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The Mandelstam representation is used to derive fixed-angle dispersion relations for the twelve scalar
amplitudes describing the process y+E —+ y+E. The electroma. gnetic interaction is calculated to order e .
The strong interactions are estimated by including one- and two-pion exchange on the left-hand cut. These
depend on the 7r' ~ 2y decay lifetime and on the T=0 7l-7r phase shift and the total cross section for photo-
production of pions on pions, respectively. The right-hand cut is estimated by allowing the exchange of a
nucleon and a pion-nucleon pair, which depend on the amplitude for meson photoproduction on nucleons.
The low-energy limit theorem provides an important tool for estimating the subtractions required in the
dispersion relations.

It is hoped that the representation will be accurate for barycentric photon energies up to approximately
300 Mev.

I. INTRODUCTION

'HE possibility of much improved accuracy in
photon scattering experiments, ' especially in the

energy region just below the pion nucleon 3,3 resonance,
and the failure of present theories' to account fully for
the experimental data suggest that it would be useful
to analyze the problem of photon scattering on nucleons
in some detail. To this end we have used the Mandel-
stam representation to set up 6xed-angle dispersion
relations for the photon-nucleon scattering amplitudes.
We work to second order in the electromagnetic coupling
constant, so that the jump on the right-hand cut of the
dispersion relations will not contain directly the Comp-
ton scattering amplitudes. This being so, there is no
advantage in writing dispersion relations for the partial
wave or multipole amplitudes, since one does not end

up with integral equations. On the other hand, the
position of the cuts with respect to the region under
investigation is strongly dependent on the scattering
angle so that a comparison of the energy dependence of
the amplitudes at different angles will provide us with
some knowledge of those portions of the cuts which we
cannot evaluate directly.

On the left-hand cut we shall include the effects of
one- and two-pion exchange. The importance of the
former, which leads to a pole whose residue is closely
related to the m —+ 2p decay lifetime, has been realized
for some time. ' A disagreement as to the relative sign
of this term, is, we believe, finally settled.

The two-pion contribution, on the other hand, has
been completely ignored up to the present. Because of
the boson nature of the photons it turns out that only

*This work was supported in part by a grant from the U. S.
Air Force, European OKce, Air Research and Development
Command.

t Now at CERN, Geneva.
' G. Bernadini, A. O. Hanson, A. C. Odian, T. Yamagata, L. B.

Auerbach, and I. Filosofo, Nuovo cimento 18, 1203 (1960).
' M. Jacob and J. Mathews, Phys. Rev. 117, 854 {1960).

an isotopic spin-zero two-pion state is possible. Not
much is known about the T=O m-x interaction though
Hamilton ef ul. ' (in their study of ~-X scattering) find
evidence for a very strong interaction. On the other
hand, recent experiments, ' which yield a measure of the
~r-~ c.m. correlation in pion production, do not show any
evidence of a T=O resonance or strong interaction. It
is therefore of added interest to see whether a suitably
chosen s-wave interaction is able to improve the agree-
ment between theory and experiment in nucleon Comp-
ton scattering.

On the right-hand cut we consider one-nucleon and
pion-nucleon exchange. The former leads to Born terms
analogous to the usual second order Compton scattering
amplitude. For the latter we require a knowledge of the
meson photoproduction process, which we hope to take
from experiment. At present the data are not quite good
enough to allow an accurate multipole analysis but we

hope that this situation will soon improve.
The spins of the nucleon and the photon add enor-

mously to the complexity of the problem, so we shall
be content, in the present paper, to set up the formalism
and leave the actual numerical calculation for a future
publication.

Section II contains the kinematics of the problem,
and the spin and isospin decomposition of the scattering
amplitude. The helicity expansions for the pS' —+ pS
and )VX —+ yy processes are given, and expressions for
various experimentally measurable quantities are noted.

In Sec. III we introduce the Mandelstam representa-
tion and use it to set up fixed-angle dispersion relations
for the yÃ —+ yÃ process.

Section IV uses the unitarity condition to calculate
the weight functions required in the dispersion relations,

' J. Hamilton, P. Menotti, T. D. Spearman, and W. S. Wool-
cock, University College, London (to be published).

4 A. Abrashian, N. E. Booth, and K. M. Crowse, Phys. Rev.
Letters 7, 35 (1961). For references see V. DeAlfaro and B.
Vitale, Phys. Rev. Letters 7, 72 (1961).
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where W is the total barycentric energy, p and 8 are
the magnitude of the barycentric 3-momentum and
scattering angle, respectively. Note that

p = (s—m')/2+s,

(s m—')'+2st (2.3)
cosg=

(s—m')'

In the barycentric system of channel III we have
similarly

Fzo. 1. Channels I and III of the two-nucleon,
two-photon problem.

s= —2)r' —m' —2)r cos)P (8'+m')-*',

8= —2)r' —m'+ 21' cos)P ()r'+m') i

t=4k'= 4(~'+m'),
(2.4)

II. KINEMATICS

a. Processes Considered

We shall consider simultaneously the three processes

yr+Ni ~ ys+Ns (Channel I)
ys+Ni ~ yr+Ns (Channel II)
N,+¹~ y,+ps (Channel III),

where Ni, Ns, yi, ys have incoming 4-momenta pi, ps,
ki, k&, respectively (Fig. 1.) Conservation of energy-
momentum implies that all scalars may be expressed in
terms of the three variables'.

s= —(p,+ki)',
8= —(Pr+ks)',

(pl+ p2)

(2.1)

which satisfy the mass-shell condition $+8+t=2m
(m being the nucleon mass).

For the barycentric system of channel I, we have

s—gr& = ((ps+.ms) ~2 / p]&

8= —2P'(1+cos8)+ L(P'+ m') l—P]'
t= —2p'(1 —cos8),

(2.2)

'M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433
(1954); F. E. Low, Phys. Rev. 96, 1428 (1954).

'In our metric, e b=a b —u050. We are also working in the
system of units k=c=1.

in terms of the amplitudes for the processes

y+N —+ N,

7+N ~ w+N,

N+N +w' —+ y—+y,
N+N —+ 2w —+ y+y.

In Sec. V the low-energy limit theorem' for photon
scattering is used to estimate the subtractions required
in the dispersion relations.

Section VI contains the conclusions, and in the Ap-
pendix can be found some of the less palatable aspects
of the unitarity calculations.

where x is the momentum of the initial nucleon and k
that of the final photon, )P is the scattering angle, and

cos)p= (8—s)jP(t 4m—)g'. (2.5)

S=1+iR, (2.6)

where R is related to the Feynman amplitude F by

R=m(2w) '(4prspsskrpkss) 5(pi+p +s]k+ k)sF. (2.7)

Since Ii is bilinear in the photon polarization vectors
we may write, in channel I:

(ysN, (F~yrNi)= es) us( —p2)F„„u,(p,)ei„, (2.8)

where ej, e2 are the polarization vectors of y~, y2 and
u&, N2 are the initial and 6nal Dirac spinors which
satisfy

(iy p;+m)u;=0, j 1, 2=(not summed).

