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Theory of the Hydrogen Maser*
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The behavior of the atomic hydrogen maser is analyzed for both stationary and transient operation.
An expression for noise in the signal from the maser oscillator is derived by applying the previously developed
theory of Shimoda, Wang, and Townes, A variety of relaxation phenomena are analyzed, including effects
of chemical reaction with the surface and magnetic field inhomogeneities. Several mechanisms leading to
frequency shifts in the maser are also analyzed, including cavity pulling and the Doppler eBect.
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F&G. 1. Schematic diagram of the hydrogen maser.
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I. INTRODUCTION

'OST attempts to observe radiofrequency or
~ ~ microwave spectral lines with high precision

incorporate one or more of the following features: (a)
observation of the resonance over a relatively long
period of time in order to obtain a narrow resonance
line; (b) observation of a spectral line which is as pure
as possible so that there is no broadening due to
different components of the line or to the environment
of the atom or molecule concerned; (c) a technique for
eliminating, or at least greatly reducing, the first-order
Doppler shift; and (d) a means for obtaining a favorable
signal-to-noise ratio such as is provided in the low-
noise amplification which characterizes a maser oscil-
lator.

Although most high-precision radiofrequency and
microwave experiments depend upon one or more of
the above characteristics, none of them in the past has
attained high quality in all of these features in a single
method. Atomic beam hyperGne structure resonance
experiments are excellent with regard to purity of the
spectral line, but the atoms have only moderately long
lifetimes. The original ammonia maser was excellent
with regard to signal-to-noise ratio but had only a
short lifetime and used a complicated spectral line.
Solid state masers are good with respect to all the
criteria except for broadening of the lines by the
inhuence of neighboring atoms in the material. Optical
pumping experiments with buffer gases are excellent in
every point except for the effects of perturbations due
to the frequent collisions of the radiating atoms with
the atoms of the buffer gas.

The hydrogen maser experiments described in the
present paper originated in an effort to obtain a single
device which was highly favorable in all of these
features. Historically, the experiments were an out-

growth of the previously described successive oscillatory
Geld technique' and of the atomic beam experiments
with stored atoms. ' 4 The hydrogen maser also incorpo-
rates many of the features of beam maser developed by
Townes and his associates. "The experiments are also
related to the buffer gas experiments of Dicke ' and
others although no buffer gas is used in the hydrogen
maser. A preliminary report on the hydrogen maser
has been published4 but no detailed analysis of its
characteristics has been published previously.

The hydrogen maser consists of the apparatus shown
schematically in Fig. 1. Atomic hydrogen from a
radiofrequency discharge in the source passes through
the inhomogeneous state-selecting magnetic Geld from
a 6-pole permanent magnet. This field focuses atoms
in the $F=1, nz=0j and fF= 1, m=17 states onto an
aperture in a TeAon coated quartz bulb. The bulb is
located in the center of a cylindrical radiofrequency
cavity, operating in the TE011 mode, which is tuned to
the (F= 1, tran = 0j —+

I
F=0, rrs=0j hyperfine transition

frequency at approximately 1420.405 Mc/sec. The
atoms make random collisions with the TeRon coated
bulb wall and eventually leave the bulb through the
entrance aperture. Due to their small interaction with
the TeQon surface the atoms are not seriously perturbed
even though they are retained in the bulb for more than
a second and undergo up to 10' collisions with the wall
during the storage time. Under these conditions the
resonance line is so sharp that self-excited maser
oscillations at the hyperfine frequency can take place.

The hydrogen maser has advantages in all of the
desirable features listed above: (a) since the transition
time is longer than one second the resonance line is
narrow; (b) the hydrogen atom spends most of its time

' N. F. Ramsey, Rev. Sci. Instr. 28, 57 (1957); N. F. Ramsey,
3folecular Beams (Oxford University Press, New York, 1956),
p. 124.

2D. Kleppner, N. F. Ramsey, and P. Fjelstad, Phys. Rev.
Letters, I, 232 (1958).

'H. M. Goldenberg, D. Kleppner, and N. F. Ramsey, Phys.
Rev. 123, 530 (1961).

4 H. M. Goldenberg, D. Kleppner, and N. F. Ramsey, Phys.
Rev. Letters 5, 361 (1960).

~ J. P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev.
95, 282 (1954); N. G. Basov and A. M. Prokhorov, J. ExptL
Theoret. Phys. (U.S.S.R.) 27, 431 (1954).

K. Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev.
102, 1308 (1956).

r R. H. Dicke, Phys. Rev. 89, 472 (1953).' J. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620 (1956).
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A. Preliminary Discussion

The ground state of hydrogen in a magnetic 6eld Ho is
described by the Hamiltonian

BC= haI J—gzpoJ Ho —gzpoI Ho.

The energy levels are illustrated in I'ig. 2. In the
presence of an oscillating magnetic 6eld which lies in the
direction of the static field so that H= (Ho+H, cosset)k,
the (F= 1, @zan 0)=and (F=0, ms =0) states are
connected by the following matrix element:

(00I~I10)= (10IXI00)= (gz —gz)stroK cos~t

tz pH, —cosMt. (2)

The wave function may be written

it'=atlt (0,0)+as/(1, 0).
mF= 0

I n. 2. Energy levels of the 'Sy state of hydrogen.
If at time t =0 the atom is in the (F= 1, ms =0) state,
then it can be shown" that at time t later

in free space where it has a simple unperturbed hyper-
6ne spectrum and the effects of wall collisions are small
due to the low electric polarizability; (c) the effect of
the first-order Doppler shift is greatly reduced by the
fact that the velocity of the atom in the bulb, when
suitably averaged, is close to zero; and (d) the ability
of the device to operate as a self-excited maser oscillator
provides the advantages of low noise ampli6cation
which characterize masers.

In the present paper the detailed theory and char-
acteristics of the hydrogen maser are presented. Some
preliminary experimental results have already been
published' and details of the apparatus' and further
results will be published subsequently.

II. STATIONARY OSCILLATION

Several authors have analyzed the behaviour of a
two-level microwave beam maser. ' ' "' The treatment
of the ammonia maser by Shimoda, Hang, and Townes'
(SWT) is the most comprehensive and the discussion
of this section follows their analysis where possible.
The chief differences are: (a) the transition of interest
here is magnetic dipole, rather than electric dipole; (b)
the lifetime of the atoms is described by an exponential
distribution function instead of being constant; and

(c) eA'ects of confinement of the radiating atoms by the
storage bulb must now be considered.

' D. Kleppner, H. M. Goldenberg, and N. F. Ramsey, App/ied
OPtics 1, 55 ('f962).

