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An exact Fourier-Bessel representation of the scattering amplitude is introduced and discussed for po-
tential scattering and field theory. It is shown to contain the Mandelstam representation as a special case.
The representation automatically satisfies unitarity exactly in the high-energy limit even in the many-
channel situation. The behavior of the scattering amplitude for large momentum transfers is discussed and it
is demonstrated that this limit is directly connected with the formation of bound states and resonances. A
selection rule governing the ordering of resonances is derived. A variational principle for calculating the
asymptotic dependence on momentum transfer in potential scattering is formulated. Some interesting rela-
tions between the asymptotic behaviors of -, =-N, and N-N are developed, and related to the single-

particle poles and low-energy resonances.

L INTRODUCTION

HE behavior of scattering amplitudes at high
energies and at large values of momentum trans-
fer is very important in the formulation of dynamical
computational schemes in dispersion theory. In the
course of studying this problem we have been led to re-
consider an approximation scheme which has been often
used in nonrelativistic quantum mechanics. It is vari-
ously known as the eikonal method (in which form it is
very ancient) or impact parameter method.! A rough
description is as follows: Consider a very high energy
particle moving through a region of interaction with a
force center. To the extent that one can construct a
sufficiently localized wave packet, it is reasonable to
speak of the particle passing at a certain distance & from
the center. Assuming the deflection is small, one com-
putes the approximate change in phase of the wave
function and from this the scattering amplitude is ob-
tained in a standard fashion. The outstanding virtue of
the representation thus obtained is that by its very
form, it satisfies unitarity automatically in the high-
energy limit.

In Sec. IT we review the canonical impact-parameter
approximation and introduce a modification of it which
is more closely related to dispersion theory. An exact
representation modeled after the approximate one is

* Supported in part by the Air Force Office of Scientific Re-
search, Air Research and Development Command.

1 Except for the variational principle of Sec. IV and the Ap-
pendix, this is a detailed version of the paper presented to the
International Conference on Weak and Strong Interactions at
La Jolla, California, June, 1961 (unpublished). At that conference
we suggested the possibility of associating Regge poles with
“elementary”’ particles as well as with dynamical resonances. Pro-
fessor Chew and his collaborators had been discussing such ideas
for some time independently and their views have appeared in
several papers published since the present work was submitted:
G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394 (1961);
8, 41 (1962), and G. F. Chew, S. C. Frautschi, and S. Mandelstam,
Phys. Rev. 126, 1204 (1962). There are a number of points of
similarity between our results and those of Chew ef al. We have
learned recently of work by a number of Russian physicists,
notably V. Gribov and G. Domokos, on the same subject carried
out at about the same time, but we have not seen their results.

1 G. Moliere, Z. Naturforsch. 2A, 133 (1947); G. Parzen, Phys.
Rev. 80, 261 (1950); D. Saxon and L. Schiff, Nuovo cimento 6, 614
(1957).

given which is related to the familiar double dispersion
relation known to hold in potential scattering for a
special class of potentials. In Sec. IIT it is shown how the
problem is, in principle, solved with the aid of the
unitarity condition. Furthermore the relation between
impact parameter and angular momentum is established.

An important relation between bound states, reso-
nances, and behavior of the scattering amplitude for
large momentum transfers is developed in Sec. IV. The
relevance to the subtraction problem in dispersion
theory is pointed out.

A variational principle for calculating the positions of
bound states and resonances (which are closely related
to the behavior of the scattering amplitude for large
momentum transfer) is formulated in terms of complex
angular momenta. Two applications of the principle are
made and worked out in detail.

An example is treated in Sec. V which allows one to
follow all of these points in detail.

The extension of the formalism to coupled channels is
taken up in Sec. VI and finally the much more compli-
cated problems of field theory are treated in Sec. VIL.
No numerical results are obtained but some interesting
relations between the asymptotic behaviors of m-r, N-N,
and 7-N are developed and related to low-energy
resonances.

In an Appendix we prove that the scattering ampli-
tude can be analytically continued to values of the
complex angular momentum for which Re/ < —1. There
has been widespread misunderstanding on this point.

II. THE HIGH ENERGY APPROXIMATION

The general characteristics of the scattering of par-
ticles of high energies is that scattering angles are small
and the angular distributions take the form of diffrac-
tion patterns. These features suggest the use of an
eikonal approximation to describe the phenomenon.
Such a description has been discussed within the frame-
work of both nonrelativistic and relativistic quantum
mechanics by many authors.! The most comprehensive
treatment has been given in an excellent article by
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BEHAVIOR OF SCATTERING AMPLITUDES

Glauber.2 The eikonal approximation is based on a
computation of the phase change suffered by a particle
passing (in a semiclassical sense) through a scattering
region at a distance b from the scattering center on an
essentially straight line trajectory. The resulting wave
function is

¢=exp[ik-r—-—;—k dz'V[(z’2+b2)%]l>, 2.1)

—00

where the z axis will be chosen parallel to the average of
the initial and final momentum vectors. From this wave
function the scattering amplitude is computed in the
standard way to be

0

0
fk0)= —ikf bdb Jo(2/eb sin;)

X {exp[ixe(bz,k)]— 1} )

where % is the momentum in the center-of-mass system,
6 is the scattering angle, and Jo(x) is the zero-order
Bessel function. The eikonal phase function X, is given
by

(2.2)

1 0
Xo(b%k)=—— dz V[ (z*40?)1]. (2.3)
x)

—00

We have chosen units such that Z=1 and 2M =1, where
M is the reduced mass. In a somewhat more accurate
approximation,

0

X (k)= | dz (B#—=VL(@+0)V]}i—k), (24)

—00

but we shall confine our attention to the simpler form
(2.3), which is valid for large k.

One possible shortcoming of this representation as far
as dispersion theory is concerned, is that the simple
singularities of the phase function x as a function of
energy have an alarming tendency to show up in the
scattering amplitude as essential singularities. In order
to avoid this trouble let us attempt to find an approxi-
mate wave function which does not contain the potential
in an exponential manner and in addition changes both
the phase and the amplitude of the wave. One such
choice is

Y= [H—i /2 ds' V[(z'z-l—bg)%]}_ exp(ik-r). (2.5)
4k J

This wave function® satisfies the Schrodinger equation

2 R. Glauber, Lectures in Theoretical Physics (Interscience Pub-
lishers, Inc., New York, 1958), p. 315.

31t is undoubtedly known to Jost and many others that
exp(—iko- )Yy (r) regarded as a function of the magnitude of
| ko| =£, is analytic in the upper half % plane for any fixed 7, aside
from poles on the imaginary axis corresponding to bound states.
This is trivially proved from the usual scattering integral equation.
Our proposed high-energy wave function satisfies this requirement.
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to the same order as (2.1), namely to terms of order
(1/k?) and leads to the scattering amplitude

- 9
f(k,0)= f bdb Jo(Zkb sing)n(b)[l—in(b)/Zk]“l, (2.6)

where

b= L 21 72\%
n( >_—5/ d5 VL (@H8)H]. @1

—0

We shall see later that the form (2.5) follows naturally
from dispersion theory.

The result (2.6) can, of course, be rewritten in the
form of the eikonal approximation, and the resultant
phase function turns out to be

X=2 tan~1[$X,(b%k)]. (2.8)

Thus, as a function of &, x has quite a different character
from X..

The condition for validity of the eikonal approxima-
tion,* and also the approximation (2.7), is roughly the
demand that

|V (1/k)| <k2

The integration variable b may be identified with the
classical impact parameter and this general scheme is
sometimes referred to as the impact parameter ap-
proximation. It is clear that the regime of small energies
is not in general covered by this approximation. Each of
the representations (2.2) and (2.6) has advantages and
disadvantages, and we will feel free to use the most
convenient one whenever possible. As we shall see later,
only (2.6) can be easily generalized to field theory.

The most interesting feature of these high-energy ap-
proximations for our later purposes is the fact that they
automatically satisfy the optical theorem for large k. To
study this property for the eikonal approximation, con-
sider the case of a complex phase function X=Xp+iX;
and evaluate the imaginary part of the scattering ampli-
tude in the forward direction:

0

Imf(k,0)=k/ b db [1—exp(—X;) cosXg].

0

Next we compute a quantity related to the total scat-
tering cross section:

=i / dQ f*(k,0) f(%,6)

=k/ b db [1—exp(—X;) cosXg]
0

k wbdb 1 2
_5/; [1—exp(—2x7)]+0(1/F),

47J. Schwinger, Phys. Rev. 94, 1367 (1954).
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where we have used the fact that under an integral,

P2k

1
] x dx Jg(xb)Jo(xb’)=36(b—-b')+0(1/k2). (2.9)
0
If these equations are now combined, we find

47rI k0
_; mf( ) )

- [ 0@ | f(k9) |+ 2n
X [ " b [1—exp(—2x)THO(1/B).  (2.10)

A similar discussion can be given for the second form
of the high-energy approximation Eq. (2.6). In order to
have the possibility of satisfying unitarity exactly, or to
allow for true absorption, we must generalize the repre-
sentation somewhat. We write, with s=#2,

® O\ N (82,5)
f(k,ﬂ)—-—/ bdb Jo(2kb sin—) , (2.11)
0 2 D(bz,é‘)
where
©ds’ 1 ReN(b%s')
D(s)=1— / T Y aita)
o m 2(s)} §'—s5—1¢

If we wish to insure that f satisfies a dispersion relation
in s for fixed momentum transfer, N(8%s) must be
analytic in the s plane cut along the positive real axis.
By contour integration one finds

D(B,s)=1—iN(8,5)/2k. (2.11b)

The optical theorem becomes
4
— Imf(%,0)
k
47
- [a 1o+
k
X/ bdb ImN | D(82,s) | 24-0(1/F). (2.12)
0

In the limit of large energies, the (1/k2) terms may be
dropped. These results show that the optical theorem is
satisfied because the second terms in (2.10) and (2.12)
then have a simple physical interpretation. For ex-
ample, the factor exp(—2X;) is simply the intensity of
a wave of unit amplitude transmitted through the region
of interaction at a distance & from the center. Thus
[1—exp(—2X;)]is a measure of the absorption that has
taken place. If the functions x and N are real in the
limit of high energies, then the scattering amplitudes
automatically satisfy the purely elastic optical theorem.
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If there is physical absorption present it is clear that
we must have

/“’ bdb {1—exp[—2x;(8%5)]} >0
0

/ " bab TN (8%,5) | D(8,5)|~2>0

for large s. We cannot conclude in general that X; or
ImN are definitely positive, but to the extent that one
can construct wave packets sufficiently well localized to
speak of scattering at a definite impact parameter it is
evident that both X7 and Im/N associated with absorp-
tive processes must be positive. Even in cases where
there is no absorption, one can imagine choosing Xy or
ImN in such a way as to satisfy the elastic unitarity
condition and hence the optical theorem, for all positive
energies. In this circumstance we have no physical basis
for requiring these functions to be positive. The possi-
bility of choosing X7 or Im/ in the above fashion will be
discussed in Sec. ITI.