Neglecting for the moment the charge degrees of
freedom, an inspection of the possible spin and polariza-
tion states reveals that six independent amplitudes are
necessary to describe the process. The form of these
as required by the principles of Lorentz and gauge in-
variance, parity invariance, and charge-conjugation in-
variance has been fully analyzed by Prange. 7 He
shows that F„„may be written in the form:

I'„'I'„' Ã„S,
F))„=A i($)t)8) +As($)t)s)

I"2 g2

(P„'N, P,'N„)ips—
+A s($)t)8)

(P"N') '*

I'„'I'„'iy E N„S„iy.E
+A4(s, t, s) +A s(s, t,8)

P/2

(P„'N, P,.'N„)iysiy E-
+A s(s, t,8) . (2.9)

(P"Ns)'
) R. E. Prange, Phys. Rev. 110, 240 (1958).

b. Decomposition of the 8 Matrix

The 5 matrix for the process may be written in the
form
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We write this for brevity as

6

F„„=g A;(s, t,a)F„„&'~.

In terms of the A;, the cross section is given by

ldo. zzzs p'
(2.10) —= 2+—$1—cos87 ~(~Az~'+ [As[')

dQ 6''8 m' )

A, =A, sI+A;vrs. (2.11)

Thus the amplitudes for y-proton and y-neutron
scattering are given, respectively, by

A, p A,s+A.v

An As Av (2.12)

Here P„'=P„(P—K)/K'Kp, P„=—', (pz„—ps„), K„
s (~lp ~2p)y +p= eppppP KpQ ~ Qp=kgp+kzp& and we

«@me' (P"X')I=—(zzz' —s8) in utt channels.
Prange, in fact, did not normalize his momentum

variables, as we have done, but we find that this is
necessary in order that the A; should have the correct
analyticity properties. '

The charge degrees of freedom can be incorporated
by writing each A; in the form

2p' 2Wp'
+ (1—cos8)

i
A s i

'— (ppi —cos87 —W)
5$ m'

2W'p'(1+ cos8)
X(/A4f'+/As/')+ ]As/'

2zzz' —2W'+ 2p'(1 —cos8)
Re(A zA 4*+A sA se)

(2.17a)

It is also feasible to measure the recoil nucleon po-
larization P (in the direction perpendicular to the plane
of scattering). For unpolarized incoming beam and
target we have:

do Ep sin8
P = —Im(AtA4*+AsAs*). (2.17b)

dQ 32mB'm'
c. Crossing Properties

More exhaustive calculations of such polarization for-
G-eneralized crossing symmetry tells us that the mulas have recently been published by Frolov. "

amplitudes for the processes in channels II and III are
given by e. Spin and Helicity Amplitudes

(%Ps IF I V&1)= er zzs( pz)Fppll(pl)ezpi

(v172~ F
~
+1+2) ezra ~2(pz)Fpvzzl(pl) erp',

where the F„„are the same functions but evaluated in
each case in the region of the variables corresponding
to the particular physical process involved. Since the
amplitude is invariant in going from channel I to
channel II, i.e., under the interchange of initial and final
photons, we find that

It is often useful to consider the scattering amplitude
as a matrix taken between Pauli spinors rather than
Dirac spinors. We can then write, in Channel I(')
(suppressing spinors),

(yz+sl T IVB'z)=gzer e2+gsp ' elp' e2

+gzze'e1Xe2+g4el ezz&'pX p
+gs(P ezze. ezXP —P ezze. ezXP')

+gs(P'. erze esXP' —P ezie. ezXP), (2.18)

with
A; (s,t, 8) = zt; A, (B,t,s)

rt;=+1 for i=1, 2, 3, 6,
for i=4, 5.

(2.14)

where p and p' are initial and final barycentric nucleon
3-momenta, respectively. By writing an explicit repre-
sentation for the Dirac spinors in terms of the Pauli
spinors, we can express the g, in terms of the A;, giving:

d. Experimental Quantities

In channel I, the differential cross section may be
written in the form:

Szrgz =—(CzA s+CzA s),

d /dn=P [(~,X, ) T)~,X,) ]s, (2.15)
Szrgz= LCz(Az+cos8As)+Cs(A4+cos8As)7,8' sin'8

where the scattering amplitude T is related to Ii by

T= (zzz/4 W)F, (2.16)

' This is to ensure that F&3) and F&') have the correct generalized
crossing properties.' A. C. Hearn, Nnovo cirnento 21, 333 (1961).

and Q represents an average over initial and a sum
over final spins and polarizations.

E—m
Szrgs

—— L(A z+cos8A s)+ (zpz+ W) (A 4+cos8A s)78"
2p

+—(As+ WAs),8'
E—5$

Szrg4= LAs+ (zzz+W)As7,

M G. V. Frolov, Soviet Physics JETP 12, 12"/7 (1961).
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E—m
Sxg5=—8' sin'|It

Xcos0t (At+cos0As)+(m+W)(A4+cos8As)]

as follows:

4,=(-,'1~ 2'~-'1)= —P(m+1)4 .. ,.&Z; =;~(0),
2p J

((1+cos0)As—W(1—cos0)As],
8"sin'8

E—ns
gags —— $(At+cos8As)+(m+W) (A4+cos8As)]8' sin'g

+ L(1+cos0)As+ W(1—cos0)As]. (2.19)5' sin'8

Here E is the barycentric nucleon energy (E'=p'+~'),
and Ct= (E+m) —(E—m) cos0, Cs ——(E+m) (nz —W)
—(E—m) (m+W) cos0.

Previous work' " on this problem has analyzed the
process in terms of such Pauli spinor forms. A simple
description is however possible in terms of the Jacob
and Wick helicity states. "The process is completely
speci6ed in channel I by six independent amplitudes
of the type

('A~as ) T
) X~tXt))

where ~XN,X;) represents a state with nucleon helicity
X&; and photon helicity );.These six amplitudes can be
expanded in terms of partial wave helicity amplitudes

1
4' = (l —1l 2'l l1)=—&(»+1)4'-. — d--:,— (0),

2p
(2.20)

1
44=(—s1I2'Is1)=—2(»+1)4-:,-- d--:,— (0),

2p z

4's=(—-', 1~ &~ ——', 1)=—P(2J+1)4*,, ; d ,*; (0),
2p J

Cs=(-', —1~ &~ ——,'1)=—Q(2J+1)4,*,—; d —;,—;'(0).
2p

The properties of the reduced rotation matrices
dqq. ~(0) are given in reference 10. The partial wave
helicity amplitude Cy), ~ is a subamplitude of the R
operator, and describes a transition from a state
of helicity X=(XN&—)I, &) and total angular momen-
tum J to a state of helicity X' and total angular
momentum J.

By writing explicit representations for the spinors
involved, we may relate the 4; to the A;, giving

and, alternatively,

S~WC, =cos(0/2)(m(A, —A &)
—W'p(A, —A4) —2pWA, ]&

SaWC s= —sin(0/2) I E(A &+A &) ~p(A 4+As) —2pA, ],
SaWC s

——cos (0/2) Pm (A t+A s) —W'p (A 4+A s) ],
Sa.W44 ———sin(8/2) t E(As —A,) nzp(As——A4)],
S7r W'4 s= cos(0/2) pm(As —A q)

—Wp(As —A4)+2pWAs],
SaWC s = sin(0/2) $E (A g+A s) —mp(A 4+A s)+2pA s],

2Ã m 8'
Ag=- (Ct—24s+Cs)+ (4s+2C4 —Cs)

p cos(0/2) sin (0/2)

27' sz 8'
A2= —— (Cq+24s+Cs)+ (4s—244—Cs)

p cos(0/2) sin(8/2)

2m 8"
A, = (4,+4,),

P sin(0/2)

2m E 5$
A 4 (@1 24'3+4's) + (4's+ 24 4

—4'2)
P' cos(0/2) sin (0/2)