'o H. M. Goldenberg, thesis, Harvard University, 1960 (unpub-
lished)."J.P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev.
99, 1264 (1955); R. P. Feynman, P. L. Vernon, and R. W. Hell-
warth, J. Appl. Phys. 28, 49 {1957);W. E. Lamb and J. C.
Helmer, Stanford University Microwave Laboratory Technical
Report No. Mf.-311 (unpublishedl.

x
a, (t) = —exp -(to —peo)t

2 [(co—top)'+x']'*

Xsin f-', L(to —top)'+x'jest},

s (M rep)

as(t) = exp (oo cvp)t—
—-I (--- ) +"j-:

Xsin( s I (Cp Qlp) +x ]it}

+$ cos(sI re Mp) +x j*t}

where x= tJ, oH /I's , &oo=—PV(1,0)—W(0,0) j/&
The average power radiated by a beam of I atoms

per second initially in the (1,0) state is

~F=Ih'(I atI')...
(SAT use the symbol "rs" instead of "I.") Here the
average is over time spent in the cavity by the atoms.
It will be shown below that the probability that an
atom ceases to radiate by leaving the bulb or by having
its radiation state relaxed is described by a simple
exponential distribution function,

f(t) =V exp( —Vt), (6)

in which case Eqs. (4) and (5) yield, after the indicated
averaging,

d E=—', Ihp
ys+xs+ (ro —cop)'

In the hydrogen maser the atoms, on the average,
make many traversals of the storage bulb before leaving
the cavity. As will be shown in Sec. IV-E, if B, is not

"N. F. Ramsey, ilfoteegtor Beams (Oxford University Press,
New York, 1956), p. 119.
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uniform throughout the storage bulb, we may replace
x' by

(x)'= (t pl&)'(II.)p'

where (II,)p is averaged over the volume of the storage
bulb. The energy stored in the resonant cavity is

0.8

—20

- IS

— l6

8'=— B'd t/'.

8x

(II is the peak value of the oscillating magnetic field
and the average is over the volume of the resonant
cavity. ) (H, )zs is related to the stored energy by
(II.)ps = (8lrW/U)rt where rt= (II,)ps/(IIs)ir. The value of
r) is plotted in Fig. 3, as a function of a/t, the ratio of
storage bulb radius to cavity diameter, for a TED»
cavity with length and diameter equal. Combining the
above expression with Eq. (7) yields
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FIG. 3. The functions p =(FI,) /b(II )v and f=(FI,)ps/II -'(max)
(10) =0.047' for a storage bulb of radius a in a TEpll cavity with

diameter and length equal to I.

02 (x2)/~2 W/W W (/s/ti )2U~2/8pr~
(11)

&= (pp
—cpo)/y.

The resonance curve is Lorentzian. The full resonance
width at half-height, assuming 8'«1, is

AM~= 2p.

B. Threshold Flux

For oscillation to occur, the power delivered to the
cavity by the beam must equal the power dissipated in
the cavity. The condition for this is

to the stored atoms is calculated in the presence of an
assumed oscillatory magnetic field. The electromagnetic
field generated by the oscillating magnetization is then
calculated, and the assumed field is made consistent
with the field produced. The e6ects of thermal noise
are ignored in this section but will be considered below.

The dipole moment operator is

t(op)= get oJ+gr o&-. (17)

The oscillating dipole moment of an atom in the cavity
at any time is

QAP 1 Q 9s=-—Ihv
ol 2 ol 1+8

(13) ti lp ts(op)/dr (Q2 Gl+gl gs)tip)

Near the threshold of oscillation 0«1, and from Eqs.
(11) and (13), the minimum flux necessary for oscil-
lation is

Iph= 47rW, /Qh=

IUD''/8rr'tl

osQrt. (14)

As an example, if U= 10' cm', p =0.3 sec ', Q=3X 10',
q =3, we have I&I,= io pps. With an incident beamI)I&h, the level of stored energy is given by

W'/W, =8'= (I/Iph) —1. (15)

If the output coupling is represented by Ql, then the
output power is, using Eqs. (14) and (11),

cpW. I
Ql

C. Effect of the Cavity Tuning on the
Oscillator Frequency

In order to analyze the effect of cavity tuning and
noise in the maser, the oscillating dipole moment due

p(t to) =tioe'
Mo S

Z

X —sin(L((p —coo)s+xs$&(t —to) }
2

(GD Cop) (t—to)—
+ sin'

t (pp —cpo)s+xs]'
CO GOO S 2

+complex conj. =ate'~'+ t~e—l«(19)
The oscillating magnetization M(r), produced by the

where gJ- has been approximated by 2 and gz by zero.
(Vector notation has been omitted since the direction
of the oscillating moment is parallel to the driving Beld,
which is along the s axis. ) When the perturbing 6eld
is H, cos~t, the dipole moment of an atom at time t
which entered the field a,t time tp is, from Eqs. (4) and
(18),
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atoms in the cavity, is given by Equation (25) becomes

M(r) = p(r) =
t
pte'"'+ pt*e '"'].

yVb yVb
(20)

Q7
—Mp C0

—
GOO

The bar denotes an average over (t—tp), the time spent
in the cavity. The probability that an atom has spent
a time (t tp) i—n the cavity is p expt —p(t —tp)]. When
the average is carried out, Eqs. (19) and (20) yield,
assuming co —coo((x.

This is a familiar result. In the case of the conventional
beam maser, the expression on the right is multiplied
by a slowly varying function of the power radiated.
AVhen the lifetime of the atom is described by an
exponential distribution function, however, cavity
pulling is independent of the power level.

xP.+i~]Ip, o

M(r) = e'"'+c.c.
2yVp y'+x'+ (or —orp)'

(21) D. The Effect of Thermal Noise on
the Osci11ation

or —or, 1 J'Mt(r) H J*(r)dU
2i =—+—4zri . (22)

or, Q 1'HZ(r) H t*(r)dV

Here or,/2rr is the resonant frequency and Q is the
loaded quality factor of the cavity without stored
atoms, while the frequency of oscillation is or/2rr. Both
the field and magnetization are expressed here in
complex vector notation: H cosort= s (He' '+He '"')
=Hzez~&+. H&+e

After some manipulation Eq. (22) can be rewritten,
with the aid of Eq. (21),

M M 1 S'il po I'g—2i =—+i
or, Q byU p'+x'+ (or —or,)'

(23)

For oscillation to occur Q = pe, and Eq. (23) becomes,
using Eq. (14),

- The magnetic field B generated by the oscillating
magnetization can be calculated in the following
fashion: It is assumed that the magnetization is so
small that it does not seriously perturb the normal mode
of the cavity, or the distribution of field in that mode
II„. In this case the quality factor of the cavity con-
taining the oscillating magnetization Q can be calcu-
lated from a result given by Slater" for a cavity
containing a microwave current.

In order to calculate accurately the effect of thermal
noise on the maser it is necessary to take into account
the amplification of the noise by the maser itself. This
is done by a perturbation method in which the thermal
noise field in the cavity H„(t) is assumed to be small
compared to the field Boproduced by coherent radiation
of the atoms. Details of this procedure are discussed in
SWT, and only an outline of the calculation is given
here.