Itis the automatic unitarity aspect of the high-energy
approximation which we would like to exploit. Our
purpose here is to cast the Mandelstam representation
for f(k,0), which is valid for Yukawa-type poten-
tials,® into the impact parameter form. Although the
Mandelstam representation displays the analyticity of
the scattering amplitude in the variables % and cosf in
an admirable fashion, the unitarity condition is ex-
tremely awkward to deal with, especially in the high-
energy, large-momentum-transfer regime.

In order to motivate our procedure, let us consider the
high-energy approximation for a simple Yukawa po-
tential of unit range which is not strong enough to
produce bound states. The phase function according to
(2.3) is

)\ 0
xe(bz’k)=‘§e / dz (240~ exp[ — (22+5%)1]

—o0

=—(Nk)Ko(d), (2.13)

where K (d) is the modified Bessel function of the second

kind with pure imaginary argument as defined by

Watson.® Some simple properties of this function are
Ko(b)~—In(vb/2),
— (m/2b)}e?,

b—0,

b— o,

where Iny is the Euler constant, 0.5772- - -. An integral
representation for Ko(b) which is more useful than that

5 R. Blankenbecler, M. Goldberger, N. Khuri, and S. Treiman,
Ann. Phys. 10, 62 (1960); T. Regge, Nuovo cimento 14, 951
(1959); A. Klein, J. Math. Phys. 1, 41 (1960).

8 G. N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, New York, 1922). Hereafter to be referred to as W.



BEHAVIOR OF SCATTERING AMPLITUDES

implied by (2.12) is

1 ]
Ko(®)=- f ds Jo(a) (s-+B7)
2Jo

or more generally,
1 00
Ko(bx) =E / dz Jo(xz?) (z-+0%)1
0
1 ]
=£ / dz Jo(bz?) (z4a2)71.  (2.14)
0

In the same approximation, the numerator function in
Eq. (2.11) becomes

N (B%,5)=—AK(b). (2.15)

Returning to the scattering amplitudes, we note that
for sufficiently large & the phase function becomes small
and D approaches one, so that we may write

- 9
lim  (k,6) = — ik / bdb Jo(Zkb sinE)[ch(bz,k)]

0

w 6
= / bdb JO(Zkb sinE)N(bz,oo)
, ,

==\ / ) bdb Jo[b(—1)¥]1Ko(D)
= —)\/(l_t)>

where the square of the momentum transfer has been
introduced as

—¢=2k%(1— cosf) =4s sin/2.

The representation (2.14) was used together with (2.9)
in order to carry out the integration. This is precisely
the first Born approximation for a Yukawa potential,
and it is elementary to show that one always gets the
correct Born term for any potential in the limit of large
s. We may remark that Carter” and Khuri® have shown
that this is a rigorous property of the scattering ampli-
tude in potential scattering.

Let us attempt to write an exact representation for
the scattering amplitude corresponding to a Yukawa
potential by considering phase functions and numerator
functions of the form

1 0
ix=——/ dz o (z,5)(z+09)", (2.16a)
0

™

1 0
N(B,s)=— f dz W (z,5) (z+0)~1.  (2.16b)

™

7 D. S. Carter, thesis, Princeton University, 1952 (unpublished).
8 N. Khuri, Phys. Rev. 107, 1148 (1957).
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In order to get the first Born approximation correctly,
we must require that

li_l’tgloa(z,s) =N o(z})/2(—s)}, (2.17a)

LimW (z,5) = —wA\J o(z}) /2. (2.17Db)

If we denote the Fourier-Bessel transform of the scat-
tering amplitude by H (#%s), then we have

Fs.)= f " hb T~ HES)  (2.18)

and

1 0
H(s)=— / dz h(z,s) G+~ (2.19)

™

We can now read off the weight function %(z,s):

h(Z,S) = (—s)*[sina(z,s)]
© dg’

Xexp[—P ﬁ —T—a(z',s)(z’—-z)*l], (2.20a)

h(z,5)=W (2,5)[D(—z—1e, s)D(—2z+1ie, 5) ],

where we recall the relation (2.11b) between N and D.

It has been assumed that H (%,s) does not behave too
badly for small . In particular, if ¢(0,s) is finite, the
leading singularity in H(b%s) is

H(b2%5)~C(s)br@ ...

(2.20b)

Therefore, we require that

Reo(0,5)/m>—1. (2.21)

This condition is certainly always satisfied for suffi-
ciently large s or sufficiently weak potentials [see Eq.
(2.17a)]. One might expect (2.21) to be violated for low
energies if the potential becomes too strong. We will
return to this point when bound states and resonances
are discussed.

From (2.18) and (2.19), it follows that

di’ A3t s)
f(S,t)-_- -, )
T U=t

(2.22)

where

__1 N 3
A= fo B T () Th(zs).  (2.23)

If isanalyticin the cut s plane, then the Mandelstam
representation immediately follows. This property of
h(z,s) implies that both ¢(3,5) and w(z,s) enjoy ana-
lyticity in s also.

In order to complete our discussion of the Fourier-
Bessel representation, we will exhibit an exact expres-
sion for the function H in terms of the scattering ampli-
tude. This allows us to discuss certain general properties
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of x and NV which are important to satisfy for large and
small energies. Since the Fourier-Bessel transform pro-
vides its own inversion formula [see Eq. (2.9)], we
immediately find that

H(bs)= /°° xdx Jo(bx) f (s, —2?). (2.24)

In the special case of the Mandelstam representation,

&t Ay,
fony= [ LA

T =t

we find

at
H(s5)= / —Ko(b1}) 45(t,5). (2.25)

Since A3(Z,5) is analytic in the cut s plane, H must also
possess this property. We note, quite generally, that

iX(b2>S>=In[1+H(b2)S)/(_s)%] (226&)
and
H(b%s)

. (2.26b)
14+-H (8,5)/2(— )}

N(8%s)=

The large s limits of x and N have been discussed
above [see (2.17)7]. The threshold behavior in s is also
simple; x has a logarithmic singularity as s — 0 and ¥
vanishes as the square root of s since H(#20) is finite
and nonzero. These two requirements are very im-
portant in assuring the correct high- and low-energy
behavior of the scattering amplitude. The high-energy
approximations, (2.3) and (2.7), are seen to violate the
low energy limits.

The high-energy approximation has an amusing prop-
erty which serves to clarify its connection to the
Mandelstam representation. For illustrative purposes,
let us choose the simplest approximation possible, that
given by (2.12) and (2.14). Now if the scattering ampli-
tude is expanded in a power series in the potential
strength A, then the Nth term is seen to involve an
integral of the form

AV f " pab To[6(—)¥1K o™ (8).

Since Ko(b) falls off exponentially for large &, this
integral has a singularity for positive ¢ whenever the
growth of the J, cannot be controlled by the K¢’s. The
singularity occurs at #= N2 This is exactly the behavior
of the Mandelstam representation and the Born series.?
Thus for large energies, the high-energy approximation
gives the asymptotically correct thresholds in the mo-
mentum transfer variable.

Let us examine this point in more detail. If the eikonal
form of the high-energy approximation is used, then the

BLANKENBECLER AND M. L. GOLDBERGER

weight function %(z,s) is found to be

A

-3

h(z,5)=—(—s)} Sin[Z( )*JO(Z%):I

><exp[2 ™ yo(z%)} 2.27)

(=9

where V(d) is a modified Bessel function of the second
kind as defined by W. Using the relation

0

2
Jo()Yo(y)=—- / du Jo(2uy)/ (u2—1)%,  (2.28)

™

which can be obtained from W, page 441, Eq. (5), the
first two terms in the expansion of % can be written in
the form

2 0

/ du Jo(2uzt)/ (— 1)1,

A by
h(z,s)=——2—]o(z%)+ N

2(—s)?
The integral for A3 can now be directly carried out:
As(t,s)=—mNo(t—1)+mN[—st(t—4) T (1 —4). (2.29)

The first term is correct but the second is not. It has the
correct threshold in # for large s, however, since the
exact second order expansion for 4; is

2

A
A3 (t,S) = —m\d (t“‘ 1) +—2—

) ’

X / - [s't(t—4a’) 0 (t—4d'),
0 §—S§

(2.30)

where ¢’=1+1/4s". A phase function that yields this
result to second order is

NEFD) N

A Ko(b)+
(_ )% 0 T

D

© ds * du Ko(2uba'?)

X .
/o (' =9)(s)? /; (W—1)}

Similarly, a numerator function which does the same job
can easily be found:

NK2(b) AZ
2(—=s)t w(—s)t

0 ds’' ©  Ko(2uba'?)
X / 1 / du . (2.31b)
o (=98 s (w—1)}

These functions when substituted into H(#%s) will
yield a scattering amplitude which has the exact ¢
discontinuity up to #=9. Above this point, the dis-

iX(bZ,S)='—' 2 T ( );
S T —S)?

(2.31a)

N(b2,8)= —>\Ko(b)—
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continuity is only approximate, but all the correct ¢
thresholds in f(s,f) are insured. However, it should be
noted that the energy dependence of H (8%s) is incorrect
near zero energy; the approximation therefore breaks
down at some finite value of s. We will return to the
problem of constructing NV to all orders of perturbation
theory at a later juncture.

Before leaving this introductory section on the impact
parameter representation, it is useful to show the rela-
tion between it and other ways of writing scattering
amplitudes. We begin always with the Mandelstam

form,
dt’ A5 ,s)
f(S,i) = - )

x V—t

(2.32)

and note that various representations emerge naturally
from different ways of writing (#—¢)~L. First, there is
the standard partial wave expansion:

1
f—1i £+25(1—3)

Ly (1+t—/)P @). (2.33)
= 2 Ql 23 1I\2). .

S =0

The corresponding impact parameter form we have used
is

00

1
t=,/ bdb Jo[b(—OY]K[b(1) ],  (2.34)

t—

and it is easy to see the connection between these, since
for large I=0bk,

Pi(z) — J[b(—1)Y], Ql<1+2t_;2> - Ko[l(i];)—%:l

=KJLb(t)1]. (2.35)

An alternative representation in terms of complex
angular momenta may be obtained using

1 ® tanhmA
=7 / AdX

i—t 0 coshm)

where the P ;3 are Legendre functions, not polynomials.