2' E m
As ———— (4 t+24 3+4 s)+ (4 s—24 4

—4 s)
p' cos(0/2) sin (8/2)

2'

(2.21)

(2.22)

A6 ——— (4's —4 i).
p cos(0/2)

"L.I. Lapidus and Chou Kuang-Chao, Soviet Physics JETP, 10, 1213 (1960) and 11, 147 (1960), and Dubna (to be published),
's M. Jacob and G, C. Wick, Ann. Phys. 7, 404 (1959),
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ma be described by the amplitudesl III. There the process may be descri e ya be made in channeA
'

ilar helicity analysis may

P (21+1)Roo'doo'(4),aR =(1t; 1 —1IRI; —',-', )=

g(2J+1)R„,'d„s(P),m, =(k;11IRI~;—,'-,' =

Z(2~+1)Roo-'doo'(4),%to ——(k; —1 —1IRIx; g-,')=

P (27+1)Riosdios (P),m, =(1;1—1. IRI; —, —-,')=
(2.23)

P(2J+1)Ri osdi os(P),m=(k'-11IRI"" ')=2
(k )k,

2 (2~+1)Rio+'dio'(0),mr, =(k;11IRIx;-,'—,

the BR; and the A; isand the relation between the

16ir'k'5K, = ~(A,—Ai)+km cm cos&(A4 —Ao),
=~(A o+A,)—km cosP (A 4+A o)+2kA o,

167rok'ORo ——~(Ao+Ai) —km cosP A4 o
—

o,

16ir'k5R4 ——
sinPL (A 4

—A o) k—2~A o,
16ir'kmro ——sinPL(A4 —A o)k+2~A o,

167r'5Ro = —sing (A 4+A o). (2.24)

AM REPRESENTATIONIII. THE MANDELSTA

Ke assume now thathat eac otha h f the six functions A;(s, t, B)
'

n of the formM delstam representation osatisfies a an e s

A;(s, t, a)

1
+

Es—m' s—m') t—tio

X;(s',s')

(s' —s) (s' —8)(m+tt) (m+ p) ~

(»)dt'
'—-i'

(~t )'

efined in 2.14) and wherewhere it, is define in

(3.2)X;(8',s') = it;X, (s', s').

in ' the electromagneticin to order e in
~ ~

n w d in (3 1) cuts ansingnt we have neglecte in
ban e. Kith t is res

th t th A h thh. n perturbation theory, t a

(31) lib d f~ dThe question of subtractions in
until Sec. V.

For brevity we shall write

+ I+
g—m s—m

(3.3)

A '"(s,t, s)
—=ImA;(s, t,s) fol t«~ 4p, ,

p;(s', t)
/ +

S S 7l
f

m+ p)

p, (s', t)
d8

s —s
(3.5)

h the general identificationFrom these we ave e

A i(x,y)=—

and
1

A,iii(x y

&;(s',x) 1 p, (x,t')

8' —s(x) m 4„* t' y-+t )'

for x& (m+p)', (3.6

1

.-(.)&~+a) '

for y&~ 4'. (3.7)

for the pole terms
'
in 3.1).

mass causes the'" ''"""'"""'pe hoton has zero rn
"pole" terms o at have certain unusua ea
will be discussed in Sec

h
'

us channels From
condition will a ow us

imaginary parts of the; '
h

'
us ceA in the various c

(3.1 we see that

A ' s t 8 =—ImA;(s, t,s) for s~&(m+p)',
/

X,(s',s) 1 p, (s,t

8 —s 7/ 4@~
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By B(x) we mean B expressed as a function of s with
s —+x, i.e.,

St
(A) e =O' '

S PLANE

1
B (x) =—[m4 —-', (x—m')'(1+ cos8)],

and we shall analogously use

(3.8)
= (m+2@)

m (m+y) (m+2p
-" (m+y)

=So

(x—m')'
t (x)= — (1—cos8). (3.9) t ~ Qpz~t - 4pl

(8) O =S7'

Note that crossing symmetry implies

A,"(x,y) = rt,A;r (B[x],y). (3.10)

Ke wish now to separate in (3.1) the terms contribut-
ing solely to the right-hand cut. There are many ways
to do this, the most direct being to expand the double
denominators in (3.1) into partial fractions. After some
manipulation we obtain the representation at fixed
angle 0, in the form"

A;(s, cos8)

~ S = (mi2y)

~Y s(m+u)

o ts

0
m

(C) 9 "-180

~Sa
(m'p ) (m 2p)

A '(s', t (s'))=P;+ ds'—
(z)t+tt) S S

4':(~)z

S-( )

t'= 9pz
t' = 4yZ

et -"y
oz
m (m yfO

(m+ 2y)

dB
B+(B')—s-(B')

B+(B') ~-
s', t

s(1+cos8)—s+(B') 1+cos8)

s (s') —
B (s') )-

Ai s', t
s(1+cos8)—B (s') 1+cos8)

t+(t )2
dt'

z- 4„ t+(t') —t (t') s(1—cos8) —t+(t')

where

.yg .III
t-(t )

tt'

1—cosa

— t (t') — t (t')
yg .III

1—cos8 s(1—cos8)—t (t')

(3.11)

FIG. 2. The singularities of the scattering amplitudes plotted
in the s plane for various values of 8.

of a meson-nucleon pair and for t'&~9p,' corresponding
two-pion exchange we must, as usual, rely upon the
philosophy of the importance of the nearest singularities.
To see the situation more clearly we may consider all
the integrations in (3.11) transformed to the s plane.
Figure 2 shows the integration contours in the s plane
for various values of 0. The position of the pole terms is
also indicated. The right-hand cut, s ~& (m+p)s comes
from the first integral in (3.11). The second integral
contributes along the cuts

t~(t') =m'(1 —cos8) —t'

&{[m'(1 —cos8) —t']' —m4(1 —cos8)') &

and

B~ (B') =m'(1+ cos8) —B'

&( [m'(1+ cos8) —B']'+m sin'8) '* (3.12)

and

where

—oo &~s&~S (cos8),

0&~s& S+(cos8),

S~(cos8)= B~[(m+p)'].
1+cos8

(3.13)

Since we shall only be able to evaluate the integrals
in (3.11)for a very small part of their integration ranges,
i.e., for s', B'& (m+2@)' corresponding to the exchange

r' There appear in (3.11) a number oi spurious singularities.
These have arisen purely from the partial fraction decomposition
and always combine to give finite results.

In the third integral, if

4p') 2m'(1 —cos8),

then the cut runs along

—~ & s& V' (cos8),
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and

with
v+(cos8) ~& s&0,

9'~(cos8) = t~(4p'),
1—cose

(3.14)

but if 4p, '&2m'(1 —cos8), then the contour lies along

—ao (g(~0

and along the circle Is l =m' up to the points

Re(s) =m' 4p—s/(1 co—s8),
(3.15)

Im(s) = W (nz' (R—e(s))')l.

It is seen that the effect of the two-pion exchange on
the circle increases towards backward angles. However
the pion-pion interaction also makes itself felt in the
other cuts through its effect on meson photoproduction,
so that if we were to utilize for A; its analytical ex-
pression as derived from the theory of meson photo-
production" it would contain parameters describing the
J= 1, T= 1 x-m interaction and possible J= 1, 7=0 3z
effects. Since we already have to contend, on the circle
cut, with parameters describing a T=O x-x interaction
the total number of parameters in the theory would be
too large to allow a reasonable comparison with the
present experimental situation.