The oscillating field in the cavity is assumed to be
of the form

I.et
H, =H, p cosort+H (t).

x=H, pp, p/Iz, x„(t) = 2H„.(t)tzp/5.

(28)

(29)

The quantity x„may be written

x„(t)=2x„' cosort —2x„"sinort, (30)

where x„' and x„"are functions of time defined by the
equation. Equation (28) becomes, assuming x„' and
x„"are much less than x,

H, = hp() '(x+x„') cos(ort+x„"/x), (31)

which shows that x„' represents amplitude modulation
and x„"represents phase modulation.

The effect of the noise is to induce a fluctuating
oscillating dipole moment. The total oscillating moment
can be written

(or —or,) Iy y —z(or —~p)
1+2i Q=

orq Izh —'y +x + (or orp)

(24) p=tz. "e' '+tz,„z(t)+complex conjugate.

If or =orp, and or —orp((x, the real pa, rt of Eq. (24) gives
Eq. (15), while the imaginary part can be written

The first term represents the contribution of the
atoms with no noise present, and the second term
represents the contribution due to the noise.

It is shown in SAT that

co—Mp= 2
GO ()

(25) p, t = zino sinxt, (33)

If we define the quality factor of the resonance line by rrz~t(t) = —stzoe'"' x„"(t')cos(x(t' —«) )dt'

Q t =oro/&or, =pro/ (2y)

"J.C. Sister, Revs. Modern Phys. 18, 441 (1946).

(26)
i cos(x(t'——tp)) x„'(t')dt' . (34)
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The 6eId which wouId be present in the cavity due
to noise with no atoms present may be written

h p(t) =h„te'"'+hJ*e '"' (35)

h„t=25 '($ '(t)+i(„"(t))=25 't t(t). (36)

4rQ2tI
LI.t= —z e ~i ~lit(t tp)dtp+—hJ. (37)

The first term on the right-hand side represents the
field due to the oscillating magnetization, while the
second term represents the thermal noise present with

no magnetization. Using Eqs. (28), (33), (34), and

(36), one obtains

t„'(t) and P„"(t) are derived from the spectral density
in the cavity in the absence of the beam. In the following

steps x„' and x„" are found in terms of $„' and g„",
respectively, thereby giving the actual values for
amplitude and frequency modulation in the oscillating
maser.

For present purposes we need an equation similar to
Eq. (24) but in which the dependence on the oscillating
field is made explicit. This is obtained from Eq. (22) by
using the value of M(r) given by Eq. (20), assuming

Q =0 and Q(pi —pi,)/pi, «1. If we solve the resultant
equation for the field, we obtain

This result illustrates how the nonlinear properties
of the maser oscillator tend to limit amplitude Quctu-
ations, a familiar property of oscillators. As the oscil-
lation level increases, the fractional amplitude Quctu-
ation is suppressed. The fractional amplitude modu-
lation, x„'/x= $„'(1+82)/(2y8'), approaches zero with
increasing radiated power.

In order to find the relation between x " and P„"
the time dependence of x "must not be neglected. The
reason for this that x " represents a phase fluctuation
which approaches indnity as time increases. The
quantity of physical interest is the frequency Quctu-

ation, and to determine this it is necessary to know
how the phase x "/x increases in time. To do this we
consider the spectral densities of f " and x„".If df
represents a frequency bandwidth differing from the
oscillator frequency by f, we may write

p "(t)= g "(f) cos(22rft+8)df, (41)

x„"(t)= x "(f) cos(27rft+8')df,

where 5 and 5' are phase angles, to be determined.
Kith these substitutions, the imaginary part of Eq.
(39) becomes

X "(f) COS(22rft+8') —$ "(f) COS(22rft+8)

X X„t $„t 42r2IQrtg p'

-+
2 2 2 Vh

e ~&' '» sin(x(t —tp))dtp = (1+8')y' e 'i' '» X."(f)COS(22rft'+8)

+i e
—&(t—&0) x "(t') cosx(t' —tp)dt'

The result of Eq. (43) is

Xcos(x(t' —tp) dt'dtp. (43)

i cos(x—(t—tp)) x~'dt' dtp (38)

The erst integral yields the same result as found in
Sec. II-B.The other terms represent the effect of noise

and can be written It is shown in SWT that

—(1 +82)~2
2 2

e ~" 'o' cos(x(t—tp))

so that

((.2(f)), kTdf

x' ~ppW/Q

X x '(t')dt'+i cos(x(t—tp))x "(t')dt' dtp, (39)
x '"

QkT(y )'
~ df

)
x2 pi gi 22r fmin f2

(45)

where we have made use of the identity

8n'QI2tpip2/ Vh = Iyp/Igi, = (1+8')y2.

The real part of Eq. (39) can be solved for the case of
noise components which lie within the resonance line-

width. With this restriction, x„(t) may be considered

constant, and the result is

(( ) here represents the time average. )
Both f and f;„must be less than the linewidth

in order for the approximation in tit(t) to be valid. The
lower limit is determined by the observation time. If
the phase is observed for time t, then the smallest
frequency fluctuation observable is f;„1/(2t). —

Assuming that f »f „,i.e. , that the ob.servation
time is large compared to 2/Ace„, Eq. (45) becomes

2x '=
P '(1+8')/8' (4o) (x'")/x'= Qk Tempt/(22r2(upW).
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The fractional rms frequency fluctuation is therefore

(Aok')-'* (x'")'* lk ok„QkT

steno 2V2xcoo o~tGOp

0.113(Qkr )l1 0.113(kr)~

In the last expression, I' represents the power delivered
by the beam to the cavity. For example, if Ql= 2)& 10',
P=4X10 ' erg/sec, t=1 sec, (Dok')l/okp=1. 5)&10 ".

III. TRANSIENT OPERATION

The radiation lifetime of atoms in the cavity y '
can be found in principle from the response of the maser
to an applied signal when it is operated below oscillation
threshold as a spectrometer. This method involves
sweeping the frequency of a local signal generator
across the resonance curve and detecting the power
emitted by stimulated emission. In practice it presents
several difhculties. The most serious of these is the
necessity for controlling the power level of the signal
generator in order to avoid power broadening of the
resonance line. Spurious pickup in the detecting system
can be a source of difhculty with the low power levels
involved. Achieving the necessary frequency stability
in the signal generator can be another serious source of
difhculty. All of these problems are avoided by a
transient technique which allows direct measurement
of the radiation lifetime.

The atoms can be put in a radiative state by a short
pulse of power at the resonance frequency applied to
the cavity when the density of atoms is insufhcient to
cause oscillation. A signal at the resonance frequency
is then generated in the cavity by the atoms and, as is
shown below, if the system is suKciently below the
threshold of oscillation, the amplitude of the signal
decreases with decay constant characterizing the life-
time. The effect is similar in principle to free precession
in NMR. Since the transition of interest is a hyperfine
transition, however, it is not correct to picture it in
terms of a simple magnetic moment which undergoes
a 90' pulse. Furthermore, since the radiation level is
determined by stimulated emission, the term "free
precession" is really a misnomer. For these reasons, the
dynamical behavior of the system will be described in
some detail.