The counterpart of this one is simply to interchange
¥/, —tin Eq. (2.34) and write

Pao3(#)Pa—y(1), (2.36)

L.r bdb Ko[b(—1) 1 o[6(#)4].

i —t 0

(2.37)

There may be certain formal advantages in using this
version for studying the behavior of amplitudes for
large #. We note in this connection an alternate form of
our representations. We write Eq. (2.32) using (2.37) as

f(s,)= / bdb K[ b(—1t)¥]

!

X / —A3( )T ()], (2.38)
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Expressing 4;(¢,s) in terms of k(z,s), Eq. (2.23), we
obtain

2 0
Fs, )=~ / bdb Ko[b(— ) Th(Fs).  (2.39)

This is a complex impact parameter representation
analogous to the complex angular momenta introduced
by Regge. The explicit exponential decrease of the
amplitude for large (—#)? is useful in certain cir-
cumstances.

III. THE UNITARITY CONDITION AND
PARTIAL WAVES

The unitarity condition allows us to complete our set
of dynamical equations for the scattering amplitude.
This requirement states that

k
Imf(S,tls) = Z /dﬂ2f* (S,tlz)f(s,lfz;;), (3- 1)

in a transparent notation: t}3=‘——25(1—-—1‘33-l%1), ta
=—25(1—ky-k,), tos=—2s(1—Fky-k3). In terms of the
transform function H(%%s), this condition takes the
form

/ " bab Jo[b(—t13)¥] TmH (8,5)

=f b1db1/ bzdbz H* (b12,S)
0 0

XH (b2,8)I (bids; s)tis), (3.2)

where

I—k dQaT o[b1(—t13)3 T o[b2(—t23)¥]
“;f 20[1( 13]0[2 23,

/ 0/

kot 7} [/
=— / d(cost)J 0<2kb2 sin—)] 0(2k62 sin— cos-—)
2/ 2 2 2

X Jo[ 2kby sin(8'/2) cos(8/2)]. (3.3)

We have used an elementary addition formula to do the
¢ integral and 6 is the scattering angle. This is one of the
well-known integrals of Sonine (W, page 377),

1 T
I=—/ d¢ J1(2kB)/B, 3.4)

™
where
B2=p24 b2 — 2b1b; cos(6/2) cose.

Using the relation

0 0 o’
/ bdb J o(2kb sin~>] 0<2kb sin—)
0 2 2

3 8[sin(6/2)—sin(6'/2)]
T 4ssin(9/2)
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the kernel I can be written in the form

I=/ bdb Jo[:b(—lfls)%]G(b; b1bz; s), (35)
0
where

2s [T [/} 6
G(b;b1b2;s)=—/
T Jo

d¢ | df sin— cos—
0 2 2

Ji[2kB(6,9)]

The unitarity condition in terms of H then becomes

ImH (B,5) = / bidb, / bodby H*(b22,5)
0 0

XH(b2s5)G(b; biby;s). (3.7)

If this statement is coupled with the equation expressing
the analyticity of the scattering amplitude as a function

of the energy,
ds’ ImH (8%, ’)
H(®, s)——)\Ko(b)-i—/ —, (3.8)

"S

then we have achieved a one-cut mapping problem for
the determination of H which involves only physical
values of s.? This is to be contrasted with the ordinary
partial-wave amplitude which even in the case of po-
tential scattering has both a positive and negative cut.
For a general potential, —AK(b) is replaced by

0

1
- ﬁ s VL@

We have then a dynamical dispersion approach which
can be applied to any potential and not just those
representable by a superposition of Yukawa potentials.

In the limit of large s the kernel G takes on a particu-
larly simple form. Going back to (3.3), we see that as the
energy becomes large, the Bessel functions oscillate to
zero unless 6 and 6’ are small. Thus by keeping only the
linear terms in sin(6/2) and sin(6’/2), we find the limit

8(b1—b2)
I~—————J(2kb; sin (6/2))y
2k

1

where the error is of order (1/s) times the leading term.
Finally, G becomes

G(b; bidy; s)~ (1/2kb1b2)8(b1—2)5(b1—D). (3.9)

For large s, then, the unitarity condition on H
simplifies to

ImH (8%,5)= (1/2(s) ) H*(b%,5)H (b%s).  (3.10)
The solution to the mapping problem implied by (3.8)

9 In this connection see also D. Fivel (to be published).
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and (3.10) is obviously

H(p,5)= k)

—_— (3.11)
1-N(®)/2(—s)?

where N=—\Ko(b). We see that both unitarity and
analyticity are satisfied for sufficiently large s. This is an
improvement over our previous discussion of Eq. (2.6)
which demonstrated only that the form (3.11) satisfied
the optical theorem.

Unfortunately it does not seem possible to carry out
in closed form the integrals which define the kernel G.
Nevertheless, the exact unitarity statement, Eq. (3.7),
proves that the Fourier-Bessel representation of f(s,)
can in principle form a complete dynamics.

There is another form of unitarity which should be
discussed at this point since it has some practical im-
portance. The unitarity condition, when applied to
f(s,t) written in the Mandelstam form [valid for
Yukawa-like potentials, Eqgs. (2.24-2.25)7, yields

dh dtz
ImA;(2,5)= /

X A5*(t1,5) A3 (te,8)K (bi,ta)t; s), (3.12)

where
m O[B— i (L+ta/4s) i — 1 (14-41/45)F]
2 [s{t— (3 +122)2} {t— (2 —121)%} —fltﬂ]

This condition can be easily rewritten in terms of the
weight function %(z,s) defined by (2.19),

(3.13)

le de
T (z,5) = / & / O (a1 )G (a3 ), (3.14)
™ ™
where

1
9(21,22,2; .Y) = —g /dtljdtzfdt ]0[0121)5]]0[(5222)7]

X]o[(lfz)%]K(h,h,t; S). (315)

This is the form of unitarity appropriate to the complex
impact parameter representation, Eq. (2.39).

It is now possible to develop an iteration procedure
for systematically calculating the function N by means
of the unitarity condition and analyticity. This pro-
cedure starts from the exact formula for N in terms
of H:

N(bz,s)=H(bz,s)/[l—{-H(lﬂ,s)/Z(—s)%],
and we recall that, [see Eq. (2.25)],

(3.16)

ar
H(®s)= / —Ko[b(¢)¥]45(Y,s).

In order to get an interesting construction procedure,
one must rearrange the normal perturbation series. This
can be done, for example, by expanding the denominator
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of (3.16) to a given order in powers of K¢(b), or, equiva-
lently for large b, in powers of exp(—b) (recall the
properties of Ko). This makes sense because if we are
interested in small momentum transfer (large impact
parameter) the expansion should converge rapidly. The
resulting approximation can be quite different from
perturbation theory in that one can put into ImA4;, Eq.
(3.12), the Ag’s calculated in the previous iteration
which contain all powers of the potential. This con-
struction has been carried out to second order in the
previous section.

The expansion of the denominator in N is valid in two
limits, large s and/or large b. If we restrict our attention
to values of ¢ less than, say, nine, then we should get an
adequate approximation by expanding N up to terms of
order exp(—3b). Thus for sufficiently large s, the ex-
pansion yields

N= —\Ko(B)+ / dt Ko[b(1)]45(t,5)

)\2
+2—[K0(b):|2+0[exp(-— 3b)]. (3.17)
s

Now in the region 4<¢<9, A4; is given exactly by the
second Born approximation. Since this expansion will
yield the exact ¢ discontinuity of f(s,f) up to {=09, it
should form a reasonable approximation for smaller
values of |#|.

If the energy is too small, the expansion will fail since
it doesn’t satisfy the requisite boundary conditions at
s=0. The lower limit on the range of validity in energy
comes from demanding that the denominator be ex-
pandable; i.e.,

|V (8%s)/2(—5)t <1

for the important values of b. Now to determine the
relevant values of b, we note that the factor Jo[b(—£)*]
is essentially unity for values of its argument less than
one. The structure of the representation is explored only
for larger values. The energy limit therefore becomes [in
the crudest approximation, N~—\K,(b)]

|53 > [\Ko[1/(=)]|
~|\[[r(=9)¥/2] exp[—1/(=)*].
If the largest ¢ values considered are minus nine, we find
[st]>2%.

In the physical case of nucleon-nucleon scattering, the
energy limit is (with A some reasonable value ~2.2 u
where u is the meson mass)

E=s/m>9 p2/m=1.3 u~180 Mev.

If the maximum ¢ is restricted to be four, the energy
limit decreases to 60 Mev. The above estimates are
quite conservative since we have neglected the second
and third terms in Eq. (3.17).
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The freedom in the O[exp(—3b)] terms can be used
in any phenomenological treatment of the small s de-
pendence. This possibility certainly must be used in
order to get the correct behavior at zero energy and to
insure the presence of the deuteron bound state in this
example. We will examine the problem of bound states
and resonances in our representation in some detail
later.

Another way of proceeding, which starts from the
high-energy result, Eq. (3.11), and works to lower ener-
gies, is as follows: One simply inserts (3.11), called H,,
into the unitarity condition (3.7) and calculates an im-
proved ImH;, and hence an improved H;. This, in
turn, leads to new values of N, D, and H :

Ne=DH,,
D2=1—‘N2/2('—S)%,
H2=N2/D2,

and so on.

The expansion of f(s,f) in partial waves is interesting
because the unitarity condition takes on such a simple
form for these amplitudes. Define

+1

1
fl(S)_E/_I dz Pi(2) f(s, —2s(1—32))

“ db
= / ;le+1(2kb)H(b2,s). (3.18)
0

From Eq. (2.25) it follows that H (82,0) is finite. There-
fore the correct threshold behavior for every partial
wave is assured. When s gets very large, it is easy to see
that

0

A
S~ / b Toro1(2kB)Ko(b)
0 = — (V290u(1+1/25),

which is the correct Born approximation result.
Let us re-examine fi(s) for very large I If the
approximation

Py(cost)~Jo[ (I43)0]

is used in the partial-wave projection, and the upper
limit on the angular integration is extended to infinity,
which is justified for sufficiently large I, then one finds

fi()=(1/25)H (b%s), bk=I1+1%, (3.20)

which reinforces our physical interpretation of b as the
classical impact parameter. Further, we see that

(3.19)

2k 2 2k 2
|ei® sin8|—2=<———— ReN) +(1+—— ImN) .
|V |V

In this limit, then, ImN >0 in order that absorption
should always damp the elastically scattered wave.
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For fixed %, we note from Eq. (3.20) that for large, b
becomes very large also. Hence only the first Born ap-
proximation, which has the longest range, survives:

fi(s)~—(N\/25)Ko(l/F). (3.21)

This is equivalent to the result (3.19) by virtue of the
relation

Q:(14-1/25)~Ko(I/k) (3.22)

for I>>1.