We shall therefore assume in the following that the
2,' can be obtained from experiment, '5 so that the xm
interaction appears exp/icitly only on the circle cut.

If we look at the second integral of Eq. (3.11) we see
that we need to know Art(s', t) for values Ii' &~(m+y)s
and t=tLs+(s')/(1+cos8) j. Examination shows that
for the (+) sign the values of t, for all s' required, corre-
spond to physical values of the scattering angle in
channel II, so that a partial wave expansion is per-
missible. The (—) values on the other hand correspond

to unphysical channel II scattering. In any case, the
(—) values contribute only to the left of the origin in
the s plane, and may be disregarded in terms of the
"nearest singularity" philosophy.

Similarly, for the third integral of (3.11) one requires
Ap'(s, t') for values t'&~4p sand s=t~(t')/(1 —cos8).
Let us describe points lying on the circle cut by s
=m'e'". Then Fig. 3 shows the maximum values of n,
and its corresponding t' value, for which the Legendre
expansion channel III converges, for various 8. The
fact that the region of convergence is extremely small
for low values of 0 is not very serious because, as dis-
cussed earlier, the distance of the 2x cut from the physi-
cal region increases with decreasing 8 so that our in-
ability to feed in the 2x sects should not be important
at these angles.

Also even where the Legendre expansion does con-
verge for fairly large values of t,' we can in any case
only handle the 2& effects accurately up to t=9p', the
3x threshold. We hope therefore that the restrictions
resulting from the Legendre expansion convergence re-
quirements do not seriously weaken the accuracy with
which we are able to estimate the circle-cut effects.

In the next few sections we evaluate explicit expres-
sions for the 3' and Airer by means of whj
A;(s, cos8) can be calculated in (3.11).

IV. THE UNITARITY CONDITION

(1) General

The usual condition for the unitarity of the S matrix,

StS=I, (4.1)

when written in terms of the R operator leads to the
relation

s(nl~' ~I p)=Z .—(nl&'l~)(~l&lp), (42)

g
5
K

~~

IN THIS REGION

-cose )}

150

90

where the sum is over all permissible physical states v

having the same energy-momentum as n or p.
Since the invariants F„„t'l are self-adjoint, Eq. (4.2)

with the help of Eq. (2.9) may be written as

p ImA;(s, t,s)(nlF„, to
I p)

kr'EgEJ
P (nI2VI v)(t IR.IP), (4.3)

4
10 120

I 0
150 8' 180

where E~, Ep are the c.m. energies of the photon and
nucleon in the states n or P.

FIG. 3. Curves showing the range of validity of the Legendre
polynomial expansion of the 37$'-+ 2p amplitude, for various 8.
The maximum values of u= —s Iog(s/m') for which the expansion
converges, and their corresponding t' value are shown.

'4 M. Gourdin, D. Lurid, and A. Martin, CERN (to be pub-
lished). J. S. Ball, Phys. Rev. 124, 2014 (1961).

'~ This is discussed fully in Sec. IV.

(2) Channel I
For this channel we expand the right-hand side of

(4.3) in terms of the mass exchange and the electro-
magnetic coupling keeping as intermediate states only
the one-nucleon (Born) term and the pion-nucleon term,
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so that

r.; ~;*(,~,~)(~.~.IF.."'l~.~.)
~Q (yzÃzlRtlA)(1VIRlyzEz)

yP (y2/z I
Rt

I
zrIV)(zrlV

I
R

I yzzz)+ ~ ~ ~ . (4.4)

By expressing the right-hand side of (4.4) in terms
of the invariants F„,"') we are able to identify the con-
tributions to the Azr (s,t, 8).

Let us consider first the Born terms. The matrix
element (KIRI»1V&) is essentially the photon-nucleon
vertex and can be written

(P"
I
R

I Pz&z) = — „,«(P")
2 (~po"pro»0)'*

XLFz(p)y. —Fz(p)~„g,j«(pz) ~z„(4.5)

where E&'~ and F2 are the usual nucleon form factors
normalized so that

s=tpP and 8= m&, i.e., s =m' —$. (4 9)

For t=0, however, only A4 and 35 have poles" at
s=ns' while the amplitudes with even crossing sym-
metry, A~, 2, 3, 6 are finite there.

On the other hand, if one is interested in the 3; as
functions of s and coso, then for al/ finite coso, s ~m'
implies 8 —+eP so that for A] 9 3 6 the poles at s=m'
and 8=m' cancel out.

It follows then that the Channels I and II contribu-
tion to P; of (3.11) is given by

However, as was mentioned earlier, the vanishing
of the photon mass causes certain unusual features to
appear in the Born terms. So long as we consider A, (s, t)
as a function of the imdepezzdezzt variables s and t, with
)&0, then all the above is valid and there are poles in
the A, (s,t) at

Fz—=Fz(0) =-(I+rz)
2 and

(cos8—1)R;

2zzz'+ (1+cos8) (s—m')
for i= 1, 2, 3, 6,

I
Py +Pa Py Pn

F2=—Fz(0)= I+
2

73) (4.6) F, R,
2 (1—cos8)

s—zN' 2zzz'+ (1+cos8)(s—zzz')

In terms of e and p, these are:

Rz= zzze'(I+ rz),

R2=0,

Rz —weep~(I+ rz), —
R4= ——,'ez(I+ z.l),
R =2zzz'Q '(I+z8)+p, '(I—z.z)j
R6= —em«„(I+ z-z),

(4.8)

where p„=p„'+e/2m is the full proton magnetic
moment.

with p~', p„ the anomalous proton and neutron mag-
netic moments, and where g= p"—pz is the momentum
transfer in the intermediate channel.

Substituting Eq. (4.5) into Eq. (4.4), carrying out
the sum over intermediate spin states and the integra-
tion over the momentum of the intermediate state, and
expanding into the invariants P„„&'),we obtain for the
Born terms

A;r&= zrP, (zzz/—W) 8 (s zzz'), —
with

Pz 2zzzFzz, —— Pz=0,

Pz= zzzFz(Fr+ 2zzzFz), P4= Fz, —
Pg= (Fg+2zNFz)' Pz= —Fz(Fz+2zzzFz).

It follows then that the R; of (3.3) are given by

R,=,.

for z =4, 5. (4.10)

It is interesting to note that if one uses the reduction
formula to calculate (y2XzlRt —RlyzXz), then the
cancellation of the poles at s=m' occurs automatically
in the unitarity expression, for even-crossing ampli-
tudes. For one has then that

(p,u, IR&—Rl p,u, )

—2- (pz, —&4
I
R'l p")(p"

I
R

I pz —&z»4(p" —pz+&z)
(4.11)

The second term, which arises from the commutator
of the current operators, is usually zero in the region
where the first term contributes, since the regions in
which the arguments of the two 8 functions vanish, are
mutually exclusive. The vanishing of the photon mass,
however, causes these two regions to touch at s= m', for
finite cos0, and if one then calculates the Born term
contribution to the ImA, (s, cos8) from (4.11) one is
left with just the 8 function of 2m'+ (1+cos8) (s—zzzz)

for i= 1, 2, 3, 6, and (4.10) follows immediately.
In order to calculate the second term of (4.4)

we have to know the matrix elements for pion
photoproduction.