It is assumed that the beam fiux is well below the
level necessary for oscillation. A pulse of rf is applied
for a time w«p '. The frequency M„ is such that

~
okkk

—ppp
~
(xl, where the amplitude of the pulse II„ is

related to xl by xl=lkpP„/A. At the end of the pulse
the amplitude of the lower energy state is, from Kqs.
(1) and (4),

gt= Sln(sxl'7).
At a time t later,

at (t) = sing-,'(x.-r+xt) $.

The rate at which an atom radiates energy is

BP=he—(at(1)') =-,'hkx sin(xlr+xt).
dt

(In this last step it must be remembered that if x is a
slowly carrying function of time then xt is to be inter-
preted as Jp'xdt. ) If the energy level in the cavity is
so low that xt(&1 for all time less than y ', then the
atom radiates at a maximum rate when xlr=m/2.
Since r«y ', the total number of atoms initially in this
state is approximately Ip ', and at time t the number
of radiating atoms is Iy 'e 7'. The power radiated at
time t is, therefore,

AI'=-2lhvy 'xe &' (49)

The energy in the cavity obeys the following equation

dW/dt =DP okW/Q. —
Using Eq. (11), this leads to

(50)

d Ihv8
02 e

—yt

dt 28',

The solution to this equation, assuming ok/Q))2y, is

IhQ
g — s—01/l2Ql 3+ s—r 3

27T 4+$',
(52)

The first term, which corresponds to decay of the
stimulating pulse due to losses in the cavity, quickly
becomes negligible compared to the second. After this
time the 6eld intensity decreases with the decay
constant p. The energy in the cavity decreases at twice
this rate. If the maser is monitored with a linear
detector, however, the observed signal is proportional
to the field intensity, and therefore yields a direct
measure of the lifetime of the atoms.

Near threshold, the above analysis does not hold due
to the nonuniform fashion in which the atoms radiate
when xt=1, and due to the necessity of taking into
account the effect of atoms which enter the cavity
after the pulse is over. The behavior of the system in
this region has been analyzed, ""but the results are
not experimentally as useful due to the complexity of
interpretation in the present case.

IV. RELAXATION PROCESSES

A variety of processes can limit the radiative lifetime
of an atom in the storage bulb. Most of the processes
are random and lead to time independent relaxation
rates, so that the total relaxation rate is the sum of the
rates for each process. Because of this it is possible to
analyze the relaxation processes separately, with the

"R. H. Die)re, Phys. Rev. 95, 99 (1953); R. H. Dicke and
R. H. Romer, Rev. Sci. Instr. 26, 915 (1955); S. Bloom, J. Appl.
Phys. 27, 785 (1956).
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understanding that the individual rates are to be added
to obtain the totd, ' rate.

In the case of nuclear magnetic resonance, the
dynamical equations of the magnetization are often
described by the Sloch equations in terms of the
relaxation times T~ and T2, the time constants which
describe the return of magnetization in a given direction
to its equilibrium value, and the decay of the oscillating
dipole moment, respectively. These are not used in the
present analysis because the Bloch equations do not
apply due to the presence of hyper6ne structure. It is
important to remember, however, that a given pertur-
bation frequently causes relaxation by both changing
the magnetization along the axis of quantization and
by causing loss of coherence between the oscillating
moment and the rf Geld, and that these two rates may
be considerably different. To emphasize this, the
subscripts 1 and 2 will be used to identify decay rates
due to each of these processes, respectively.

A. Escape from the Bulb

The escape rate of atoms from the bulb pp ls found

by equating the incident beam Aux I with the emergent
flux, SvA, /4E, where X is the density, 8 is the mean
velocity, A, is the total escape area, and E is a numer-
ical factor depending on the geometry of the erst
aperture. For a thin hole, K=1. If the volume of the
storage bulb is Vp, then 1K=I/(ypVp), and

yp
——8A./ (4E'Vp) . (53)

As an example, for hydrogen at room temperature,
8=3X10' cm/sec, and for a spherical bulb 16 cm in
diameter with a thin exit aperture 2 mm in diameter,
yp=1 sec '.

B. Effect of Wall Collisions

Wall collisions fall conveniently into two categories:
adiabatic and nonadiabatic. During an adiabatic colli-
sion no transitions of the atom between its states are
induced but a small change in the spacing of the energy
levels usually occurs. This eventually leads to a loss of
coherence with the applied rf field due to randomness
of the perturbations. In a nonadiabatic collision, the
atom is effectively lost as far as further contributions
to the radiation field are concerned due to a transition
to some other state or to a chemical reaction with the
surface. In this case, relaxation occurs during a single
collision. The mean number of collisions an atom
undergoes is then inversely proportional to the proba-
bility that a single collision is nonadiabatic.

l. Adiabatic Collisions

A convenient parameter in describing an adiabatic
collision is the phase shift per collision

8W(1,0)—5W(0,0)
dt. (54)

fs

The integration is over the time of one collision, and
bS' is the difference in energy of a given state between
the free space value and the value when surface forces
are present. It is shown in reference 3 that the atom
loses coherence after a number of collisions

v. = p(&/t) p'. (56)

This type of relaxation process does not strictly lead
to a Lorentzian resonance line. However, in the case
where this is not the dominating process the line is
approximately Lorentzian and the decay rate is still a
useful parameter for describing the linewidth. An
example of a case where this leads to a non-Lorentzian
line is given in reference 3.

The phase shift y is related to the frequency shift,
as discussed below. For the case of hydrocarbon-like
surfaces an upper limit to &p is" y(10—' rad/col,
leading to a value of y, (10 ' sec '.

Z. Ãonadiabatic Collisions: Chemical Reaction,
with the Surface

If there are no strong adsorbtion forces present, then
physical adsorbtion does not by itself limit the radiative
lifetime. Chemical reaction between the atom and the
surface can occur, however, and this leads to a decay
rate &, which is the probability per unit time that an
atom undergoes such a reaction. This is found in the
following manner: In order for a reaction to take place
the incident atom must possess kinetic energy equal to
E„ the activation energy for that reaction. Departures
of the atom from thermal equilibrium are usually
negligible, so that the energy distribution may be found
from a Maxwell-Boltzmann velocity distribution char-
acterized by the temperature of the storage bulb. The
probability that a particular collision leads to chemical
reaction is obtained by 6nding the probability that the
energy available for the reaction exceeds E,. %ith the
neglect of the difference between collisions of hydrogen
with the same molecule when it is in the gas phase or
on the surface, the following result for the rate r with

v=2/p '