IV. BOUND STATES AND RESONANCES

The previous discussion was carried out under the as-
sumption that the potential was not strong enough to
produce bound states. Let us now examine the modi-
fications that must be made in our representation as the
potential increases in strength. Regge!® has proven that
the scattering amplitude can increase no faster than a
(complex) finite power of ¢ for a Yukawa-type potential.
The magnitude of the power is related to the highest
angular momentum state which is bound or can resonate.
To see how this comes about from our point of view, we
will first assume that there are no bound states and also
that the scattering amplitude is bounded by some power
of ¢. The consistency of the latter assumption will be
demonstrated later by actually calculating the power
for large energies. It is convenient to express our as-
sumption in terms of the weight function 43(¢s):

limA5(t,5)=B(s) )=+ - -. (4.1)

Even if there are bound states present, 3(s) has no poles
in s. From this behavior we see that the small & depend-
ence of H(b%s) is [see Eq. (2.25)]

limH (8,) = 24T (1+a)B ()24, (4.2)

This is the dominant term in H if Rea(s)> —1, which
we shall assume to be the case. From the limiting s
behavior of H, it is seen immediately that [see
Egs. (2.26a,b)]

ix~[c(0,s)/m ] InB2+In[v(s)/(—s)*]+--- (4.3)
~— (14+a) Ind*+In[y(s)/(—s)¥ ]+ -+, (4.4a)

and
N (b%,5)~—2i(s)}[1+0(**) ], (4.4b)

D(8,5)~—2i ()} /v (s),

where v (s) is a function proportional to 3(s) and some
gamma functions. Now H (82,5) must be analytic in the
cut s plane; this will be insured if o(z,5) has the same
analyticity in s for all z. Therefore a(s) must enjoy this
analyticity also. From the limiting condition on ¢ for

10T, Regge, Nuovo cimento 18, 947 (1960).
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large s, Egs. (2.17) and (2.31), it follows that

2

li 1 )\l 4 i
sl_I}l;loa(S)—‘— +; n(1+1/ S)—E_(;—)—%

A 1 1
X[I—ES; tan~ (1/(s)=):l—l-- <o (43)
Thus a(s) may be expressed as
a(s)=— 1+/°° (—ii, Ima(s’)(s'—s) (4.6)

We are well aware that the analyticity of a(s) has not
been proven.! In addition there may be some delicacies
in taking the limit of large ¢ and large s.

To achieve some further insight into these problems,
let us consider the question from the standpoint of the
N/D solution, Eq. (3.11), which satisfies analyticity and
asymptotic unitarity. We have

0 1>\ —1
Fs,)=—2 / bdb Jo[b(— 1)K, (b)[1+5;1<0 (b)]

=j—; ﬁ i bdb Jo[b(—t)ﬂ[i—k‘i'iKo(b):l_l, (4.7)

since (—£) is nonzero. For large values of (—¢), only the
small-b behavior is important and therefore the small
argument expansion of Ko(b) may be used. The identity

2k yb 7t © 2k vb
I:——i ln——] =[ dx exp[— x(——i ln—)}
A 2 0 A 2

allows the b integral to be carried out with the aid of W,
p. 391, and the scattering amplitude becomes

0

4
fis,H)= —’5/ wdx (—§)~ =217 (14L4x)
0 2k ¥
XT1(1—%ix) exp[—x(—;—i lnE)]' (4.8)

Since the integrand peaks at (approximately)
1/x0=2k/\+11In[2(—2)%/v],

— )2
—Han( t)] . (4.9)
A ¥

one finds

A (=) T(1—ix0/2)

We are interested in large (k/)\) and large (—¢); there-
fore xo may be set equal to zero.

At fixed (but large) (k/\), we see that the approxi-
mate scattering amplitude does ot behave as a power o}

45 2im r(1+ixo/2)[2k

11 The analyticity of a(s) has recently been rigorously estab-
lished by C. Bottino, P. Longoni, and T. Regge (to be published).
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(—1) asymptotically. However, in the limit in which we
expect the approximation for N/D to be most accurate,
namely

(B/N)>In[(—p)t], (4.10)
f(s,t) does behave as (—¢)e, where
a(s)=—1—1i\/2k, (4.11)

which agrees with Eq. (4.5) for large s. Note that Eq.
(4.9) is much less restrictive than one would naively
expect. It requires only that the momentum transfer be
small compared to exp[ (s)#/A] and not [ (s)?/A].

It may seem surprising that the limiting behavior of
a(s) for large s must insure the recovery of the first
Born approximation since a(s) was defined essentially in
terms of the double spectral function, Eq. (4.1), which
is the scattering amplitude with the first Born approxi-
mation subtracted out. To see how this comes about,
we reconsider the approximate evaluation of Eq. (4.7)
but in a slightly different form. If the first Born ap-
proximation is explicitly exhibited, the scattering ampli-
tude becomes

H=—x(1 t“‘+i>\2 odeb] b 3
()= —\(1—1) 5/ [b(—1)]
N —2
XKy (b)|:1+—2—kKo(b):| .

Evaluating the integral in the same manner as before,
we find

Js)= MU= A=) = (— )= T+, (412)

where (—¢) has been assumed to be large, but the energy
is also sufficiently large that Eq. (4.10) obtains. The
function a(s) is given by Eq. (4.11). This result has two
important properties. For large ¢ the Born term is
cancelled by the first term in the square bracket and
one achieves the desired form,

fls,)=—=N(—=8)*@+ ...

If the square bracket is expanded as a power series in
the coupling constant, then f becomes

(4.13)

Fls,)=—n(1 t)—1+wn<—t)
= % (=)

e (414)

We thus see how the power law dependence on (—{)
comes from summing the entire perturbation series in
which each term has a quite different asymptotic de-
pendence on (—#).

Now let us examine the large (—¢) limit of the scat-
tering amplitude more generally. For large (—#) only
the small-b behavior of H(8%s) plays a role. Using Eq.
(4.2) in the representation leads to

JGs)==B(s) (=)@ sinra(s) T (4.15)
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Rea(s)
F1G. 1. An S-wave !‘]
bound state. P————
St s s

This of course behaves as a function of ¢ just as we
forced it to, namely (—¢)?; it also follows directly by
substituting (4.1) into a dispersion integral. However,
one does not then have any knowledge of the power a(s) ;
in particular, the limiting value given by (4.5) is not
easily discernable.

Now a(s) is real for negative s and complex for posi-
tive s. If « were to pass through zero for negative s on
its way up from the limiting value a(— )= —1, then
the amplitude f would possess a pole in energy corre-
sponding to an S-wave bound state. It would be quite
accidental if B(s) were to vanish at the point where
a(s)=0. The pole when a(s) is (— 1) has been artificially
introduced by our approximate treatment of the lower
limit in the evaluation of (2.25).

The relation of bound states to the subtraction prob-
lem in a dispersion relation in ¢ is now clear. For large ¢,
the scattering amplitude behaves like (—#)*®, and if
there is a bound S state, Rea(s) looks typically like
Fig. 1. The important point is that for s between sy and
s1, Rea(s) lies between zero and one. Thus, one sub-
traction is required in the ¢ dispersion integral to insure
convergence if s is in this region. We may note that
independent of the number of bound states, an unsub-
tracted dispersion relation in ¢ holds if s is large enough.

If the potential is increased still further, Rea(s) may
cross one for negative s and a P-wave bound state has
formed. We see that it must have less binding energy
than the .S wave. Now a P-wave bound state produces a
pole in the scattering amplitude of the form

(t42s2) (s—s2)~.

The constant term, 2s,, has been missed in our discussion
because only the most singular part of H at =0 has
been studied.

Actually another S-wave bound state might be formed
before the P wave. This can happen if the function H
has the behavior

H(B2,5) = Ab—20+0 - 4 p20+ef . .

where a> ;. The second term has been neglected in our
previous discussion, but can be easily included. The
second bound state occurs when a;(s) vanishes. We
conjecture that there are in fact an infinite number of
such a’s, since by increasing the potential strength, one
may form an arbitrary number of bound states.

Even if there are no bound states, subtractions still
might be formally necessary if Rea(s) behaves as in
Fig. 2. This type of behavior would necessitate a sub-
traction in the ¢ dispersion relation since for s in the
range between s, and s; the integral would not be abso-
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Rea(s)
2 F16. 2. S-wave resonances.
1 ——
s, Sy S

lutely convergent. However, the integral actually does
exist if done with sufficient care by virtue of the
oscillations in ¢ due to the imaginary part of a(s). Now if
Ima(s) is small in the neighborhood of the point where
Rea(s)=0, then there will be a scattering resonance in
f(s,t) due to the fact that the sine almost vanishes.
These would be S-state resonances since the ¢ depend-
ence is essentially lost at these points. The more con-
ventional way of stating this fact is that there is a
complex value of s on the second sheet such that a(s) =0.
This then produces the familiar Breit-Wigner pole. At
these values of the energy, the resonances have a pure
angular momentum character. If the imaginary part of
a(s) is large, these points may not show up as obvious
resonances in the scattering amplitude, even though the
phase shift does pass through /2.

It is useful to note that as Rea(s) rises through integer
values with increasing energy, the amplitude takes the
following form in the neighborhood of Rea(sq)=1:

B(s) (=)@ ﬁ(so)(-—l)’(—t)‘_ const X £
sinmra(s) o m[l—a(s)] —so—s—iI‘/Z’

where

I'/2=1Ima(so)[d Rea(so)/dso ™

[We have assumed that Ima(so) is very small]. This
corresponds to a true Breit-Wigner resonance only if
Ima(so)>0. It is unreasonable to expect Ima to vanish
in the physical region, consequently when Rea(s) de-
creases through an integer we do not have a resonance of
the usual variety (i.e., I'>0).

This type of analysis suggests an interesting classi-
fication of resonances and bound states. If Rea(s) is
plotted, it is clear that after one resonance has occurred,
the next resonance in energy must obey the selection rule

(4.16)

unless a new family of resonances has appeared. Two
such families of resonances are plotted in Fig. 3. Since a
new family must start with an S-wave resonance, there
is no ambiguity in telling them apart experimentally.
This rule must be modified if there are symmetry re-
quirements, such as the Pauli principle, which restricts

Rea(s)
:i
2]

Fi16. 3. Two families
of resonances.
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the available angular momentum states, or if exchange
potentials are present. (See Sec. VIL.)

