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This would be expected if, because of suppressed diffu-

sion, it were difficult for the Ii centers to escape from
the strain fields of dislocations at which they were
formed. If this hypothesis is correct, warmup to room
temperature after irradiation should cause the F band
to return to its normal width. As shown in Fig. 6, the
h band does appear to narrow during a room-tempera-
ture anneal in a manner compatible with the above dis-
cussion. It is possible, however, that subsidiary absorp-
tion bands, which lie beneath the F band, contribute to
the broadening and anneal at room temperature. It was
also observed that a section of the same heavily de-
formed crystal, when x irradiated at room temperature,
shows no excess J"-band broadening.

CONCLUSION

The optical absorption experiments performed at
various temperatures agree with the prediction of the
dislocation pinning model, developed from internal fric-
tion experiments, that edge dislocations always act as
sites for vacancy formation during x irradiation. When
the temperature is below that needed for diffusion of
F centers, and the dislocation density is of the magni-
tude ordinarily present in rock salt, the dislocations are
unable to enhance the optically observed F-center
growth rate. The transition temperature between the
passive and active role of dislocations in the generation
of color centers falls at about 250'K for NaCl.

In general, the present experiments indicate that bulk

F centers are formed at all temperatures either from
vacancies already present or by a mechanism such as
that proposed by Rabin and Klick. All aspects of the
Rabin and Klick interstitial mechanism, which is the
only effective source of additional vacancies at low
temperatures, are compatible with the ideas presented
here. However, as the temperature is increased the
interstitial mechanism either stops or becomes relatively
ineffective and the dislocation mechanism becomes
active. The present experiments also emphasize a well-

known but often overlooked fact: When Ii centers are
located in the strain field produced by imperfections
(mainly edge dislocations), they no longer retain the
characteristic properties of Ii centers, i.e., their charac-
teristic absorption band is displaced.

Mitchell, Wiegand, and Smoluchowski' have con-
cluded from their analysis of the growth rate of F centers
in crystals deformed up to 3% that the initial, deforma-
tion sensitive portion of the E-center growth curves is
due to an additional concentration of vacancies created
during the deformation process. If this were the correct
description, it would be expected that the deformation
contribution would be observed at all temperatures of
irradiation. The present optical absorption measure-
ments do not substantiate this type of behavior. A
strong temperature dependence of the deformation con-
tribution to E-center concentration is observed as shown
in Fig. 3. This strongly suggests that the excess vacan-
cies are formed during the irradiation.
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The interaction of an antiferromagnetic spin wave with a 180 Bloch wall is studied from the theoretical
point of view. Our formulation includes the anisotropy and exchange energies of the crystal together with the
characteristics of the wall such as its stiBness and viscosity. The anisotropy is assumed to be of a genelal
orthorhombic form. We show that there exists a bound wall excitation branch as well as a free spin-wave
excitation branch, and we derive a restrictive set of relationships between the excitations on two diferent
sublattices. Further, we show that there exist special values of the energy for which the spin waves are
degenerate and the restrictions no longer apply. Finally, we determine the change of phase of the spin waves
on passing through the Bloch wall as a function of the wavelength, demonstrate that the phase change
decreases as the wavelength increases, and compare our results with those of the analogous ferromagnetic
case.

I. INTRODUCTION

'HE existence of antiferromagnetic domains has
been experimentally demonstrated both by neu-

tron and optical studies. ' These domains usually arise
from ordinary crystal imperfections such as dislocations,

*This research was supported in part by the Office of Naval
Research.