This result was derived for a somewhat different
situation from the present. In particular, it was assumed
that there is no rf field present and that the adsorbtion
energy is large compared with kT, so that the adsorbtion
time is described by an exponential distribution
function. Nevertheless, since the result is fundamentally
due to the random nature of the perturbation, it is
quite general and can be applied to the present case.
(For example, it can be shown that the dispersion in p
is changed only slightly when the adsorbtion energy
becomes less than kT, due to the relatively high
dispersion in velocity and direction of the colliding
atom. ) If the collision rate is 8/t then from Eq. (55)
it follows that the relaxation rate is given by
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which the atoms hit the surface with an energy greater
than E, may be derived by well-known procedure"

r = (28/rril) exp( —E./kT), (57)

tr is the rms velocity (3kT/rrt)'*, and l is the mean
distance between collisions. For a sphere, l is two-thirds
the diameter. The temperature T is that of the storage
bulb. The reaction rate differs from r by the steric
factor" P which is introduced because not every
collision satisfying the energy requirement leads to a
reaction. The relaxation rate is therefore

y„= (2vP/7ril) exp( —E./kT). (58)

Both E, and P are dificult to estimate accurately for
a surface collision. For reactions in the gas phase, P is
usually taken to be 0.1, although it can be much smaller.
Since a surface collision may involve interaction with
several of the surface molecules, P is probably larger
than for a similar collision in the gas phase. A particular
example of a possible surface reaction is the case of
surface combination which occurs when atomic hydro-
gen reacts with a methyl group which is part of a
hydrocarbon surface. An example of this is H+CHs —+
Ho+ CHs where it is understood that the methyl group
is bonded to a larger molecule. To estimate the acti-
vation energy for this reaction, one may consider a
similar reaction which has been observed in the gas
phase, H+CsHp-+Hs+CsHp. The activation energy
for this is 6.4 kcal/mole (0.27 ev),"with a steric factor
of about 5)&10 '. The activation energy for reactions
involving hydrogen recombining with other parafIjn
hydrocarbons does not vary markedly from this value
with the size of the molecule, so that it is a reasonable
value to use for the present case. When it is substituted
into Eq. (58), and assuming P=1, the result for a
16-cm-diam bulb at room temperature is y=0.7 sec '.
This is in approximate agreement with experimental
observations which will be described in a later paper.
The activation energy for corresponding reactions with
Qurocarbon is considerably higher than for the hydro-
carbons, and the decay rate with a TeAon surface has
been found to be considerably smaller than possible
with a hydrocarbon surface.

C. Effect of Magnetic Field Inhomogeneities

A nonuniform static magnetic field in the storage
bulb can cause relaxation in two ways. The atoms
experience a time-varying field by virtue of their
motion through the bulb, and this can induce Zeeman
transitions analogous to the Majorana transitions of
atomic beams. In addition, since the resonance fre-
quency is slightly field dependent, and because different

"R. Fowler and E. A. Guggenheim, Statistical Thermodynamics
(Cambridge University Press, London, 1956), Chap. XII."E.W. R. Steacie, Atomic and Free Radical Reactions (Reinhold
Publishing Corporation, New York, 1954), p. 490.

"M. R. Berlie and D, J. LeRoy, Discussions Faraday Soc. 14,
50 (j.953),

atoms have different histories in the bulb, due to the
random nature of their paths, there is eventually a loss
of coherence of the oscillating moment. The relaxation
rates due to these processes will be designated ylI»
and &~2, respectively.

(59)

J(or tr) is the spectral density of (LF(t) j'), and is given
by the Fourier transform of the autocorrelation function
of F(t). The interaction Hamiltonian is

3'.= —yphF H(l). (60)

To a good approximation the components of the
inhomogeneous magnetic field vary independently, so
that H(t) =H, (t), H„(t), H, (l) When this is .substituted
in Eqs. (60) and (59) we have

Wr, p= W t,p=-', yF'J(to), (61)

J(to) = L(H*(l)+H. (l)j
y[a.(t+r)+H„(tgr)fe -dr. (62)-

The cross products in the above equation vanish
because H, (l) and H„(t) are independent and have
zero average, so that (H,'), =(H„'), = —,'(Hp), . The
autocorrelation function of B&, the transverse field, is
g(r) =(Ht(r)Ht(t+r)), and the result is

ver= Wr, o+W r,o=vr'-g (r)e '"'dr. —(63)

The integral in this equation, the spectral density of
(Hp), at the transition frequency, is a complicated
function of the storage bulb geometry, velocity distri-
bution, and magnetic field. The mean time between
collisions $0 naturally presents itself as a sort of corre-
lation time, since the motion of the atom is altered

"A. Abraganr, The Principles of frfttclear Magnetism (Oxford
University Press, London, 1961l,p. 270.

I. Relaxatioe Rate j~g

The effect of the inhomogeneities on the Zeeman
states (F= 1, nt F 1, 0, ———1) is most easily analyzed by
neglecting the (F=O) state, and considering a spin 1
system in the presence of a random perturbation.
Transitions are induced among the states at a rate W,
and the decay rate for an atom from the state of
interest, (F=1,rrt=0), is ylrr=Wr, p+W r p. The sub-
scripts denote nag. It shouM be noted that yIIj does
not correspond to T& ', since the quantity of interest
is the rate of decay of an atom from a given state, not
the rate of decay of magnetization. In the latter case,
for a spin ~ particle, the rate is twice as great.

The transition rate between two states, cr and P, due
to a random perturbation Xr(t) =AF(t), where A is
one operator and F(t) is a random function, is'
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$p

QH1 27F h
1+(a)tp/2) 4

(66)

As an example, in the low fieM region where co/p«1,
then the factor (ostp/2)' may be neglected and using

y» ——1.4X10P cps/oe, tp
——3&(10 s sec, the result is

y~1= 3X10'H»', so that for B»= 10 ' oe, y~1= 0.3 sec '.
This process leads to a non-Lorentzian line shape

since it aRects only the upper of the two resonance
states. In the case where it is the dominating mecha-
nism, the line shape does become Lorentzian, much as
an ideal optical transition has a Lorentzian line shape
even though the upper state has a very large decay rate

"W. B. Davenport and W. L. Root, An Introduction to the
Theory of Random Stgnats and tl"otse (McGraw-Hill Book Com-
pany, Inc. ,

r New York, 1958), p. 103."E. M. Purcell (private communication}.

violently and nearly randomly on each wall collision,
and in spite of the complexity of g(r) it is possible to
obtain approximate expression for the spectral density
in the cases when ~ is either much less or much greater
than tp

—'.
In the limit of low magnetic fields cv=ypBp« fp

' and
the wall collision occurs rapidly with respect to ar '.
In this case the atoms experience a field which assumes
a new value after every collision, and if the wall
collisions occur perfectly randomly in time, then"

(64)

where the average of (HP), is over either time or space.
In this limit, we find

arri(os((tp ) = 2y»' (HP), tp. (65)