The intermediate channel process yz+1Vz —+zr+1V
may be described in terms of four independent helicity

'6 She invariants F&4& and F&') vanish at this point, and so the
quantities A4F& & and A~F&5~ remain bounded.
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amplitudes, namely

pi=(-2, IPI21)= Q(2J+1)4;, d; (0),
2(pq)' ~

0 =(—ll4ll1)=, Z(2~+1)0 :, -~ : -(0—),
2(Pq)' ~

1
A= (2 I It I

—l1)=,&(»+1)y *, d-:-.'(t)-),-
2(Pq)' &

where q is the magnitude of the intermediate channel
barycentric 3-momentum, and the scattering amplitude
()rA I)PlvcV) is related to the cross section for photo-
production by

d~/dII= (q/p) 2 I
(~&I4 I v&) I' (4 13)

The evaluation of the unitarity equation for the two-
particle intermediate state is simplified immensely by
the fact that only the low partial waves from the inter-
mediate channel process are large for low energies. If
we therefore expand both sides of the unitarity equa-
tion in terms of the relevant helicity subamplitudes

rather than in terms of the invariant amplitudes F„„~'&,
the orthogonality properties of the d functions may be
used to integrate the equation immediately, yielding

Imc), ),
~=

2 Q Ai)r~)p), ),„~". (4.14)
)) N=k$

If we now retain only the J=~ and J=~ partial
waves, which should be sufficient for energies up to 300
Mev at least, then the imaginary part of each C; may
be written in the form:

1
Imc';= —[(pi,;@i . **+Pi, ;**1t),- *)(E),x '(0)

2

+2(4)„*A,— *+)P)„A,- )di), '(0)j. (4.1&)

So far, we have neglected the isotopic spin depend-
ence of the )P;. The analysis of Watson'2 shows that an
amplitude for photoproduction may be written in the
form:

Itis '=A~ "+)&t)(+)+It),i„")&p( '

+It)i &(P)yp(o) (4 16)

with P the isotopic spin index of the pion, and

y (+)=g y (—)=i[r r j y (o)=z

Hence

)Pix)r 4'x'xpr (4'xxor )P&'k)r +24'xx)r 4')'x)r +8')xN Vx'A)r )I
+(P)x "+'Itx x '"'"+4xx '"'4), "+'" 26 N" 'It—~ ~'"' 24m„'"'P)—)~" ') 2 (4.17)

Finally we can relate the helicity partial wave amplitudes to the multipole amplitudes E&~, M&~ defined by Chew,
Goldberger, I.ow, and Nambu. "A straightforward comparison reveals that

where J=l+-2'.

0'-:,I = (Pq/2)'[t(~)+ ~«+i)-)+ (I+2) (~~+~((+2)-))
=(pq/2) '*[(=I+2)(&4-—~()+i)-)+I(~)++&()+i)-)3,

~t —:,— = (Pq/2) '[I(I+2)3*'[—&i++~)+—&()+i)-—~()+i)-3
0--:,— = (Pq/2) '[t(t+2) 3'ÃH. —le H-

—&«+i)-—~«+i)-l,

(4.18)

Our program of calculation in this channel is now
straightforward. For suitable values of the multipole
amplitudes we use (4.18) and (4.17) to compute the
values of the )P,~, and then by (4.15) the values of
ImC;. By Eq. (2.22) we now find A r which can be sub-
stituted into the first and second integrals of Eq. (3.11).

(3) Channel III
In this channel we are dealing with the process of

nucleon antinucleon annihilation into two photons,
and on the right-hand side of Eq. (4.3) we keep only
the one- and two-pion intermediate states, so that

6

g A "(s,t,s)(viv2I ppp IA 1¹)
2 (vivpl &'I ~)(~l ~l &i&2)

yp (V,vp I
gt

I
or,prs)(ir, pr2

I
g

I /, ~2)+ ~, (4.19)

where again the right-hand side must be expanded into

—ip))g(t)
( (q)IRIS ¹)= (P )v (P ), (4 2o)

2)rI(pip psoqo)'

With g'()is)/42r =gs/42r 14, and

(vivsl &'l~(q))

P()
pip e2p epppp(kl+k2) p(kl k2) pq (4'21)

82rl (kipkppqp) &

i' K. M. Watson, Phys. Rev. 95, 228 (1954).
~8 G. Chew, M. j . Goldberger, F.E.Low, and Y. Nambu, Phys.

Rev. 106, 1345 (1957).

the invariants F„„("so as to identify the contributions
to the A.xir

Consider 6rst the one-pion terms. This depends on
the pion-nucleon vertex (prlRIX)¹), and the matrix
element (viv2 I

Rt
I pr) for prp ~ 2V decay.

For these we may write
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2 6»2IR'I2~)(2~IRI&&&

where F(t) is the function introduced by Goldberger tion as was done in channel I. We obtain then
and Treiman" in their study of neutral pion decay. It
is normalized so that

F(t ') =F=—g(~—lt 2'~)', (4.22)

~po2g~
IIII' t1(+ 2 t)

2

(4.23)

From (4.22) and (4.23) one sees that the r, of Eq.
(3.3) are given by (including isotopic spin)

r;=0 for i&3,
r2= —4g (2rt12/2-) &r 2.

(4.24)

There has recently been some controversy' " about
the relative sign of the one-m and one-nucleon Born
terms. Our determination, Eqs. (4.24), (5.6), (4.8),
(5.5), and (2.17) shows that the inclusion of the one-2r

term tends to increase the differential cross section in
channel I in agreement with I.apidus and Chou
Kuang-Chao. 2o

However, our Born terms" differ from the usually
quoted results in that they contain as numerators only
residnes of functions taken at the pole. The difference
depends purely on the question of the subtractions re-
quired in the dispersion relation and is discussed under
the section on the low-energy limit.

Let us now evaluate the two-2r contribution to (4.19).
We shall work in the c.m. of channel III, in which the
pions have momentum q, —q, and energy u = (q'+p2)'.
The kinematics of the photons and nucleons are given
in (2.4).

The sum over intermediate states in (4.19) can be
simplified to yield

+(y» 2 I
R'

I 22r&(22r
I
R

I
&&&

where v. is the x' —+ 2p decay lifetime.
Putting (4.20) and (4.21) into (4.19) and carrying

out the integration over the intermediate state mo-
mentum, one obtains for the one-pion contributions to
g,III .

A;"'&=0 for i/3,

2 1
2 (1+2)RI~Iu'RI I'*dI'(4), (4 26)

2rt' (kII)»-o

with X=)~—Ag and p=A~ —X2. The amplitudes R&,~) „-,
Epy$2 are the helicity amplitudes, "i.e., the matrix ele-
ments in a representation in which the energy, total
angular momentum, and helicity are diagonal, for the
processes

and
E), +PI„-+n. (q)-+Ir( —q),

VI„+VI„~~(q)+~(—q),

respectively.
In practice it turns out most useful to utilize a com-

bination of Eqs. (4.25) and (4.26). The reason for this
is that for the processes involved, e.g. , XE +22r onl—y
the lowest few partial waves may be large, suggesting
the usefulness of (4.26). On the other hand, there are
usually terms, e.g., the Born terms in XX—+ 22r (and
in general the left-hand cut of the process considered).
which contribute small amounts to a very large number
of waves, and these are most simply handled by (4.25).

I.et us assume therefore that we can split R into two
parts

R=RI+ N. , (4.27)

Z (~+2)R~~Iu'R~ ~"d"'(4)

&max

—Z (~+2)R&wI+ RI14 dIy 9')

+ g (J+-,')61 „„-'61„„'*d,„'(y)
&max

in which 8& contributes only to the largest waves, i.e.,
those for which the right-hand cut is essential to satisfy
unitarity. I et us suppose that the highest wave which
need be included in EI is J=J . We have then

= 22
I t(t—4tI') jl (q I

R
I y»2&*(q I RI Nx&dQ„(4. 25)

where the integration is over the solid angle of q. An
alternative expression is obtained if we substitute for
each of the matrix elements their expansions into
helicity amplitudes and carry out the angular integra-

» M. L. Goldberger and S. B.Treiman, Nuovo cimento 9, 451
(1958).