' W, Roth, J. Appi. Phys. M, 2000 (1960).

grain boundaries, and crystallographic twins (see Fig. 1).
Within these domains, it is possible to excite antiferro-
magnetic spin waves. It is the purpose of this paper to
determine the eGect of the domain wall on the trans-
mission of antiferromagnetic spin waves from one do-
main to another. The analogous ferromagnetic case has
been considered by Boutron' and by Winter. '

' F. Bontron, Compt. rend. 252, 3955 (1961).
~ J. M. Winter, Phys. Rev. 124, 452 (1961).
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FIG. 1. Formation of a 180'
Bloch wall by a dislocation at
point A.
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II. FORMULATION OF THE PROBLEM

Consider an infinite antiferromagnetic crystal pos-
sessing orthorhombic type magnetic spin symmetry-
the spins being located on two interpenetrating sub-
lattices 2 and B. Each sublattice has six nearest neigh-
bors all on the other sublattice. This situation is
typical of many antiferromagnetic substances such as
CuC1~ 2820. Further, we postulate the existence of a
180'Bloch wall dividing the crystal into two domains.
I,et the s axis be perpendicular to the wall with its zero
point centered inside the wall (see Fig. 2). In the
absence of a perturbation (i.e., spin wave), the mag-
netization vectors outside the wall are in the plus x
direction on sublattice 2 and minus x direction on
sublattice 8 for s less than zero and in the reverse
direction for s greater than zero.

The Bloch walls separating the domains will have a
finite thickness. We shall assume that the width of the
wall is determined from minimum energy considerations
between the magnetic anisotropy and exchange energies
of the crystal —the angle between adjacent antiparallel
spins changing slowly. 4' In a forthcoming paper we
shall treat the case where the width of the domain wall
is restricted to only a few atomic spaces by the lattice
imperfections —this case requiring a different mathe-
matical approach.

We write the anisotropy energy in the form

equal to 3.3. Thus, within the Bloch wall, the spins will

be parallel to the xy plane in order to minimize the
anisotropy energy. Let 0 and p be the angles between
the x axis and the static magnetization on sublattices 3
and 8, respectively, and let us choose a new system of
axes X, I', and s, where X is the spin direction for the
static magnetization and X and V vary from atom to
atom while s is not changed. (See Fig. 2.) Then the
anisotropy energy becomes

H, =Q, (Et[(Sr')' cos'0+ (Sx')' sin'8;

+2S~'Sr ' cose, sin8;]+ Es (S,')')
+P, (E,[(sr~')' cos'Q,+ (s~ i)' sin'Q;

+2sx'SY cosfj slTlfi]+Es(s~ ) }. (2)

We write the exchange part of the Hamiltonian in the
form

II, = —2J Q;,;S;s,, (3)

where the summation is over all pairs of nearest neigh-

bors and J is negative. In our new coordinate system

H.=p; [E,(S;s)'+E,(S, )s]
+P, [Er(sP)'+Es(s, *)') (1)

where 5 and s are the spin values of sublattice A and 8,
respectively. We shall let E& be greater than E&. Ex-
perimentally, ' for CuC1, 6HsO, the ratio Es/Et is

sx

'x

x
em p

P a

s„ 'x

'x

4 C. Kittel and J. K. Gatt, in Solid-State Physics, edited by F.
Seitz and D. Tnrnbnll (Academic Press Inc. , New York, 1956),
Vol. 3.' Y. Y. Li, Phys. Rev. 101, 1450 (1956).

R. Kubo, T. Nagamiya, K. Yosida, in Advances in Physics,
edited by N. F. Mott (Taylor and Francis, Ltd. , London, 1955),
Vol. 4, p. 78.
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FiG. 2. Diagram showing fixed axis s perpendicular to Bloch
wall, angles of deviation 8 and @ of the different sublattice spins
inside the wall, and varying coordinate axes, X.
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this becomes

H, =—2J P;,;S,'S, &'—2J'P;, Leos(g; —P;+ )
X (Sx'sx'+"+Sr'»'+ )+sm(g; —4;+ )
)( (S 'g '+ s '+mS )7

+2J' P ~(Sx'sx'+'+Sr»'+') (4)

where nz and l are unit lattice vectors in the s direction
and perpendicular to the s direction, respectively.

portant for relaxation time calculations. The assumption
is that there is a time lag between the sudden application
of a torque to change the direction of the magnetization
and the time when the magnetization takes up its
resultant equilibrium position. Thus, there is a torque
proportional to the time rate of change of the perturba-
tion which resists change in the direction of the mag-
netization. This may be represented phenomenologically
as

III. STATIC CASE
and

it:(dS'/dt) „„=—I'&Sr'er —r,S,'e, (Sa)

(88/Bz)' =h' sin'8,

cosg = —tanh (zh),
(6)

where h= ( E~/a, 2J)&—is the inverse of the wall thick-
ness and a, is the lattice distance between atoms in the
z direction.