This expression is not valid when cugtp ' for the
following reason': the assumption that the field changes
discontinuously is not valid even in the low 6eld case,
although it introduces no appreciable error there since
the relatively large intensity high-frequency compo-
nents led to by this model have no effect when the
resonance is at a low frequency. In the present case,
however, the transitions are sensitive to the high-
frequency components. Actually, the field is not discon-
tinuous in time, since the atom does not alter position
instantaneously, but its time derivative is discontinuous
as long as the wall collision takes place in a time small
compared to co '. It can be shown that this causes the
spectral density to fall off as cv 4. Since the discon-
tinuities in dH /dt occur at 'a surface collision, the
spectral density is now sensitive only to the average
field inhomogeneity at the surface, rather than the
average throughout the bulb. Because of this it is
necessary to assume a certain field configuration in
order to estimate J(co). The relaxation rate has been
derived by PurcelP' for the simplest type of sym-
metrical 6eld inhomogeneity, where the inhomogeneous
field is given in cylindrical coordinates by H, =2hps/d'
.H, = (ts/a') (p' —2s'). The result is

and the lower state has a decay rate of zero. If there
are several competing processes the situation is quite
complicated, although it can be solved if the total
decay rate for each of the states is known. "

prri(7r) =4p'AHst p. (68)

With the same field as above, arri(sr) =240 sec '. On
the other hand, if the 6eM varies due to inhomogeneities
which are only perpendicular to the axis, then an
inhomogeneity of 10 ' oe in the same field as above
yields arri (sr) =0.6 sec '.

D. Spin Exchange Relaxation

At suKciently high density of atomic hydrogen the
dominating relaxation process is due to hydrogen-
hydrogen collisions. The mechanism which leads to
relaxation is chiefly spin exchange in which the electron
spins of the colliding atoms exchange, leaving the atoms
in hyperfine states diRerent from the initial states.
Wittke and Dicke have analyzed this process, and their
results have recently been confirmed by a detailed
analysis of Mazo. ' Measurements of the spin exchange
cross section have been made in an EPR experiment

by Hildebrandt, Booth, and Barth" and there is
generally good agreement between theoretical and
experimental results. The decay rate for spin exchange
collisions p„is related to the number of hydrogen atoms
per cm', T, by

p„—5&10 1' sec '
"P. Kusch and V. W. Hughes, HandbacIs der Physs7e, XXXVII/

1 I,'Springer-Verlag, Berlin, Germany, 1959), p. 7.
~' R. M. Mazo, J. Chem. Phys. 34, 169 (1961).
pa A. F. Hildebrandt, F. B. Booth, and C. H. Barth, Jr., J.

Chem. Phys. 31, 273 (1959).

Z. Relaxatioe Rate y~2

The same comments regarding the line shape that
were made in Sec. IV 8 (1) apply to phase decorrelation
due to random motion through an inhomogeneous Geld.
A simple method with which to obtain an estimate of
y~~ is to assume that the field has a separate value on
either half of the storage bulb, Hp&EH/2. Since Geld

dependence of (F= 1, rise =0) —+ (F=0, rrs» =0) is given

by o=vp+nH', where n=2750 cps/oe', the resonance
frequencies on either side of the bulb then diRer by
2nHphH, assuming AH«Hp. If the mean number of
collisions an atom makes before leaving is e, then the
mean time an atom spends in one half of the bulb, in
excess of the other half, is 2e'tp, and for coherence it is
necessary to have 2n&tp(2nHpAH) (1.Therefore,

yrIs = 1/sstp= tp(16n'Hp'AH'). (67)

If, for example, He=10 ' oe, B,H= 10 ' oe parallel to
II'p, then with tp=3)&10 sec, we have y~2—10 sec '.

If the transitions of interest are (F= 1, srse ——+1)~
(F=O, srtp=0), the sr transitions, then there is a first-
order Geld dependence, s = i p&PH, where P=1.4&&10s

cps/oe, and it follows that
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This expression, which is valid for EPR, should be
slightly modified for the hydrogen maser since in the
latter there is initially a nonequilibrium distribution of
states. On the other hand, this introduces only a minor
change in y„, and Eq. 69 is still correct for an approxi-
mate estimate.

E. First-Order Doppler Broadening

So far the effect of the Doppler shift on the shape of
the resonance has been neglected. This might seem to
be a poor approximation since the normal Doppler
broadening of the hyperfine line for a free hydrogen
atom moving with thermal velocities is over 10 kc/sec,
more than 104 times the resonance width of interest in
the hydrogen maser. Doppler broadening does not, in
fact, contribute appreciably to the linewidth due to the
confinement of the radiating atoms to a region of
constant phase and only slightly varying Geld ampli-
tude. The possibility of inhibiting Doppler broadening
in paramagnetic resonance experiments by limiting the
motion of radiating atoms was first pointed out by
Dicke who has analyzed the case of a radiating atom
moving diffusively through a region of varying phase. ~ '
The present situation differs in that the atoms are
confined to a region of almost constant phase and
varying field amplitude, and their motion is random
within a confined volume, rather than diffusive. For
these reasons, a brief analysis of the effect of the
atoms' motion is given.

The situation can be visualized classically. The
resonance curve for the system when the atoms are
assumed to be at rest, Eq. (7), corresponds to the
spectrum of an ensemble of damped harmonic oscil-
lators. If the resonance is not appreciably saturated,
i.e., if x((p, then the transition probability, i.e., the
intensity of the resonance, is proportional to the
driving oscillating magnetic field intensity x', so that
the Geld radiated by each member of the fictitious
ensemble is proportional to the local driving Geld. In
the most general case the amplitude and phase of the
local driving field vary with position in space. This
causes the atoms to experience random amplitude and
phase Auctuations due to their random motion. In the
present case the atoms are confined in a resonant cavity
in a region of almost constant phase where the ampli-
tude varies according to the field distribution of the
mode. The quantity of interest is the spectral density
of the radiated power P(~). P(a&) is the Fourier trans-
form of the autocorrelation function of x(t), G(r)
=(x(t)x(t+r)). If the oscillators were randomly distri-
buted throughout the bulb, but were at rest, then
x(t+r) =x(t) exp( —pirl). (The exponential term ex-
presses the fact that we are dealing with damped
oscillation. ) In this case

G( )=(x')~exp( —~l I). (70)

The average is over the volume of the storage bulb.