In terms of partial waves, the resonances show up in
the following way. Using the result (3.18), the small-b
behavior of H leads to

* db
fi(s) =/ —k‘Jzz+1 (2kb)H (B2,s)

=B(s)*(1+a) (2k)*
XTI (l—a) T (142—a)+- - -.
Thus the resonances and bound states occur when
Rea(s)=1. (4.18)

This shows incidentally that the resonant behavior
cannot be associated with 3(s) since it occurs multi-
plicatively for all angular momenta.

We have argued that any absorption that is present
should manifest itself in a positive imaginary contribu-
tion to x or to V. Therefore, the same must be true of a.
For the imaginary part of @ coming from absorption, we
would then have

(4.17)

Imes(s)>0.

This means that the absorption increases a(s) for s below
the rise of Ima®(s). Absorption will therefore tend to
drive a(s) up through a resonance,® which may occur
well below the inelastic threshold.

A powerful approach has been developed by Regge!
to discuss the large momentum transfer behavior of the
scattering amplitude. He extends the S-matrix elements
exp(246;) to complex values of the angular momentum
and shows that there are singularities in the / plane. The
poles correspond precisely to the singularities in Eq.
(4.15) when I=a(s). He shows that thereis a term in the
scattering amplitude of the form

B(s) Po(—2)/sinza(s),

which is the same as (4.15) for large ¢.

Up to this point we have been able to give a quanti-
tative discussion of a(s) for large s only. In order to
improve this situation, let us consider directly the radial
Schriodinger equation for an arbitrary complex value of
the angular momentum. We write the identity

ala+1)=I(s)

_/: dr ¢[—§;+ V(r)—S]tl/(f)
_ /m o . (419)

This is easily seen to be a variational principle for 7(s)

12 J. Ball and W. Frazer, Phys. Rev. Letters 7, 204 (1961), also
L. Cook and B. Lee (to be published), have discussed this effect in
the partial wave case for the higher pion-nucleon resonances.
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if the wave functions are defined to vanish at the
origin sufficiently fast and to behave at infinity like
exp[— (—s)¥].

To clarify the significance of the complex angular mo-
mentum, consider the problem of the direct integration
of the Schrodinger equation. If we consider an arbitrary
negative energy and integrate outward from the origin,
where the wave function vanishes like 7", we must
choose [ so that the solution vanishes exponentially at
infinity. The true bound-state eigenvalues follow from
the requirement that I/=a(s) =positive integer. For
positive energies the solution regular at the origin has
the general form for large 7:

y~(—1)! exp[(—9)¥r]—Su(s) exp[— (—9)¥]; (4.20)

the critical value of / for a given s is that for which we
have only an outgoing wave, which means S;(s) be-
comes infinitely large. These are the singularities in the
I plane referred to above, I=a(s). This is in contrast to
the usual way of proceeding in which one fixes the
angular momentum and then chooses the energy so that
the wave function satisfies both boundary conditions.
Here the energy is fixed and the angular momentum is
chosen to make the wave function satisfy the requisite
boundary conditions.

To illustrate the use of the variational principle let us
consider negative energies and a Yukawa potential of
unit range. We choose a trial function of the form

(4.21)

where y2= —s and ¢ is the variational parameter. In the
exact solution, the behavior of the wave function at the
origin should be ##1. This trial function in Eq. (4.19)
leads to

I=—o*— (20—1)(\/27) (2v/2v+ )%, (4.22)

In performing the integrals in 7 we have assumed that
o is greater than one-half. We will use Eq. (4.22) to
define I for all .

Our next task is to find the extremum of this ex-
pression by varying o. This is in general very tedious to
do analytically but there are two limits in which it is
quite simple.

The first simplification occurs for large y. Then I may
be expanded in powers of (1/v) and one finds that the
appropriate values of ¢ and I are

o=—N/2v)(14+1/2v+- )

I=M/2v)(A+N/2v)+---.
This leads to
a(s) = =33 (1-+4D)
=—3+3(142I-22+- ).
The appropriate choice of the sign of the square root

turns out to be the lower one, as we shall demonstrate,
hence

y=r° eXP(—’Y”)s

and
(4.23)

a(s)=—1=2/2v+0(1/~%, (4.24)

ki

which agrees precisely with our previous result, Eq.
(4.5). One might worry that the square root in «(s) will
introduce a branch point at the value of s for which I is

—1). We would like to argue that this branch point
does not in fact occur. The point is, that from the
definition of 7, we see that it has an absolute minimum
of (—%) for real a(s). If this minimum occurs for a finite
value of v, say 7o, then we can write

I)=—+G—v)% " (v)+---,  (4.25)
and in the neighborhood of v, we find
a@)=—3+—v)GI" (v - (4.26)

Thus the point v is #ot a branch point of the func-
tion a(s).

In order to demonstrate this in detail let us return to
our example, Eq. (4.13). The absolute minimum of

occurs when o=1%. The value of v which makes

oI (v,0)

9o oy

2

can be determined exactly for our model to be
Yo=—A—}.

The potential strength N is negative for an attractive
potential and we will assume that v, is positive, i.e.,
A< —1.

If we now expand I to second order about the mini-
mum point by writing

Y=v0tx,
o=1+44,

then the extreme value of I is found by varying é and
we find

x2 2\ 1

4 2+1
Therefore,
(r+r %)
a(s)=—p+——
2

2 —3
x[z ln( >+1] 4.0 (4.27)
2A+1

This example bears out our general argument that
a= —1% is not a branch point. In an appendix we prove,
using the methods of Regge, that for a Yukawa po-
tential, amay be continued analytically below Rea= —%.

As another example of the variational principle, let us
try to calculate the value of A required to produce a
bound .S state at zero energy, again for a Yukawa po-
tential. The wave function (4.21) is not very appro-

priate in this case and therefore we choose

y=1—co (4.28)
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This leads to

a (1+a)?
I(y=0, a)_[5+>\ ln(1+2a):| / 2aIn2. (4.29)

The value of e required to extremize this expression is
independent of A and is found numerically to be ap-
proximately a=1.40. Therefore

I=(140.601)/4 In2.

(4.30)

The condition for a(0) to vanish is that I vanish, and
this requires

A=—1.67. (4.31)

The exact value of A required to produce a zero-energy
bound state is A=—1.6798. The variational principle
therefore seems to be quite accurate.

Let us return to the problem of subtractions in the
Mandelstam representation. It is well known that the
scattering amplitude is an analytic function of the po-
tential strength A. From our previous discussion we
expect that as the potential is made more attractive, a
bound state is formed when a(s) vanishes for some real,
negative value of s. In order to follow the formation of
the bound state in detail, we will write our representa-
tion in such a way that the continuation in A (or in «)
can be carried out in a transparent way.

If Rea(s) exceeds zero, then the Fourier-Bessel repre-
sentation [Eq. (2.18)] breaks down at the lower limit
of the b integration. Therefore let us consider the
identity

H(,s)=[H ()~ B(s)b+0 T4 B(s)b-21t),

where

(4.32)

B(s)= (1/m) 22T (14a)B (s).

We have assumed that Rea is negative. As Rea increases
through zero, the term in the square bracket still
behaves in a reasonable manner at b=0. As long as
Rea <0, we may write Eq. (4.32) as

* dz _ .
Hs)= / — () h(z,5)—B(s)z 4 singr (14a) ]

+B(s)p20ted (4.33)
The scattering amplitude then becomes
* dg )
fep= [ —Kate-0h
[
X[1(2,5)—B(s)z=+ singr (14-a)]
— (—9B(s)[sinra L. (4.34)

This equation can be continued in a(s) without diffi-
culty. The first term remains well defined for values of «
less than unity. The second term can be continued by
hand and one sees that there is a pole at the point
a(s)=0, as expected.
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If an explicitly subtracted Mandelstam representation
is desired, one can easily achieve this goal by using the
dispersion form for K,(b), Eq. (2.14), and also the
formula

w dt
B(s) / —' @ (¢ — )= —B(s) (— ) *O[sinma |

The absorptive part, 43(Z,s), turns out to be
1 0
As(,s)=- / dz Jo(3it})
2/
X [A(z,5)—B(s)z= @+ sinr (1+a)]
+B(s)t.

This formula is valid if Rea<1. The last term with its
explicit factor of ¢* shows the need for a subtracted
dispersion relation. This form for 43 is to be compared
with its analytic continuation to values of Rea<0,

Eq. (2.23): .
At)= / ds To(h(ss).  (4.35h)

(4.35a)

One can also show, by dispersing b2H (4% s) instead of
just H(%s) in 82, that for Rea>0,

1 0
As(t,s) =5 / dz [Jo(z48)—1]k(z,s). (4.35¢)

These three forms are equivalent and are analytic
continuations of each other. They can be rewritten in a
universally valid fashion by using the fact that for any
value of fless than one, 45 vanishes. In particular, we
have

A 3 (O,S) =0.

Introducing the function

1 00
I(z,5)=- / a7 h(7,s),
2)z

and integrating by parts, one gets the same result for
each of the three forms for 43(¢,s):

Ay(ts)=— L

This form holds for any value of « less than unity. We
see that the bound-state pole position and residue, and
the single dispersion integrals are all completely speci-
fied by an analytic continuation in the coupling
constant.

00

a
dz 1 (Z’S):?—] o(23h). (4.36)
2

V. THE COULOMB SCATTERING AMPLITUDE

It will prove instructive to illustrate our previous
general discussion by means of an example. Even though
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there are some difficulties with the long-range character
of the Coulomb potential, we will consider this case
because a cutoff can be introduced and the problem can
be solved exactly. In a nonforward direction the scat-
tering amplitude takes the form?

flsp)= (=)} / ’ bdb Jo[ b(—1)*](4a?/%)®, (S.1)

where
1+a(s)=— ZeM/B)[(—s)*+1/aT,  (5.2)

and “a’” is a parameter which has been introduced to
make the integrals well defined and will be allowed to go
to infinity at the end of the calculation. A positive
(negative) Z corresponds to a repulsive (attractive)
potential. The integral over b is well defined if «a(s) is
negative. Thus, we require that

—(ZeM /H)a<1.

This restriction will be relaxed later.
The integral over the impact parameter can be carried
out with the aid of W and the result is

2(=s)}(1+4a) I'(—a)
t I'(240)

which gives the correct cross section in the limit of
infinite “g” “@” is isolated in a

f(S,t)= -

(=a)*e,  (3.3)

since all dependence on “a
phase factor.
If we make use of the representation

sinra [° dz
(4a?/B)+o= — f (e, (5.4)
™ 0 Z+b
then we find
h(z,5)=— (—s)[sinra ](4a?/z)1te. (5.5)
This leads immediately to
Asts)=[2x(—s)¥/](a2) T2 (1+a). (5.6)

=

It is now possible to rewrite f(s,#) in double dispersion
form. The result is
ds’ rodt p(s )
f f .7)
0 (s —) (=t
where
p(s,t)=— (wsi/1)

27e*M
X [(a*)*eT2(14a) +(a?) T (1+a*) ]. (5.8)

The infinite range of the Coulomb potential manifests
itself in the fact that the spectral function p(s,) is
nonzero in the entire positive quadrant of the s—¢ plane.