IV. ADDITIONAL ENERGY CONTRIBUTIONS

When the Bloch wall is subject to perturbations, it
will exhibit stiffness, viscosity, and inertia caused by
both the interaction of the wall with the imperfections
in the material and by the characteristics of the mag-
netic material. Unlike the ferromagnetic case, the
magnetostatic energy does not play a role in the forma-
tion of domains. Nevertheless, there exist demagnetizing
effects with respect to motion of the wall in the s direc-
tion, thus giving us an inertia term. As shown by Winter,
this may be represented by MLP, (S,')'+g;(s. ')'7.
The stiffness force is essentially a structure-sensitive
characteristic of the wall' and is equal to —n(d z), where
0. is the stiffness coefFicient and As represents the dis-
placement of the wall in the s direction. Following
Winter, ' we take account of the wall stiffness by adding
to our Hamiltonian the term

E't:E;(S.')'+Z;(" )'7

Since from Eq. (6), a translation Az yields the transverse
components,

Sr= (Az)hS sing, »= (Az)hS sing,

we see that this term does give a change in energy of
—',n(Az)' where, if A is the area of the wall,

n=4E'O'S'A ' P; sin'8;.

The viscosity measures the energy losses connected
with the motion of the domain wall and is thus im-

our unperturbed energy or ground state is determined
by placing S&, S„s&, and s, equal to zero, S~ and sz
equal to S, and minimizing the energy with respect to
8 and p where these angles are functions of z only. Thus,
expanding p; about the position i and putting p, equal
to 8;+z, we get for the ground-state energy,

Ho ——2S' Q; $8J a,'J (8'8—;/gz)'+E& sin'8;7, (5)

which, upon varying with respect to |t, yields the useful
relations, (with similar equations for P),

iVdS,/dt= [S,,a7,
ihdsj/dt= Ls;,H7,

(9a)

(9b)

where H is the total Hamiltonian given by Eqs. (2), (3),
and (7) after placing the linear terms equal to zero by
the minimization condition. LWe shall add Eqs. (8)
directly to Eqs. (9) to obtain complete expressions. )
If, in Eq. (9a), we expand s; about the position i and
in Eq. (9b), we expand S;about the position j, and only
keep second-order terms in the perturbation (valid for
long wavelengths), we obtain, using Eqs. (6) and the
commutation relations,

MSr/dt = —2JSa ~d s /dz2 —4K+'S~ sin2g

+2E2SS, 12JS(s.+S,—) I'~Sr+ 2MS—S.
2JS(ax2d'—s,/dX'+or d's, /d I"), (10a)

&zr/dt= —2JSo d S,/dz 4E&Sz, sin 8—
+2E2Ss, 12JS(S,+s,)—I'g»—+2MSs,

—2JS(a xd'Sg/ Xd'+a dr'S, /dI"2) (10b)

AdS, /dt = —2JSg 2d2»/dz2 —2K~SSr cos28

+ (Sr—») (12JS+2KqS sin'8)
—2E'SSy —F S,

—2JS(&x~d2»/dX2y&, 2d2»/de) (10c)

Ms,/dt= 2JSaP O'Sr/dz' 2K~S—sr cos28-
+ (sr Sr) (12JS+—2EqS sin~g)
—2E'Ssy —F s.