P(0) moving (x)P (H,)i,
2

P(0) rest (x')i, (BP )i,
(72)

The area lost from the center of the spectrum appears
in a broad pedestal having the full Doppler width,
6= v/X. The spectrum is approximately

1 1
P (M) = (x)' +—((x') —(x)')

v'+~' v +2+~2
(73)

For a bulb located at a field maximum& ((x')—(x)')/(x)'
is typically —,'0(a/K)', where it is assumed that the
radius of the bulb, u, is small compared to X, the
cavity wavelength )& (2w)

—'. Since y=8/ea, where e is
the mean number of collisions, the ratio of the second
to first terms of Kq. ('73) for &v=0 is approximately
a/(10eK). Consequently the contribution of the broad-
ened term is negligible to the spectrum at resonance,
and it has negligible effect on the half-width of the
spectrum. On the other hand, the motion of the atoms
does have a significant effect on the intensity of the
resonance. The loss of intensity at co=0 is zero when
the atoms are confined to a small volume at the region
of maximum 6eld, where (x)'=(x')=x, '. For larger
regions, the intensity is reduced by the factor f=(x)'/
x'(max). This is related to the function g defined
earlier by

f= (H') pit/H, '(max) . (74)

In the case of a cylindrical cavity operating in the
TEoii mode, f=0 0474' Both f .and it .are plotted in
Fig. 3 for a spherical bulb of radius a in such a cavity,
with length l.

F. Second-Order Doppler Broadening

Although broadening of the resonance by the Grst-
order Doppler shift has been shown to be negligible,
the second-order Doppler shift must also be considered.
It is shown in Sec. VI-C that the total fractional shift
of frequency due to the second-order Doppler effect at
room temperature is approximately 10 ".The velocities
of the atoms are described by a Maxwellian distribution,
and if there were no thermalization with the walls the

The atoms actually move rapidly, making on the
average more than 104 collisions before leaving the bulb.
All correlation between positions at successive times
is lost after a few wall collisions, and for r greater than
the time for a few collisions x(t+ r) is independent of t,
except for the damping factor. In this case, we have
approximately

G(~)=(x)~'exp( —~l I)

The effect of motion is to reduce the power radiated at
the center of the resonance line. This may be seen by
evaluating the ratio of the spectral density at the center
of the resonance curve for the two cases
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resonance curve would be fractionally broadened by
approximately the same amount as it is shif ted.
Thermalization does occur, however, and this reduces
the eRect. If the accommodation coeKcient is p, and if
the atoms make on the average e wall collisions, then
the broadening effect is reduced by a factor approxi-
mately (pe)'. Assuming p=0.3, n=3)&10', correspond-
ing to a storage time of 1 sec, the broadening of the
resonance line due to second-order Doppler shift is
only about 1'%%uo of the resonance width, and therefore
can be neglected.

V. FREQUENCY SHIFTS IN THE MASER

Ideally the oscillation frequency of the maser is
identical with the transition frequency between the
levels of the atomic system as measured with atoms at
rest in free space. The atoms are not free, though, since
they interact with the surrounding electromagnetic
system and, in the case of the present maser, with the
walls of the storage bulb, In the following paragraphs
some of the more important of the effects leading to a
shift in frequency are discussed.

A. Wa11 Shift

The phase shift introduced in the wave function of
an atom during a wall collision q, de6ned in Eq. (54),
causes a shift Ro in the resonance frequency given by

5(d/pp = p/ (ppfp), (75)

where Io is the mean time between collisions. It is a
dificult task to predict y theoretically because of the
uncertainty of the exact interaction potential and lack
of knowledge of the microscopic wall structure. The
experimental upper limit for y for a surface treated
with dimethyldichlorosilane is" p(10 ' rad, or, for a
16-cm-diam bulb, 8&v/a&(10 '. A lower limit to the
expected shift with such a surface can be obtained from
the following argument: The treated surface has very
low adsorptive properties largely because it simulates
a saturated hydrocarbon. The adsorption energy of
atomic hydrogen on such surfaces is smaller than kT,
and as a result the sticking time on the surface is

G. Pressure Broadening

At easily obtainable pressures, collisions with inert
atoms or molecules have negligible effect on the line-
width. Relaxation due to the presence of an impurity
gas at elevated pressure has been observed. For instance,
the relaxation rate due to 02 has been found to be
approximately

y=2)&10' sec—'/mm Hg.

This effect is larger than can be accounted for by
magnetic interaction and has not been fully interpreted
as yet. It may be due to the formation of a short-lived
excited molecule.

comparable to the simple collision time with a free
molecule. In a surface collision the impinging hydrogen
atoms encounter methyl groups which are tightly
bound to silicon atoms composing the underlying
silica matrix. Such a collision should be similar but
somewhat more severe than that with a single hydrogen
molecule. The phase shift for the latter collision can be
obtained from the measured value of the shift in the
hyperfine frequency of hydrogen due to collisions with
molecular hydrogen gas. This has been determined by
Pipkin and his co-workers'4 and is —0.24 cps (mrn Hg) '.
Assuming an effective H —H2 collision diameter of"
2.9)&10 cm, the phase shift per collision is —3.9)& 10 '
rad/collision. This leads to a fractional shift in the
frequency of the maser of 4)/(up= —1.3&(10 ". The
actual frequency shift with a saturated hydrocarbon
surface should be higher than this value not only
because the wall collision involves more than one
perturbing molecule but because the small frequency
shift in the molecular hydrogen buffer gas may be due
to a partial cancellation of the dispersive attractive
force effects by the effect of the exchange forces. The
shift with a saturated flurocarbon surface, such as
Teflon, may be smaller than the above value due to
its relatively tight binding and small polarizability.

Since the wall shift is proportional to the collision
rate, it can be determined by measuring the frequency
of the maser as a function of the bulb size. This probably
cannot be done with an accuracy of greater than 1%
and the wall shift may therefore be the limiting factor
in the absolute precision of the maser. Slow changes
in the wall shift due to aging or contamination could
cause long term fluctuations in the frequency. The
answer to these problems can only be determined
reliably by experiment.

B. First-Order Doyyler Shift

The presence of running waves in the rf cavity can
cause a shift in the resonance frequency due to the
motion of the atoms. This occurs only if the atoms have
a net effective translational velocity, as, for instance,
if they enter one side of the bulb and relax before
leaving through the entrance aperture. The situation
is most easily described in terms of a running wave
such as caused by the presence of a coupling loop placed
asymmetrically in the cavity. (ERects of about the
same size occur even if power is dissipated uniformly
throughout the cavity walls due to generation of rf
power within the storage bulb. ) For the present, effects
of saturation are neglected and an expression of the
spectrum the atom experiences is derived by the same
type of argument used in IV-E, to analyze the effect
of Doppler broadening.

~ L. W. Anderson, F. M. Pipkin, and J. C. Baird, Phys. Rev.
Letters 4, 69 (1960).

'~ J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, 3IIoLecuLar
Theory of Gases and L~qlids (John Wiley R Sons, Inc. , New York,
1954), p. 1082.
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M GOO 2Q

~o 3tm QrQi
(8o)

The length of the resonant cavity is l.
As a numerical example, if n = 10', a/3 =0.3, Qr = 10',

Qi
——10', the result is (o~ ooo)/ooo=2X10 ". This is

clearly a negligible effect.