The formation of bound states can be studied with
this model either by performing a continuation from the
second sheet® or by the method discussed in the previ-

13 R. Blankenbecler, M. Goldberger, S. MacDowell, and S.
Treiman, Phys. Rev. 123, 692 (1961).
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ous section. The interesting factors in the scattering
amplitude are in the same form that occurred before:

I'(—a)(—t*=—n(—t)T(1+4a)[sinma ]

For example, the lowest bound S state yields a pole in
the scattering amplitude of the form

. S0 (so*+1/0a)
o
s+so0

sot=[— (ZeM /i) — (1/a)].

The potential has been assumed attractive and ¢ must
be large enough so that so is real. The bound states are
seen to occur with the correct energy (as @ goes to
infinity) and with the correct degeneracy. That is, the
pole that occurs at the point a(s) = L has a residue that
varies as ¢t%. This form contains bound states at s, with
all angular momentum up to the value L.

It is also instructive to consider the variational
principle for a(s) in the Coulomb case. Using the same
trial function as before, Eq. (4.21), we find

20 —1)Z2M /1i*.
The extreme value of 7 is
I=(Z/avy) 1+Z/avy),
where ao="7%%/Me?. The function a(s) turns out to be
a(s)=—(1+Z/avy)
and therefore the bound energy levels are given by
7= (Z/a0)*(1+a)7%,

where we require & to be 0, 1, 2, - - -

: (5.9)

where

=2

VI. COUPLED CHANNEL CASE

It has been demonstrated's that the Mandelstam
representation holds for the coupled channel case if the
potentials are of the Yukawa form. The binding energies
of the channels must also obey certain inequalities to
avoid the problem of anomalous thresholds. In order to
treat the many-channel problem in terms of the high-
energy approximation, we are naturally led to a matrix
notation. Thus we would generalize the phase function
to a symmetric matrix. Instead of discussing this repre-
sentation, we will confine ourselves to the N/D solution
since it can be easily generalized to field theory.

In order to satisfy the matrix unitarity condition

dQs
Imf(s,tis) = / Z’f (s—1e, t12)p(s) f(s+ie, t23), (6.1)

where p is a diagonal phase space matrix, we consider

14 This result was derived independently by N. Bohr, Phil. Mag.
26, 1 (1913).
( s L) Fonda, L. Radicati, and T. Regge, Ann. Phys. 12, 68
1961).
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the matrix form!6

f(s,t) =/°° bdb J[b(—)¥IN (B%,5) D1 (B2s), (6.2)

where

© /

D(b?s)=1— / —(s'=5)"r(s") ReN(8%s") (6.3)

and
pi(s)=2k3(s)r:(s),

where £2(s) is the square of the wave number in the
appropriate channel. Performing the standard manipu-
lations, it is easily demonstrated that this scattering
amplitude satisfies

aQ
Im(5,0)= / —fls=i9pi(s+i9

]

+ / bdb [D7 (s—ie) T2

’ XImND-40(1/s). (6.4)

Thus we see that for s values large compared to the
excitation energies of the channels, unitarity is satisfied.
Again, if we choose Im/V appropriately, unitarity can be
satisfied exactly.

Let us examine the problem of bound states and
resonances in the many-channel case. Again only the
small-b limit of V and D~ need be considered. As in the
single-channel problem, we expect that

N (0,s) = constant matrix,
det[D(82,5) ]=C (s)b2l+a@l 4. . .

Therefore, the scattering amplitude becomes in the
large ¢ limit:

f(s,)=B(s) (=)« sinma(s) ]+ -+,  (6.5)

where B(s) is a matrix. This demonstrates the fact that
if a bound state occurs in one channel, it must occur in
all channels in order to satisfy unitarity. This statement
is also seen to be true for resonances. Finally, we remark
that the large-# behavior is the same for @/l channels, a
most remarkable result.

VII. FIELD THEORYY

As an example of the application of the Fourier-
Bessel representation to field theory, we will consider
first the case of nucleon-nucleon elastic scattering. This
restriction is in no way required or essential. The in-
elastic effects do not seem important even in the medium

16 J. Bjorken, Phys. Rev. Letters 4, 473 (1960); J. Bjorken and
M. Nauenberg, Phys. Rev. 121, 1250 (1961); R. Blankenbecler,
Phys. Rev. 122, 983 (1961).

17 We use the term ‘‘field theory’’ in the sense usually employed
by dispersion theorists; there is no implication that the theory has
necessarily anything to do with Lagrangians or “axiomatics.”” It
is sometimes referred to as the ““S-matrix theory.”
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energy range for this process and therefore the elastic
unitarity approximation would seem reasonable. These
effects could be included by using the matrix repre-
sentation discussed in Sec. VI. The complications due to
spin and isotopic spin will be neglected in our discussion,
but the effects of both a direct and exchange force will be
included.

The amplitude will be considered as a function of the
energy squared, s, and the two momentum transfers, ¢
and #. Some useful kinematical relations in the center-
of-mass system are

s+ttu=4m?,
t=—=2p*(1-2), 7.1
u=—2p"(1+2), '
4p?=s—4m?,

where m is the nucleon mass.
The Mandelstam representation is written in the
form?8
©di’ A3(¥,s) © du’ Ax(u,s)
Mist= | ———+ | ——,
1o Ut 1 T U —u

(7.2)

where the absorptive parts take the general form

A:(2,5)=T©(x—1)+0(x—4)o:(x)
© ds'
+ | —pilas) (=)
dm? T
© da
+ | @) (@ Fat-s—4mH)

4m? T

(7.3)

and all energies are measured in units of the pion mass.
The unitarity relation in the elastic approximation is

aQ
ImM(s,213)=p2/ —‘i—IZM*(S,Zm)r(S)M(S,Zzs), (74)
™

where
7(s)=m/p(s)st
and
Z923= 212213+ (1 —2122) 3 (1 — 213%) ? cosepia.
The differential cross section in terms of this amplitude
is

do/dQ=| M |*(4m?/s). (7.5)

The impact parameter representation of M is intro-
duced as

M= / " b (T (— VA (85)

P ‘l"]o[b("%)*]ﬂz(b%é‘)},
18 S. Mandelstam, Phys. Rev. 112, 1344 (1958).

(7.6)
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where

® dx
Hi(s)= f TrobeAu(ws). (1)
1T

Our next step is to find a form for H; which auto-
matically guarantees that elastic unitarity is satisfied
for large energies. As we shall see, the energy only needs
to be large compared to the range of the interaction, and
this can still be in the elastic unitarity region. Since both
direct and exchange forces will be considered, we are
free to attempt to satisfy unitarity in both the forward
and backward directions. Carrying out the same ma-
nipulations that led to Eq. (3.10), we find two condi-
tions in the field theory case:

ImH (%) =7(s)[Hs*Hs+Hy*H,],
ImH,(0%s)=r(s)[Hs*Ho+ Ho*H3 .

forward,

(7.8)
(1.9)

backward,

In order to solve these coupled equations, it is con-
venient to introduce amplitudes which are even and odd
under exchange:

H(1%,5) = Hy (0%,5) = Hay(B2,9). (7.10)

In terms of these functions, asymptotic unitarity takes
the simple form

ImH o (b2s) =7(s) | H.(b%5) ]2 (7.11)
Let us consider writing H in the form
H,.(8%5) =N .. (8%5) Dy (B%9), (7.12)
where
© ds’
Dy (Bs)=1— —7r(s")[ReN (%) ](s'—s), (7.13)
4m? T

and the quantities N4 (b?,s) are complex analytic func-
tions of s. If they become real for large energies, then
Eq. (7.11) is automatically satisfied. We entertain the
possibility of complex N in order to satisfy elastic
unitarity exactly for all energies. Even in the case where
inelastic processes are important, the form (7.12) is still
appropriate, since it sums approximately those graphs
which contribute to elastic unitarity. It is seen from
Eqgs. (7.7) and (7.3) that the H’s and N’s have both a
positive and negative cut in s. In any approximation
scheme, we can always make sure that the negative cuts
in M combine in such a way that only positive cuts in
s, t, and u are present in the final Mandelstam form.
Before discussing the general problem of bound states
and resonances in field theory, let us briefly outline a
practical application of this representation. We will try
to construct a reasonable approximation to the scat-
tering amplitude which is valid for small momentum
transfers and large energies. This regime suggests using
the type of approach discussed in connection with po-
tential scattering at the end of Sec. IL. That is, the ¢ and
u discontinuity will be calculated exactly up to some
chosen momentum transfer and the representation will
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be used to automatically insure the satisfaction of
unitarity in the s channel at high energies. This is
similar to the peripheral collision model,*® but with the
limitations of unitarity enforced, at least approximately.
Only the one- and two-pion exchange terms will be con-
sidered exactly, since they should yield the most im-
portant contribution for large impact parameters. There-
fore, we will choose

Ni(b2,.¥) = (Ps:!:Pg)Ko(b) - (Pa:l:Fz)2Ko2(b)I(S)

S dx
n / —Ko(bah)[A3(x,5)% A2(x,5) ]

® dx
n / O KBt [ As(w,0) s ()], (7.14)
where ’ -y
I(s)= —r(s")(s"—s)"L

If the functions H,=N_D ™! are expanded, then it is
easily seen that the ¢ and # discontinuities are given
exactly up to the value nine by the first three terms
alone. In addition, we see that the absorptive parts 43
and 4, are given exactly in the region 4 <¢<9 by the
elastic or two-pion contribution. We will assume that
these quantities are known in terms of nucleon-anti-
nucleon annihilation into two pions. For the region
9<t< o, there are several approximations which seem
reasonable. The simplest is to choose the elastic con-
tribution plus an arbitrary function which would insure
the correct low energy behavior of H, and would also
produce the S-state deuteron pole from H,. It is also
possible to choose these absorptive parts so that the
two- and three-pion resonances are included and perhaps
even some sort of absorptive potential.

Just as in the potential scattering case, the bound
states and resonances are associated with the small-b
behavior of N and D. In fact, if V.. approaches a con-
stant, and

D, (b%,5)~b0+e=NCy (s), (7.15)

then we find

M (s,40) = — B4 (5)[sinmec, () AL (= =0+ (=) 4]
—_(9)[sinma(5)]*
XL(=)=0 = (—) =]+ .