'0 This is, of course, assuming that the addition of the dispersion
integral estimates to the channel I and II Born terms does not
change their over-all sign. This has been verified by previous calcu-
lations. ' "We are, of course, also assuming that the Goldberger-
Treiman determination of the sign gF is correct.

"This applies also to the one-nucleon Born terms of channel I
and II.

~max

= 2 (&+2)(R)~Ig~K, I,~*—@~N)g~@)„I,~')d), „~(P)

2rt(k1I) l(t —4t12)1
+

16

X«lstl»&df~, . (4»)

Since not enough is known about the SX—+ 2m and
y+y —+ 22r processes to determine J, , we shall tenta-
tively assume that only the s wave is large (the p wave
is forbidden), though d and higher waves can ea.sily
be incorporated.
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Kith this assumption, then, we have finally

2 (»»I&tl2~&(2~I~I»&

(%+kg Kg& 2 (RA+XQ @Xgh2 )All (il )
7rt*'(ka)1

+sLt(t —4t ')3' «I &l»~ )*

x(ql &l»&df)'' (4»)
Ke must now introduce some information about the

EX—+ 2m and y+y ~ 2~ matrix elements.
In our normalization we have for the 6rst process

(2m. lRI»&= (—m/8m'k')(2~ lr IX'), (4.30)
with

(vr. (—q)n.p(q) I rIE(—u)1V(v.))
=t&&,„-(—u)( Ap iy q—B p)u—y„( ). (4.31)

The functions 2, 8 are the usual pion-nucleon scalar
amplitudes" and are functions of the scalars

It is shown there that the two pions may only be in
a T=O or T=2 isotopic spin state. Since the nucleon-
antinucleon pair can only have T=O or 1 and isospin
is conserved in the SX—+2w process, it follows that
the process

takes place purely through the T=O ehanrtel
We shall therefore require only the T=o amplitudes

g (+) g(+) D (o) D$(o)

Carrying out the isospin sum implied in (4.29) we get,
finally,

g&~,~, lztl2 )&2 lzl»)

[&~~~g"+ &&~,~.'"'
m.t1(ka)1

—iR»-«+&61, , «o"&$d, o(P)

v3[t(t —4u') jl
8

t =4k'= 4 (~'+m')

s„=—(x—q)', (4.32)
x(ql (R+ I&»& d(.1, (4»)

8„=—(x+q)',

which are, respectively, the squares of the c.m. energy
and momentum transfers in the EX—+ 2+ process.

The isotopic spin decomposition is

A p=A&+&ti p+~A& &[r,rp] .(4.33)

For the process yt+y~-+ 2m. we refer to the work of
Martin and Gourdin. 23

The transition amplitude may be written

(~-(—q)~p(q) I&let( k)v (k))

(D,I,+D&Ig),p. (4.34)
48m'k'

D, and Dq are scalar functions of the variables t and

A t+& (s„,n„,t)

1 1
o g &+& (s',t) + ds'

(m+lt) ~ s stt s —8'

t&g&+& (t', s„—e„)
dt',

(4.38)

1 ( 1 1
o.g &+& (s',t) I

— Ids'
7l O (s —sg s —s„3

and the contribution is only to the isoscalar part of the

For the functions A (+), 8 (+) we use the repre-
sentations'4

sr = —(k+ q)',

s2= —(k—q)',
(4.35) t&r&t+& (t', s„e„)—

ct'
r —t

and the invariants I, I~ contain the spin dependence
of the amplitude and are given by

Ia= ~1' &2)

II,= —8k'~&. q~2 IfI.

The isospin decomposition of the D„Dq is

D p
——2D&"8 p+D&'&(8„p —38 a8p3),

(4.36)

"G.Chew, M. L. Goldberger, F.E.Low, and Y. Nambu, Phys.
Rev. 106, 1337 (1957).

"M. Gourdin and A. Martin, Nuovo cintento 17, 224 (1960).

where D, q('), D q") are the functions introduced in
reference (23).

o I&&+&(s',t) =ng'ti(s' m')+o—»&+&(s', t).

The representation (4.38) contains pole terms, and
the cuts in s„and 8„ incorporating the mS rescattering
corrections as discussed by Chew, Goldberger, Low, and
Nambu. " These are dominated by the 3,3 resonance.
The cuts in t have been considered by Bowcock, Cot-
tingham, and Lurie. 24 They show that the dependence
of e» on s„, 8, is probably weak since the cuts in
s„, B„of oz, z only begin at (m+2')'. In other words,
for reasonable energies the last terms of (4.38) will con-

'4 J. Bowcock, W. N. Cottingham, and D. Lurid, Nuovo ci-
rnento 16, 918 (1960).
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1 or (x)dx
X— + ($1~ Ss),

m 4„~ (x—p')(x —$,) (4.42)
et+& ($„,e„,f)

tribute appreciably only to the low waves of the and define
EN —+ 2w process.

In accordance with the scheme of (4.27) we therefore X)~ "&= [2$if+ ($&—p,')')
define A =A ij(&'„etc., with

S&+&($„s„,t)

1 1 1=- .-"+&(",f),
p $ —$» $ —8»)

1 1 1
o xi+& ($',f) + Id$

(4,39)

g ~(x)dx
+— +($i~ $s).

fi —$i '&r (&i
—x) (x—$i)

We are now in a position to evaluate the integral in
(4.37). Substituting (4.38, 4.30, 4.42, and 4.34) we
have" "

For the functions D, q™'we use the representations
given in reference 23. (ilI 61Iy y )*(ifI e.

I
AJ&T)

D.&'& ($„$s,f)
1 or (x)dx

= 2e'+ [2$if+ ($ —fi') ']-
(x—fi') (x—$,)

+($i ~ $s)

p s(q~s)h 48(q~2)/ques

(4.40)
~ o (q"+f ')[4(q"+f ') —fj

D&, &'& ($&,$s,t)

t&» (—v) dQa (S,'*I,*+X)q'*Is*)
64m'k4

X[—(f, ~+& —iy tf(B&+&]u»(x). (4.43)

It is a straightforward but tedious matter to develop
the right-hand side into the invariants F„„(".Substi-
tuting (4.43) into (4.37) and (4.19), we may then
identify those parts of the A; ~ arising from the Q,

part of the matrix elements. I.et us call these 3;~"(R.

Vfe have then

2e' 1 1 ~r (x)dx+-
P, —$i 7I 4»~ (fi —x)(x—$i)

+ ($i ~ Ss)

Ar'"= (n, +n, )N',

A 2"'(R= —ngÃ,

g III(R O

A,rr'et= (cr,+a,)fV
A5"'+ =- —+3Ã, (4.44)

Besides the Born terms, Eq. (4.40) contains also the
effect of two-pion intermediate states in the reactions

and
p+ ~ -+ 2m ~ y+~,

y+y —+ 2~ —& 2~,

but cuts arising from three-pion and higher mass states
are assumed to yield a negligible dependence on the
variables concerned.