The rf field consists of a standing wave and a running
wave and may be written

H(i) = 'H—oe"'"" "*&+(—'Ho+Hi)e"""+"'&. (76)

Ho is the amplitude of the standing wave and H~ is
that of the running wave. The spectral density J(&u) is
the I ourier transform of the autocorrelation function
G(r), which is

G(r) =(II(t)H*(t+r)),
= (-', Ho)'(exp[ik(s —s')]),

+ PHo+H, )'(exp[ik (s—s')]).
+ (—Ho+Hi) —Ho(exp[ik(s+s')]),
+ (—',Ho+IIi)-', Ho

X(expL —ik(s+s')])-} exp[—& I
r I].

If r is large compared with to, the mean collision time,
s and s', the position of the atom at time 3 and (/+r),
respectively, are independent. Since J(oo) is only of
interest near the center of the spectrum, i.e., +—oro

((to ', the short time correlations can be neglected so
that s and s' can be considered independent.

To simplify the calculation, the variation of 6eld
transverse to the axis of the cavity is neglected, and
the bulb, which has a radius a, is treated as if it were
one dimensional. If the center of the bulb is located at
the center of the rf cavity, a=0, then a uniform density
of the atom in the bulb is described by the distribution
function F(s)=1/2a. If the atoms enter the bulb at
one end and are relaxed uniformly throughout the bulb,
the distribution is no longer uniform. In this case the
distribution is approximately

F (s) = (1/2a) (1+s/Na). (78)

Here e is the mean number of collisions the atoms make
before relaxing. If Eq. (78) is substituted in Eq. (77),
the following result is obtained after some manipulation

sin'(ak) sin'ak sin(ak)
G(r) = Ho' +2HoH, +i

(ak)' (ak)' (ak)

1 cos(ka) sin(ka)
X— + exp[—i&or —v~r~]. (79)

e (ka) (ka)'

The imaginary part of G(r) represents a frequency
shift. This shift is obtained by evaluating J(oi), the
Fourier transform of Eq. (79), and finding the position
of the maximum of J(cv). Assuming ak(1, and using
the relation Ho/Hi=2Qr/Ti, where Qr is the coupling

Q, one obtains

A quantum mechanical treatment of this problem
indicates that saturation does not appreciably aGect
this result, so that the erst-order Doppler shift can be
completely neglected as a source of frequency shift.

(do 2 c2 2 nsc2

where m is the mass of the atom, k is Boltzmann's
constant, and T is the temperature. The fractional
shift is seen to be the ratio of the thermal energy to
the rest energy of the atom. For hydrogen its magnitude
is (~o—o~o)/ohio= —3X10 "/'K. The shift is three times
smaller for tritium.

D. Cavity Pulling

The inhuence of the cavity tuning on the resonance
has been discussed in Sec. II-C. It was shown there
that a mistuning of the cavity by an amount +,—~0
shifts the frequency by an amount

GO
—

COO COc O)0 c
(27)

where Q. is the quality factor of the cavity. For a ratio
Q./Qi of 10 ', and for a fractional shift no larger than
1.0 ", the cavity must be tuned to approximately 100
cps. For this reason the cavity must be accurately
tuned, and either temperature controlled or thermally
compensated to a high degree.

E. Zee~an Effect

The second-order magnetic field dependence of the
(F= 1, m=O) —+ (F=0, m=O) transition is given by

v= vo+2750H' cps, (82)

where H is in oersted. The fractional shift in frequency
due to AH, a small change in the field, is

(v —v )/v o3o.9X10 oHAH. (83)

A fractional shift of 10 " requires HAH —3&10—' or,
for example, a field of 1 moe held constant to 3%%uq.

Although this represents a high degree of field stability,
the use of the 6eld dependent transitions in the maser
to stabilize the magnetic 6eld greatly simplifies the
problem.

F. Effect of Neighboring States

The presence of atoms in other than (F=1,m=0)
can cause a change in the permeability of the cavity

C. Second-Order Doppler Effect

The second-order Doppler eGect does not average in
the same manner as the 6rst-order effect because of its
dependence on the square of its velocity. The fractional
shift introduced by this effect is

153kT
(81)
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and thereby shift the resonance. The only states which
make appreciable contributions to this are (Ii = 1,
zzz=1) and (P=1, zrt=1). The pulling effect of these
states is very small, however, for the following reasons:
Normally these states do not couple to the resonant
mode because the static magnetic fieM is parallel,
rather than perpendicular, to the oscillating field. In
addition, the two states have effects of opposite sign,
so that if care is taken to populate them equally they
will have a negligible net effect even if the static
magnetic field is not precisely parallel to the oscillating
field.
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Using the high-energy limit of the exact Coulomb wave function for the outgoing electron, the differential
cross section, correct to three orders in o.Z, is calculated for the E-shell photoeffect. An analytic expression,
exact in aZ, is obtained for the differential cross section for the special case in which the electron emerges in
the forward direction.

I. INTRODUCTION

"SING the first Born approximation, Gavrila' calcu-
lated the differential and total cross sections for

the E-shell photoeffect to two orders in nZ. It is ap-
parent from Gavrila's work that the nZ correction is
significant even for fairly small values of Z. More
recently Pratt' made numerical calculations of the total
cross section using the high-energy limit of the exact
Coulomb wave function for the ejected electron. Pratt
also derived an approximation formula which gives the
total cross section as a function of Z. This formula
compares favorably with the exact numerical results for
all values of Z.

In this paper, the differential cross section for the
relativistic E-shell photoeffect is calculated by using the
high-energy limit of the exact Coulomb wave function
for the ejected electron. awhile this result is correct
to three orders in nZ (i.e., to terms of relative order
n'Z'), it is not a strict expansion in this parameter. We
have used Pratt's work as a guide to determine what
factors should be left unexpanded. Upon integration
over the solid angles of the outgoing electron we then
obtain precisely Pratt's approximate formula for the

* Contribution No. 1085. Work was supported in part by the
U. S. Atomic Energy Commission.' M. Gavrila, Phys. Rev. 113, 514 (1959).' R. H. Pratt, Phys. Rev. 117, 1017 (1960).

total cross section. One might then conjecture that our
result would give an accurate approximate formula for
the angular distribution. However, in the forward direc-
tion the terms of relative order 1 and nZ vanish, and the
resulting cross section is valid only to the 6rst non-
vanishing order in nZ. This nonvanishing term makes a
contribution of relative order n'Z' to the total cross sec-
tion. Since the terms of relative order n'Z' make a very
small contribution to Pratt's expression for the total
cross section, we cannot use a comparison with Pratt's
result for the total cross section to justify the validity of
our differential cross section for electron ejection angles
near the forward direction. Therefore, for this special
case of photoelectrons emerging in the forward direction,
we calculate the differential cross section correct to all
orders in nZ.

Figure 1 shows the angular distribution of the ejected
photoelectrons. Figure 2 gives the differential cross
section exact in nZ for the special case of forward emis-
sion as a function of Z.

II. MATRIX ELEMENT

Neglecting radiative corrections, the matrix element
for the photoeffect is

f2zrn
PPn ee'"'P, (r)dr,