The possibility of a more general small-b behavior of D
will be considered later. The even (odd) angular mo-
mentum bound states and resonances come from the
first (second) term in (7.16). For example, the bound
states and resonances arise when

Rea, (s)=2n,
Rea_(s)=2n+1,

19 See, for example, S. D. Drell, Revs. Modern Phys. 33, 458
(1961); F. Salzman and G. Salzman, Phys. Rev, 121, 1541 (1961).

(7.16)
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where » is an integer. The singularities or resonances
which seem to arise when Rea, is an odd integer and
Rea_ is an even integer are not generally present. This
arises from the fact that (7.16) contains only the leading
terms in an asymptotic development in ¢ and #. These
leading order terms cancel by virtue of the relation (7.1)
between s, ¢, and %. For example, if «y~1, then the first
term in (7.16) becomes

— (tHw)Bi[sinra, ] = (s—4m?)B [sinrey I

it no longer grows like ¢. The singularity of this term is
in general cancelled by the first order terms in the
asymptotic development which we have not discussed.
Our experience with potential scattering tells us that in
place of (7.16) we should have the form

M (5,8) = =74 () [Py (—2)+Pa, (2) ]/sinma, (s)
—~v—(8)[Po_(—2)—Pq_(2)]/sin[wa_(s) .19
(7.17)

It is plausible from (7.15) and the definition of D that
in the case of nucleon-nucleon scattering, we have

“ ds’

— Ima, (s') (s"—s)
am? T

ar(s)=az(—=)+ (7.18)

There is always the possibility that the integral in (7.18)
will not converge and that a subtraction must be per-
formed at some finite point. This would correspond to a
type of CDD?® ambiguity since the arbitrary value of
oy which is thereby introduced can be used to produce
a “bound state” pole in M no matter how weak the
coupling or “potential” becomes. The introduction of
elementary particles into a theory can be accomplished
by just such a procedure. For example, if the deuteron
had to be introduced in this manner, one would write

© ds’
a(s)=(s—Mp) | —

im? T

XImay(s) ("= Mp2)~1(s'—s)L.  (7.19)

The subtraction has introduced only one arbitrary con-
stant, M p?. It may be that the residue of the deuteron
pole is still determined dynamically.

It behooves us to remind the reader that even if our
assumptions concerning the a, (s) behavior of the scat-
tering amplitude are correct, this does nof solve the
bound-state problem in field theory. One must also
show that the bound state shows up in the inelastic
continuum, for example the contribution of 74D in
nucleon-nucleon scattering. This state manifests itself
by extending the inelastic cut to a lower threshold, an

% This point is treated in detail in reference 25. We wish to
thank Dr. Frautschi for a discussion on his approach to the
question.

(1205Lj Castillejo, R. Dalitz, and F. Dyson, Phys. Rev. 101, 453

956).
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effect we have not yet demonstrated. A possible mechan-
ism for this extension was given in reference (13) and the
poles discussed there are exactly the same as those
arising from the a(s) behavior. We therefore expect that
the correct behavior of the inelastic thresholds as a
bound state is formed is assured by analytic continua-
tion in a(s).

To see how this comes about, we have to examine the
structure of the inelastic matrix element M »3 describing :
nucleon 4 nucleon — pion 4 nucleon + nucleon, illus-
trated in Fig. 4. There are many things we don’t know
about the matrix element but it is certainly true that it
must have a term of the form

M os=ns3(s,0? - - -)/sinmray (w?)+ - - -,

where w is the center-of-mass energy of the two nucleons.
This insures that there will be a pole as a function of w?
if a bound state occurs in the nucleon-nucleon system.
The other variables have been suppressed. We now sup-
pose that the ‘“‘potential” is sufficiently weak so that
o (w?) does not pass through zero.

The contribution to nucleon-nucleon elastic scattering
will have the structure
pg(s',wz)fdﬂ Moys*M s,

(s"4—1)2

* ds’
@em+1? T 4m?

where ps is a three-particle phase space factor. Now as
the “potential” strength is increased, oy (w?) will vanish
at the upper limit and the »? integration must be de-
formed to avoid the end-point singularity of the inte-
grand. This, in turn, forces a deformation of the s’
integration. The end result is an “anomalous” threshold
at the point s= (M p+1)2 For details of the type of
continuations needed the reader is referred to refer-
ence (13).

The contribution to Ima. (s) coming from each of the
inelastic channels should be positive to insure that the
incident wave is attenuated by the absorption. [See
discussion following Eq. (4.18).] Thus the suggestion
that one might need a subtraction in «. is quite reason-
able because there are an infinite number of channels.
We also see that absorption tends to build up a.(s) and
hence may lead to elastic scattering resonances just as
in the potential case. We would like to emphasize again
that these resonances tend to occur below the inelastic
threshold in contrast to the particular situation dis-
cussed by Ball and Frazer in reference 12.

We will now prove that at most one subtraction is
necessary for e, (s). Froissart? and Greenberg and Low?
have given limits on the maximum angular-momentum

D@:w?

2L M. Froissart, Phys. Rev. 123, 1053 (1961).
2 Q. Greenberg and F. Low (to be published).

dw?

sinmey (w?) sinma *(w?) ’

Fi16. 4. Pion production in nucleon-
nucleon scattering.
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state that can resonate at a given energy. Greenberg and
Low, who used only analyticity in the Lehmann ellipse,
showed that

Rea(s) <sXInsX const.

Froissart, using the Mandelstam representation, showed
that
Rea(s) <s?XInsX const.

Therefore, if the Mandelstam representation holds, at
most one subtraction is needed in the a dispersion
relation.

A selection rule concerning the ordering of resonances
and bound states holds in field theory just as in potential
scattering. The only new point to be considered is that
the presence of an exchange potential means that the
even and odd angular momentum states must be con-
sidered separately.

If an ay(s) curve is followed below the point s=0,
then one is in the physical region for the crossed process
where ¢ is the energy and s the momentum transfer.
Thus the asymptotic behavior in the energy of this
process is governed by ay(s). If we apply Froissart’s
upper bound on the scattering amplitude, then we must
require for large £ and negative s that

|[(=t)*++ (—u)e+—s+4m?[sinma, ]| <ct In%t.

The constant terms have been added to produce a pure
P-wave term in the limit as discussed in Eq. (7.17).
This implies that o must be less than or equal to one
since, as ;. approaches one, I’'Hospital’s rule yields

|imt| <ct In%,

which is certainly satisfied. Any value of «; larger
than unity (for negative s) would violate this inequality.
In fact, if o, (0)=1, then one gets a constant total
cross section in agreement with Pomeranchuk’s theo-
rem.2 It should be emphasized that if for any s,
Rea, (s)=1, there is no corresponding resonance or
bound state.

One can produce a scattering amplitude which is as
large as that allowed by the upper bound by assuming
H,(8%s) to behave as

H, (8%,5) ~b20+e) In2p,

for small 5. One can carry out the impact parameter
integration by differentiating the previous result with
respect to « twice. Then we find

M~ =B, [(= )+ 2 (= )+ (— )=+ In2(— )/
sinroy -+ -,

However, if H,. were to behave this way at the origin,
then any bound states and resonances which appear
when o passes through an even integer would have a
very peculiar angular dependence which doesn’t re-

% The possible connection between the Pomeranchuk theorem
and the trajectory of a Regge pole has been discussed in detail by
G. Chew and S. Frautschi, Phys. Rev. Letters 7, 394 (1961).
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motely resemble a pure angular momentum state. If
this « does not take on even integer values, we cannot
exclude such an asymptotic behavior. Resonances and
bound states, if any, would then arise from terms which
behaved like a pure power of b at the origin.

It is appropriate at this time to recall the relation
between a(s) and the complex angular momentum dis-
cussed in Sec. IV. We have tacitly assumed that the only
singularities in the angular momentum plane are poles,
a point which can be proved in potential theory. It is
far from clear that life is so simple in field theory. This
is a rather involved problem to which we hope to return
elsewhere. It seems that due to resonating particle pairs
in the inelastic contributions to unitarity that there
appear in the elastic amplitude terms of the form

M~/dw2(-—t)7(w”'3)B(w2,s).

Thus, in general, cuts in the / plane may be expected. It
would be interesting to study the extension of Regge’s
formalism to the multi-channel problem in potential
theory.

Another physical scattering process to which the
family theorem may be applied is pion-nucleon scat-
tering. The resonant families for T=%, J=I+4% are pre-
sumably as shown in Fig. 5.2¢ The Dg and Fy/; resonances
occur at laboratory energies of 1.2 and 1.4 Bev, re-
spectively. The familiar P; resonance is a member of the
same “odd” family as the Fy/.. It is very surprising that
there is no Sy member of the “even” family to which the
Ds belongs. If the Sy resonance is absent, there is a
strong suggestion of a need for a subtraction in the even
amplitudes. There is some experimental indication of a
J=% resonance at 0.85 Bev which could be one of a
second “odd” family with J=14-%(P;3), or a member of a
completely different “even” family with T'=$%, J=I
—3(Dy).

In Fig. 6 we show the analogous curves for the states
with T=%, J=I—1. The D; and F; resonances are at a
laboratory energy of 0.6 and 0.9 Bev. The P; “reso-
nance” is what is commonly called the nucleon and is a
member of the same “odd” family as the 0.9-Bev Fy
resonance.

Re a(s)

Rea_(s)
/

——— — —Rea,(s)

— -7
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o
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F16. 5. Pion-nucleon scattering families—7'=3%, J=L+

2 W. M. Layson (to be published). R. Omnes and G. Valladas
(to be published).
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Fic. 6. Pion-nucleon scattering families—7'=3%, J=L—
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It is quite striking that there are no resonances which
can be definitely associated with the quantum numbers
T=%,J=1—%or T=%, J=I4+%. We have been unable
to think of any symmetry principle to exclude these. It
is amusing to recall that the observed classification is
just that found in strong-coupling theories. From the
present standpoint it is reasonable to regard the T'=1%
states as the more strongly interacting ones since their
associated a-curves lie higher than those for I'=4$.

As remarked above, the pole in the T'=% amplitude
which appears when a_(M?)=1 and the high-energy
resonances all have the same character. In the language
of potential theory, the nucleon is to be regarded as a
bound state and is no more fundamental than any of the
other resonances. Even if a subtraction were necessary
for a_(s), one is free to subtract at the nucleon mass (in
which case the nucleon would be “elementary”) or at
the 0.9-Bev resonance (which would then be “ele-
mentary”’). In any case, one may experimentally de-
termine whether the nucleon pole corresponds to a_
going through unity at s=m? by following the curve into
the physical region of the crossed processes. A specific
experimental test involving the crossed nucleon pole in
pion-nucleonscattering has been suggested by Frautschi,
Gell-Mann, and Zachariasen.?

