R;, we have the scattering
amplitudes (2.11) as a function of energy. These are
all given in terms of five real constants: Reu, Ima, and
K» evaluated at energy Eo, and Rl and R2. The
parameter I. should be evaluated using R2 in (5.4).
For example, the elastic scattering in the new channel is
given by

2'22= k2'"+'{[M22 (Eo)+2%2(k2' —k2'(Eo))
—M12 (Eo)[Mll(E0)+ 2E11(kl kl (E0))

—2k 211+1] 1] Zk 212+1) 1 (5 15)

where the R;; are given in terms of the ranges R, by
(2.23), and the M;;(Eo) are to be taken from
(5.9)—(5.12).

In summary, for two channels, with only one channel
available experimentally as an initial state, while two

"See M. Gupta, Nuovo cimento 16, 737 (1961).

In summary, we have treated two separate theoretical
aspects of the analysis of multichannel reactions: First,
in Secs. II and III we dealt with the form and energy
dependence of scattering amplitudes. Second, in Sec. IV
we treated the problem of using the phenomenological
parameters determined using the formalism of Secs. II
and III to gain some theoretical knowledge of the
underlying interactions (or alternately assuming some
special theoretical model of the interactions, along with
some empirical knowledge, predict certain of the
phenomenological parameters).

The effective range formalism presented in Sec. II
had two striking features of simplicity: (i) The non-
diagonal elements of the M matrix are essentially
constant even when the diagonal elements have large
(and numerically quite different) effective range terms.
(ii) The diagonal effective range terms (as in the
familiar one-channel problem) are directly interpretable
in terms of the range of forces. As discussed in Sec. VI of
A, there are situations in which features (i) and (ii) do
not hold, in particular, when some of the M;; are very
large. However, even for these cases, a rather good
approximation to the absolute magnitudes of the cross
sections can be obtained using our formalism (2.21)—
(2.23). (We would like to thank Dr.

, J.J. de Swart for
informing us of the results of his calculations of AlV —ZS
reactions in 's& and 'd& states for several physically
interesting potentials. His results bear out the above
remark. )

In the one-channel potential model, the effective-
range approximation should be valid for a strong
potential of "short, well-defined range. "The potential
must be relatively simple [for example, the one-channel
eRective-range theory does not allow a zero in the
scattering amplitude at finite energy, while it is easy
to construct a (non-monotonic) potential leading to a
zero]. In some respects, the real many-channel elemen-
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tary particle problem is more straightforward. We may
postulate that the basic interactions are very simple and
that the complications arise from the different roles
played by the many states that enter. This leads to a
generalized criterion for validity of effective range
theory. Since long-range interactions arise in association
with nearby (in energy) new channels are stable states
that are Not explicitly accounted for in our e-channel
theory, all channels near the given energy region must
be considered explicitly in order that the effective range
theory be accurate. Speaking more formally, each
distinct physical singularity in the amplitude corre-
sponds to a channel. All channels entering in or near
the energy region of interest, assuming their weight
to be significant (i.e., that the amplitude to that state
at these energies is not small), should be explicitly
represented in the effective range theory. Then the
effective range form of the amplitude will reasonably
represent all nearby singularities. The (energy) region
of validity will depend on the distance of the non-
physical singularities and of the physical singularities

not explicitly considered. Further discussion of the
restrictions on the validity and applicability of the
effective range theory is given in A.

While the derivation of uncoupled phase method
presented in Sec. IV has rto connection or depertdertce on
the effective range theory, it is an extremely useful tool
to use in conjunction with a phenomenological analysis
using the formalism of Secs. II and III. Because of its
applicability in predicting the zero-range parameters
and confronting theoretical models of strong inter-
actions with experiment, it wouM seem very worthwhile
to investigate in greater detail the theoretical basis
of the uncoupled phase procedure.

The formalism presented here is applied in the
following paper to the s-wave KÃ system.
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