—2JS(axed'Sr/dX'+ur~d'Sr/dI") (10d)

Adding and subtracting Eqs. (10a) and (10b) and simi-
larly for Eqs. (10c) and (10d), we obtain for the z
dependence the two sets of equations

(I'g+iE) or = —24JSo.,+2MSo., (11a)

(I'2+i')o,= 2JSa,'(d'o r/dz2) 2K,S—o„—
Xcos28—2E'So y

+2JS(ax'kx'+ax'kr')o r, (11b)

h(ds &/dt);„= —I'~»'ex —I',s,'e„(gb)
for perturbations S&', S,' and s&&', s, & on the ith and jth
spins.

V. EQUATIONS OF MOTION

The equations of motion are given by the formulas
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(I's+iE)y, = (24JS 2E—'S)yy,

with
tr= S+s, y= S—s,

(12b)

(13)

where we have recognized that the anistropy energies
E& and E2 are smaller than J, the exchange energy.

VI. SOLUTIONS

y=0
%e 6rst consider the set of solutions yy ——y, =0.

Thus, Sy=sy, S,=s, and Oz =2Sy, 0,=2S,. Substi-
tuting Eq. (11a) into (11b) and placing u= —cos8, we

get

d |Ty dtTy k,' 1
(1—u') —2u — + 1(1+1)+— o.y

——0, (14)
dl dQ h' 1—I'

where k,' is given by the equation

zp —iz(r,+r,)—r,r,
= (48J'S' —4MJS') (a,'k.'+a»'k»'+ ay'k y')

—(48JS' 4MS') (Er+—E'). (15)

Equation (14) is the associated I.egendre equation with
solutions'

oy=AyPt (u) =Aye "™[tanh(sh)—mj
Xexp[i (k»X+ky Y)j, (16)

where m=&ik, /h. For k,'/h'~&0, the only regular solu-
tions with regular derivatives that can be obtained are
the following:

(a) k.'/h'= —1: For this case, k, is pure imaginary
and

ay=Aye "'*~[tanh(sh) —1j exp[i(k»X+kyY)g, (17)

while o, is given by Eq. (11a). Thus, this is a bound
state and does not exist outside of the wall. The energy
is given by Eq. (15) with k,'= —h'. We get

ZP —iZ(1',+r,)—I,r,
= (—48JS~+4MS~) (K'—a»sk»s —ay~kys). (18)

Thus, for very small damping, this is a wall resonance
energy of magnitude

Atop' ——[(—48J+4M) E'S'j' (19)

at the bottom of the wall excitation branch. (Note that
J is negative. ) If E'=0, then E=O and this solution
corresponds to a translation As of the Bloch wall.

7 W. Magnus and F. Oberhettinger, Special Functions of Jtt/Iathe-

matical Physics (Chelsea Publishing Company, New York, 1949),
p. 53.

and

(I'r+i E)yy 2JS——a,'(d'y, /ds') 4—ErSy, sin'0+2MSp,
+2EsSp 2J—S(a» k» +a'ysky )y„(12a)

(b) k,s/h'=0: Our solution then has the form

oy= —Ay tanh(sh) exp[i(k»X+kyF)$. (20)

For k,=k „=0, this is the uniform mode and corre-
sponds to the 6rst free state. The energy is obtained by
putting k=0 in Eq. (15).H the wall stiffness E' is large
compared to the anisotropy energy E&, then this energy
is the same as the bound-state energy given above.

(c) k,s/h'&~0: All the positive values of kg/h' are
proper values, corresponding to solutions of the form
given by Eq. (16), and form a spin-wave excitation
branch. The expression for the energy is given by Eq.
(15), with k, =O corresponding to the above-mentioned
uniform mode. The lowest state occurs at an energy
higher than the bottom of the wall excitation branch.

A second set of solutions is given by 0-~——0.,=0. Thus,
S~= —sy, S,= —s, and yy =2Sy, y, =2S,. Substituting
Eq. (12b) into Eq. (12a) and again placing u= —cos8,
we get an equation identical with Eq. (14) except that
k,' is now given by the formula

ZP —ix(r,+r,)—I,r,
—(48J2S2 4JK~S2) (g 2k 2+a 2k 2+aysky2)

48S'J(Ks—+M)+4S'K'(Ks+M). (21)

The bound-state solution corresponding to k,'= —A,
' is

Z —iZ(r, + I',)—r,r,
= (48JS' 4E'S')—

X[Er—(Es+M)+J(a»'k»'+ aysky') $ (22)

which also yields a translation As of the Bloch wall. The
energy for the uniform mode is obtained by putting
k=0 in Eq. (21).