The function 0-z is just the total cross section for the
process y+~ —+ 2ir, and the simplicity of the weight

function arises from the assumption that this process
occurs mainly in the T= 1, J= 1 state.

ho~ is the s-wave, T=O, pion-pion scattering
amplitude

6L o(+)—0

1 q) 1 f'&r "'(",f)go(j3')&"
8/k gi kq (+„& (4.45)

+»& a &+&(s',&&Q, (g&ds'),
0

where 7q = —(t—4p') **/16''tl and the n, ($,t) are compli-
cated functions expressed as integrals over the er (x)
and e.g, »($') weight functions. These are given in the
appendix.

Finally, we must calculate the expression in square
brackets in (4.37).

For the .VX —+2m helicity amplitudes we have, "
for J=O,

hzs(q') = exp(i8ss) sinbse, (4.41) with
P' = ($'+x'+ q')/2xq,

and Fo is proportional to the T=0, s-wave amplitude
for y+y —+ 2~.

For a full discussion of the approximations involved

in (4.40) the reader is referred to reference 22. For our

purposes we now split D i", Dsi'& according to (4.27)

"Since we are below the threshold for the physical process
gg ~ 27f-, some care must be exercised in dealing with the opera-
tion of complex conjugation. See Eq. (3.19) of reference 26.

'6 D. Amati, E. Leader, and B. Vitale, Nuovo cimento 17, 68
(&9OO).

mr W. R. Frazer and J.R. Fulco, Phys. Rev. 117, 1603 (1960).
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and QI are the I.egendre functions of the second kind. "
Also we have

Let us de6ne

1m"+' =-(«q) '(q/«) 'f+"+'
(4.46)

~), ),-""'=~~~), ) -0(+)~),),'")*
—&x„l,„-"+'@x,l,'"'7dl, s'(4). (4.49)

&-+'"'= («q)'(q/«) 'f-'"',
where the f~~&+l are the Frazer-Fulco helicity ampli-
tudes, '7 for the ÃN —+ 2m process.

The helicity amplitudes for the pp ~ 2x process are
obtained by saturating the expression (4.34) with dif-
ferent photon helicities and then inverting the helicity
expansion of the left-hand side of (4.34). We obtain
then for J=O, T=O,

III' A III'

2w k~ **-1 4srlk
-((-++"+C~ ' ')—

«) 2 t
cot»tC +",

By inverting the channel III helicity expansion
(2.24) we obtain the contributions to A, lll arising from
the "square bracket" part of (4.37&:

tR, , (o) —6L, ,o(o) —O

(R 0 (o) —g 0 (0)
s 4

o r(x)1 pk~» 2

2V3srkqi sr 4„*x—ts'

w k~»
A,lllc

~
(( II

k «)

—8w k~»
IIIc A IIIc

~

C ll

t sing «)

(4.50)

with

(
X i

tss +kP" (t—-4ts')» iQp—(P")—k(t —4ts')» IEx
)2

g2 k k2
——(t-4") -+ 1—Q. (klq) (447)

q q2

A III|. P

A,III fA .III@+A,lllc71 (4.51)

This completes the evaluation of the two-pion ex-
change contributions to A ", i.e., we have

P"= (x+2k' its)/2kq. — with A,IIIPI and A,lllc given by (4.44) and (4.50) and
I is the unit operator in the nucleon isospace )see

The amplitudes Eq, l,,~&r' for the y+q —+ 2sr process are (2.1 1)7.
related to the partial wave amplitudes Fr" and fr"
introduced in reference (23). V. LOW-ENERGY LIMIT

]~(0) g ] y+(0)

V34r(2J+1) kk)

(J=2/, l~&0),

It is well known' that the scattering of photons on
spin-2 particles depends, to erst order in the photon
momentum, on the static charge and magnetic moment
of the target. For scattering on nucleons the result may
be written

J(0) g J(0) (4.48)

1 q)»—
~

q'tL(J —1)J(J+1)(J+2)7»fp~
v324w k)

(J=2l, l~&1).

Clearly for J=O we require to know only Ii0'. This
has been obtained by Martin and Gourdin29 by solving
an integral equation with certain assumptions about
the reasonable behavior of the +-z s-wave phase shift
bg 0 . The solution gives Fo' as a function of 80 and
or. Eqs. (4.45), (4.46), (4.47), and (4.48) furnish us
with the "square bracket" part of (4.37). It remains
only to identify the contributions to the individual A;.

' P. M. Morse and H. I'eshbach, Methods of Mathematical
Physics (McGraw-Hill Book Company, Inc. , New York, 1953),
Vol. 2.

"See Eq. (38) of reference 23. Note that Fps is there written
~o'.

FI'
+Fr

I
ps~ P(px.,)x(px.,)7

sos &2sls

Fl f'FI ) 4r'p(pxel)'es+4r"'pXelp
+Fs lip

srs &2sss ) 2

4r p'(p'Xes) el+4r p'Xesp' al

P~P2
Pi4r sixes, (5.1)

where Fl and Fs have been defined in (4.6).
After some rearrangement of the invariants in (5.1)

it is possible to identify the contributions to the g; of
(2.18) and, thence via the inverse of (2.19) to calculate
the limiting values for the A;.
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We obtain then for the limit, at fixed angle, as p —+ 0 terms yield

P 2

A i —+ (cos8—1),

A2~ 4F2(Fi+mFq),

/F&
Aa ~ Fil +F2

1
(cos0—1) 2—F2(Fi+mF2),

&2m i

F12
A i~ (cos8—1))

A 2~0,

A, P, +P,) (cosH —0,
2m

A4—+-
'ffl

(5 4)

1 F'
A4 —+ ——

Pm'
(5.2)

4m Fi
+F, l,

p 2m

F tF
A6~ 2 F2' —

l +F2 l(cos8—1)
2m (2m

Let us now see what the Born terms give us in this
limit.

Remembering that as p —+ 0

s—m'=0(p), (5.3)

we see from Eqs. (4.10), (4.8), and (3.11) that the Born

A(~ +F2 l,
p 2m i'
F,(F,

A()~——
l +Fg l(cos0 —1).

m i2m

Comparing (5.4) and (5.2) we see that only in Ai, A4,
and A5 is the correct low-energy limit guaranteed by
the Born terms. These amplitudes will therefore not
require subtractions.

For all the other amplitudes it will be necessary to
perform subtractions in $ in the fixed-angle dispersion
relations. "

The 6nal representation for the A; will then be as
follows:

(a) For i,=4, 5 the representation is given by (3.11)
with the F; given by Eqs. (4.10) and (4.8).

(b) For i=1, 2, 3, 6,

$—5$
A, (s, cos0) =S,+

A r(s', t(s')) 2));
(Es' +—(m' —s) (1+cos8)

gr ( +„)* (s' —m') (s' —s) vr

dS

~ )' s~(s') —I—(s')

s~(s')A r(s', t(s+(s')/(1+cos0)))

2
+—(m' —s) (1—cos8)

t (t')A,' '(t (t')/(1 —cos8), t')
(5.5)

Pm'(1 —cos8) —t. (t')]Ls(1—cos8) —L(t')]

s (s')A, r(s', t(s (s')/(1+cos8)))
X

Lm2(1+cos0) —s+ (s')]Ls(1+cos8) —s+(s')] Lm'(1+ cos8) —s (s') ]Ls (1+cos8)—s (s')]
1 t+(t')A, '"(t+(t')/(1 —cos0), t')

dt'
7r t+(t') —L(t')

l
m2(1 —cos8) —t+(t')]Ls(1—cos8) —t+(t')]

and the S; are given by

(s—m') sin'8R. .