The concept of a “‘dynamical” nucleon opens the door
for some interesting speculations. Suppose we regard the
¢ channel (namely 7m—NN) in pion-nucleon scattering
as a potential. Imagine further that the annihilation
process is characterized by the parameters g, which
measures the pion-nucleon interaction, and A, which
measures in some sense the m-r interaction. We admit
therefore that there are nucleons in the world of the
appropriate mass. What we have not introduced yet is
the concept of the single nucleon pole. If we now require
that a_(M?)=1, we get one relation between g% A and
we get another from the fact that the residue of the pole
thus created must be proportional to g2 If we had some
physical basis (such as the Pomeranchuk theorem) for
fixing the value of a_ at some point we would have the
exciting possibility of actually computing the nucleon
mass in terms of the pion mass. This procedure should
work for any and every particle since the single-particle
poles will occur in some reaction. Remarks of much the

% S. Frautschi, M. Gell-Mann, and F, Zachariasen, Phys. Rev.
(to be published),
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same religious nature have been frequently made by
Chew .26

As an explanation of the fact that some of the oy
curves do #ot seem to pass through zero, we offer the
following model which may be totally unrelated to re-
ality. Assume that the field theoretic a.(s) behaves like
potential scattering in the case of very small coupling
constants. Then the ay.(s) should be below zero for all s;
that is, there are no bound states. As the coupling
parameters are increased, there should be a point at
which an S-wave bound state is formed. If the couplings
are increased still further, the mass of the bound state
decreases and eventually becomes negative, heralding
the appearance of a ghost. The condition that this ghost
pole be unobservable is that it occur at infinity and this
should determine the coupling constants. It would be
amusing and economical if such a condition also yielded
Pomeranchuk’s theorem.

The next point to be considered here is the high-
energy behavior of M. Following our previous develop-
ment, especially the discussion of the coupled-channel
case, we expect in the { channel terms of the form

Hng (s,t,1)=B(8) (—s)*O[sinwa(t) 14 --. (7.20)

The bound states in this channel occur when «() is an
even (odd) integer. Since these bound states must also
occur in the pion-pion system, the a(f), and hence the
large-s behavior, must be the same [see Eq. (6.5)] for
the two reactions. Thus we see in the actual physical
case that certain combinations of the amplitudes in
nucleon-nucleon scattering, for example, have exactly
the same asymptotic behavior for large energies as do
corresponding combinations of pion-nucleon and also
plon-pion scattering amplitudes. The general statement
here is that the amplitudes for all sets of targets and
projectiles that interact by the exchange of the same
physical states have the same asymptotic dependence on
the energy.

The last point which should be mentioned concerns
the application of the Fourier-Bessel representation to
problems like pion-pion scattering where the crossed
process is the same as the one under study. It is clear
that one can handle such a problem with the techniques
described here in some iteration sense. The input would
be the momentum transfer discontinuity which is calcu-
lated from the results of the previous iteration. This
scheme shares the difficulty of all calculational proce-
dures suggested so far for such problems—it is probably
very difficult to carry out in practice.

VIII. CONCLUSIONS

The impact parameter representation of the scattering
amplitude has considerable intuitive appeal as well as

26 G. Chew, Report to the International Conference on Weak
and Strong Interactions, La Jolla, California, June, 1961 (un-
published).
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many computational advantages. The ease with which
the requirements of unitarity may be satisfied at high
energies even in the many-channel situation allows a
systematic improvement of the discussion of peripheral
collisions. Work along these lines is in progress. The
neglect of unitarity in previous treatments is a serious
deficiency. The diffraction character of scattering ampli-
tudes at high energies is almost guaranteed by the im-
pact parameter representation if H (4%ys) is sufficiently
smooth for small 52

The use of this representation in connection with the
“strip” approximation is best illustrated by Eq. (7.14).
It is clear that we automatically sum the higher particle
exchanges in an approximate manner in order to satisfy
unitarity.

We wish to emphasize that much of our discussion
concerning bound states and resonances can be carried
out without the use of the Fourier-Bessel representation.
In the case of potential scattering, for example, one may
rely directly upon Regge’s work. We feel, however, that
our representation provides a rather natural basis for a
study of the asymptotic behavior for large momentum
transfer and for large energies. Some support for this
position is to be found in the fact that we were able to
establish the high-energy behavior of a(s) almost trivi-
ally for potential scattering. For field theoretic prob-
lems, the analog of the Regge approach in potential
theory has not yet been given. That is, the assumption
that the S-matrix elements are meromorphic in the
angular momentum plane has not been deduced from
the Mandelstam representation and unitarity. The fact
that our representation enables us to at least approxi-
mately impose the requirements of unitarity along with
the Mandelstam analyticity gives us somewhat greater
confidence in our conclusions which are otherwise
reached by simply bodily copying the results of the
nonrelativistic Regge theory.

APPENDIX

In this Appendix we wish to discuss the analyticity of
the .S matrix in the complex angular momentum plane.
In particular we shall show that for a restricted class of
potentials, the domain of analyticity found by Regge
may be enlarged. We follow the notation of reference 11.
Similar and more general work on this point has been
carried out by Froissart.?”

Introducing A=I+3 in place of the angular mo-
mentum /, the radial Schrédinger equation for » times
the wave function takes the form

d2 )\2_%
[—+k2— v— ]¢ (k) =0. (A1)

dr? 72

27 M. Froissart (private communication). We are indebted to
Dr. Froissart for helpful conversations on the subject matter of
the Appendix.
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The particular solution which behaves like 7t near the
origin, call it ¢ (\,k,7), is defined by the integral equation

1 NS R S
S(Nh) =PH— / o [—"““J
22 Jo e I At
X [V(rl) - k2]¢ ()\,k,f’) .

It is conventional to introduce another solution f(A,k,7)
which has the asymptotic form

k) — e

(A2)

(A3)

It was shown in reference 11 that ¢(A,%,7) is an entire
function of % and is analytic in A provided Rex>0;
f(\,k,7) is an entire function of A for Imk <0. From these
results, it follows that the Jost function f(A,k) defined

by

060\
f(x,k>s[f<x,k,r>~——-i

r

f k)
—¢(x,k,r>7] /n, (a

is analytic in A, & in the product of the half-planes
Rer>0, Imk <0 and is continuous on the boundaries.

It is the analyticity domain of ¢ in the A plane that
limits that of f(\,k) to Rex>0. To see how the limita-
tion arises, let us rewrite (A2) as

u(\ )= 1+/ dr’' Ki(r/Yu(\ k'), (AS)
0

where
/

w=g/rH, Klz~51;[(77>%~1]r'[1f(r')ak2]. (A6)

The iteration solution of (AS) converges and yields a
solution analytic in A provided that

/ i | Ka(rp)| <. (A7)
0

If one is given only that 2V (») — 0 as » — 0, the con-
dition (A7) requires Rex>0. We shall make the explicit
assumption that

V(rn=A/r++0(%), (A8)

for small », where both e and § are less than unity. The
second term in the potential, when substituted into
(A7) leads to the restriction Rex>—(2—46)/2. In the
text, we were primarily concerned with possibility of A
reaching the value —% (i.e., /=—1) so we needn’t con-
cern ourselves with the »—? term. If we wished to commit
ourselves on the precise form of this term, as we shall
see, it is possible to get to even smaller values of Reh.
We shall concentrate our attention on the first term in
(A8), which is the dangerous one.
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Our purpose is to rewrite Eq. (AS) in such a way that
an explicit continuation from ReA>0 down to Reh
> —(2—48)/2 may be carried out. To this end, define
»1=u—1 and find that v, satisfies the integral equation

U1 ()\,k,?’) =B ()\,k,?’) +/ dr’ Kl(r:rl)vl ()‘)karl); (A9)
0

where

Bl()\,k,r)=f dr' Ki(ry").
0

Ar'—e
[2A+1—e][1—e]

(A10)

As a function X we see that B; has a single pole at
=—(1—¢)/2. Next, introduce v1=B1(14v5) ; we ob-
tain for v, the equation
vg()\,k,r)=Bz(7\,k,r)+/ dr’ Kx(ry )va(\ k'), (All)
0

where

Kz(f,')’l)= Kl(r7rl)B1(>\7k;r,)/Bl()\7k>r) (A].Z)
and
Bas(\k,r) =/ dr' Ky(r,r")
0
A,rl——e
(A13)

T Iot20-eoT2(1—07

Proceeding in this fashion, we eventually reach a vy and
By which are analytic in X for

Rex>—N(1—¢)/2. (A14)

If N is chosen so that the above value is less
than —(2—9)/2, we see that # is analytic in A
for ReA>—(2—0)/2 except for simple poles at A
=—n(l—¢/2,n=1,---, N.

Evidently we may define a new function ¢z which has
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the poles just found taken away by writing

2\
¢()\,k,r)=I‘<———1 +1)¢R()\,k,r). (A15)
—e

Similarly we may define from (A4) a regular Jost func-
tion fr(\,k) by

TE)= F<%+ 1) Fr(\E).

Since the poles in N are independent of &, by an ap-
propriate analytic continuation one finds

o —k)=r(1f2_)‘—é+1>fn(x, —k).

The .S matrix, since it is essentially a ratio of the f’s, can
be expressed as a ratio of the fg’s. Therefore S is
meromorphic for ReA> — (2—4)/2. The poles arise from
the possible vanishing of fe(\, —k).

The only relevant soluble example which we know of
is the Coulomb potential, V= A4/r, which was discussed
in Sec. VI. In this rather peculiar case, the S matrix is

SOE)=TA+35+i4/2R) T (\+3—14/2k), (A16)

which is meromorphic in the entire N plane. The first
singularity in A is A\=—3—44/2k or

a(s)=—1—i(4/2F).

We note that our high-energy approximation for the
Yukawa potential led to precisely the same result [see
Eq. (4.5)]. It is reasonable to conjecture that the same
would be true for any potential with a 1/r singularity at
the origin. For a fixed angular momentum, as the energy
increases, the inner region, where the potential is
strongest, dominates. This also follows from the well-
known fact that in the limit of large &, the correct ex-
pansion parameters are (4/k) and (r/k), where 7 is the
inverse range of the potential. If the factor (/%) is to
appear, it must occur with (4/k), and therefore it can-
not show up in a(s) to order (1/k).