If E' is greater than Ep Er+M, then—this mode is
lower in energy than the corresponding mode for S&= s&,
S,=s„while if E is less, then the reverse situation
occurs. For CuC12. 2820, the experimental values are
E&=5.1X10 'cm ' E2=16.8X10 'cm ' or E2—Eris
approximately 2.3X10 ' erg.

The spin-wave excitation branch corresponding to
positive values of k' is given by Eq. (21). The lowest
state corresponding to the uniform mode occurs at an
energy higher than the bottom of the wall excitation
branch.

Degenerate Case

For simplicity, let us assume M=O. Then we note
from Eqs. (15) and (21) that, for E')K&—E&, there
exist k, states for which our two sets of solutions have
equal energy values. These k, states which we shall
label k, ' are shown in Fig. (3) and correspond to the
crossing of the two curves. The equation is given by
(with k» ——ky= 0)

JE'a sk "=12J(K,—E, K') K,K'. —(23)— —
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st = [e-rE'tlj+I'p)' r I,]/48 J'S' wave functions O-y, o.„yy, and y, , respectively. Thus,
the amplitudes may now differ by a constant not equal
to &1.In fact, if the anisotropy were uniaxial (Et= E&)
and E' wa. s small, Eq. (24) would be the general equa-
tion for all k, .

(Kl+K )/J

1

/2 2
k~az

Fro. 3. Graph of energy vs wavelength. Line (1) refers to Eq.
(15) and gives allowed energy values for Sr=sr, S,=s..Line (2a)
refers to Eq. (21) and gives allowed energy values for Sr= —sr,
S,= —s, when the elastic energy E' is greater than E2—ICj, the
anistropic energy difference between the x and y directions, while
line 2(b) is for E' less than E2 Eq. The value k—.', occurring only
for curve 2(a), corresponds to an energy degeneracy where neither
of the above relations between S and s are necessary.

Thus, since kx and kz vary independently of k, ', there
exist surfaces in k space which are degenerate with
respect to these two sets of solutions. Along these
surfaces, neither e nor y need be zero and there exist
more general relationships between S„and sy and be-
tween S, and s, than those obtained previously. Using
Eq. (13), we get

S= -', (A+B)ftanh(sI/) —ik, 'l's—']
&&exp)i(u, 's+u X+krl')],

24
s = —,

' (A —B)ftanh (sh) —ik, 'h —']
&& expLi (0,'z+/sxX+ kr V)],

where Ay, A„By, and 8, are the coeKcients for the

Phase Changes

When crossing the Bloch wall in the sense of increasing
s, Eq. (16) shows that the change of phase can be
represented as

P = tan '( —k,/$h tanh(sh)]}. (25)

As s changes from —~ to small s inside of the. wall and
then finally to + ~ on the other side of the Bloch wall,
the tanh(sh) varies from —1 to +1 and the phase P
varies from arctan(k, /h) to s7r to arctan( —k,/I/). For
very small k, or long wavelengths, this corresponds to
a 180' phase change (from 0 to sr) of the spin wave-
the major portion of this shift occurring within the
region

~
s~ (h ', i.e., within the Bloch wall.

For larger values of k„ the change of phase is not a full
sr radians. For k, = h, P varies from 4w to 4ssr or a change
of —,x radians —again occurring mainly within the Bloch
wall. ln the limit, as k, ~ ~, there is zero change of
phase. For the uniform mode corresponding to k, =0,
the amplitude of the spin wave goes to zero at s=0, and
then again becomes finite for s&0 but with the opposite
sign.

Thus, the Bloch wall is transparent to the unbound
spin-wave excitation branch whatever may be the
energy of the incident wave. This is similar to the
ferromagnetic case.'
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