S;= +A, (m', cos0),
2m'l 2m'+ (1+cos0)(s—m')]

for i=1, 2, 6 and for i =3,

(s—m') sin'0R3
5;=

2m'[2m'+ (1+cos0)(s m')]—
(s—m')'(1 —cos8)r 3

+A g(m', cos8), (5.6)
t 'E2t o s+(s—m')'(1 —cos0)]

where the R; and r, are given in (4.8) and (4.24) and
the A, (m', cos0) are given by the limiting values of
(5.2).

CONCLUSION

The formalism given in the previous sections allows
us to calculate the energy and angular dependence of
the scalar amplitudes A, (s, cos8) in so far as this depend-
ence is determined by near-lying singularities and
branch cuts. Normally one expects that distant singu-
larities will contribute a constant or very slowly vary-

~ In practice, from a computational point of view, we prefer to
make one subtraction also in A 1.
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ing energy dependence to the amplitudes. It seems, how-
ever, that in photon scattering processes the low-energy
limit theorem permits us to fix these constants theo-
retically. We therefore hope that the representation will
yield a reasonable approximation to the A;(s, cos8)
without the necessity of introducing any phenomeno-
logical parameters.

The left-hand cut, however, depends on various
quantities which are not well determined experiment-
ally, i.e., v, the x lifetime; the T=O, m~ s-wave phase
shift; and cT~, the total cross section for the process
7+~~~+~.

The right-hand cut, too, being dependent on the
meson photoproduction process, is at present not very
well determined experimentally. However, it should
soon be possible to make a fairly reliable estimate of
the contribution arising from this.

It is useful to note, too, that the recoil nucleon polari-
zation is independent of both the m lifetime and the
r=0 ~m s-wave interaction, and thus yields a direct
measure of the accuracy of the contributions from the
right-hand cut.

We hope, therefore, that improved experimental
data in the near future will allow a detailed comparison
between the dispersion relation predictions and the
experimental values for nucleon Compton scattering,
and in particular will shed some more light on the de-
tails of the mm interaction.

APPENDIX

The expansion of (4.43) into the invariants F„„&o
leads to expressions for the e; as complicated combina-
tions of integrals over the m.E and xy weight functions.

Let us define the following weight functions:

o g &+& (s', t) o r(x)
kp ——

o»&+& (s',t)or(x)
kg, g=

o r(x) 2me'

k3, 4= o ~+(s', t) — 5 (x—p')
X—p

o r (x) 2n-e'

k5, 6,7
——o»+ (s', t) — 8 (x—p')

S—p

(A1)

Then it is possible to write for the n,".
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n&
——(—Lo(s) —2tL4(s) —mt 2tLq(s)+L2(s) j)+Ls~ 8j,

8m
nq =2Ls (2m' —s—t) —m' j —L3 (s) —mLq (s) — L7 (s) +Ls ~ 8$,

t—4m'

n3= ( L& (s)+—(2s—2m +t)L2tL&(s)+L2(s) 1}—Ls ~ 81,

2s—2m'+t
n4 ——2gs(2m' —s—t) —&o&') —Le(s)+ Ls(s) —[s~ N],

(A2)

os= 2tI.Y,

where the I.; can be expressed as and let us define the following integrals

1
L,(s,t) =— ds' da E;(s',t,x)t, (s,t,s',x), (A3)

0 0

and the l; are just combinations of integrals over the
denominators occurring in the representations of
g&+i ~(+i ~ (» ~,(p)

Let us put

dQ do
d&,=

(AS)

dg ——x—sg ——x+(k+q)'=yp+2q k

d2 ——s' —8,=s'+ (x+q)'= y2+2q. x,
(A4)

q mSQ q kdQ

where
V&=x+kt P 1

+2= $ +2t &tl, BP&

(q x)'dQ
$3=

(qk)'dQ
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V/e put Xo= F~=do and de6ne

Finally we define

X =-', (d„—y2X r),

Y„=-',(8 —yr Y r), m=1, 2

qkqL 1
dQ= —x ——9g—y2Vg,

2 2

(q k)'q x
dg= —-', (y2g, +yrZr),

(A6)

(A7)

q k(q x)'
do= —', (~,a,+q2Z;)—,

i r
——p'+2(t —p')x+x',

ig=p' —x—~t.
(AS)

In terms of these functions, the l, (s,t,s', x) are given by

&o= i r8o+i 28r+2g~,

t& O', Y——,+-f,g,+2/, j„

1
4 [flXr+7r$2 72(kf2$1+g2) g (2~ s t)tl)y

(p/P

1 2 4
(m' ——,'t)XO+- X2+—(1+2u) Y2—4r}Zr,

@~2 g~2

1 4
l4 I

—~' IXO——— X2—-(1+I)Y2+2r Zr,

(A9)

1 1- ti 4 12 — ' (t
3 yP ——iXr+ X3—12r}Z3+—(1+4N)Z2 +r} 3~

—nz' Yr+—(4u —3)Yg

5" ap" 4) ~p" t

4-t tq 4 2
+-(1+2~)Y,—4.Z

6'"t k 4I p&2

1 )t 1 -4 4
tr ——

~

BI' Xr———X3——(1+3Q)Z2+35Z3 /8
~

tll' ~Yy+ —(1—u)Y3
op" 4 tp" 4)

(P"= —(s —r}t')'/t —s,

v= (2m' —2s —t)/t(P",

u = —,
'

(2nr, '—2s —t) r.

(A10)

The actual integrals in (A5) are not dii5cult to evaluate and we list their exphcit expressions:

We define
1 J2k

a(v„k}= —arctan~ —(m' —-',t}'),
k(m' —-', t) &

(A11)
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Then

d g(s, t) = 2n-a(yi, k),

~'(,t) = ( /t)(2 +t—2 ')L2 — (,k)],

8 3 (s t) (7I /t )( Lt~' (q't —r P)+—' (2s+t —2m')' (3rq2 —q't)]a(yq, k) —(yq/2t) I ~ (2s+t —2m')' —K't]),

gg(s, t) = 2n.a(72,k),

g, (s,t) = -(2s+t—2m')L2 —y2a(y2, k)],
3—4m2

v~') 72
g, (s,t) = 4t~' q'K' ——I+ ~~ (2s+t —2m2)'(3y~' —4q'~') a(y k) — L3 (2s+t —2m')' —~'t]

(t—4m')' 4i 2(t—4m')

Lastly, do(s, t) is given as follows: put

w~ ——(t/4) [(s x s'—)' —4xs']—p's'+—st 2y'm~ (x—p—') (s' —y' —m')]+m'L(p' —x) (x—s') —xm'],

w2
——(t/2 p'+ x—) (x+s—s') + (m2 —s) (p'+ x),

w3 —($'+t/2 —p~ —m2) (x—s'+m2) —(t/2 —2p2) (s+m')

w4 ——(t/2) (s' —s+m')+ (x—p') (s' —p' —m')+2p, '(s —m')
Then

(A12)

(A13)

do(s, t) = arctan —arctan
Lw~(4t '—t)]'* Lw~(4t '—t)]' I:w~(4t '—t)]'

4m (wg —w3)

for (4p' —t)wg) 0,

for (4p' —t)w~=0, (A14)

2g -w4+Lw, (t—4p')]&-
1n

I (t—4y')w ]& w4 —['w (t—4p')]&

with all arctangents defined in the range —m/2~(arctan~&m/2.

for (4p' —t)wi(Q,


