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A study has been made of pulling effects by the amplifying
media on the TEM oo modes of a helium-neon maser using a circular
plane mirror Fabry-Perot cavity in which the mirror separation
was known with precision. Approximate expressions are derived
for mode pulling in homogeneously and inhomogeneously broad-
ened optical masers. The experimental results suggest that the
losses in the maser are not determined entirely by the mirror
reflectance coefficient. A power-dependent splitting of the beat
frequencies between simultaneously oscillating modes is explained
in terms of a nonlinear frequency-dependent pulling effect arising
from inhomogeneous broadening. The case of Lorentzian holes

1. INTRODUCTION

HE narrow linewidths inherent in the helium-neon
optical maser!? are suggestive of a number of
basic experiments. However, the ultimate usefulness of
this narrow source of radiation, both as a research tool
and a communications device, is largely limited by the
frequency stability that may be obtained. For the latter
reason, the present investigation was undertaken. Since
the oscillation frequencies are primarily determined by
the cavity resonances, and therefore the dimensions of
the maser, it was not obvious a priori that a long-term
frequency stability of much better than half the separa-
tion between adjacent cavity resonances (about 80
Mc/sec) could actually be obtained. It became apparent
during the course of this research, however, that a
method existed by which one could both determine the
number of simultaneously oscillating modes and, in the
case of three oscillations, set the central mode near the
center of the Doppler line. The absolute stability that
may be achieved in this way is still unknown and is
currently under investigation. It seems clear that the
method may at least be used to obtain an extremely high
degree of relative stability. '

2. MASER CONSTRUCTION

For the purpose of making the present study, the
He-Ne maser shown in Fig. 1 was constructed. The
mechanical design of the interferometer was altered from
that of the original He-Ne maser,! in order to minimize
mechanical fluctuations and permit an accurate deter-
mination of the plate separation. Each of the Fabry-
Perot plates was fastened by spring clips to internal
three-point mountings which, in turn, were securely
fastened to the large external flanges shown at either end
of the maser. The large flanges were surface-ground and
separated by four 1-in. diameter Nilvar rods, cut to

LA. Javan, W. R. Bennett, Jr., D. R. Herriott, Phys. Rev.
Letters 6, 106 (1961).

2 A. Javan, E. A. Ballik, and W. L. Bond (to be published) have
recently remeasured the linewidths in the first maser and have
found that they are inherently in the order of 2 cycles/sec or less.

burned in a Gaussian line is treated specifically. It is suggested that
the anomalous variation of beat frequencies with pumping rate
results from hole repulsion effects and that the hole widths required
arise from the combined effects of small-angle elastic scattering
and stimulated emission. It is a consequence of the interpretation
that the number of simultaneously oscillating even-symmetric
modes in the helium-neon maser may easily be determined from
the Fourier spectrum of the beat frequencies. A method is de-
scribed by which the central cavity resonance may be stabilized
near the center of the Doppler line in the case.of three oscillating
symmetric modes.

lengths which were identical within 0.0005 in. The bel-
lows incorporated at each end of the discharge tube were
sufficiently flexible to permit changing the plate separa-
tion by about 4.5%, through the insertion of accurately
machined spacers at the ends of the 1-in. diameter rods.
Of several methods tried for controlling the plate
angular alignment, one based on the magnetostrictive
effect in the Nilvar supporting rods was found to be the
most satisfactory. The magnetostrictive effect was also
found to present a convenient method for changing the
plate separation; however, with the adjustments used,
some coupling between the plate separation and angular
alignment controls existed. A more detailed description
of the alignment method and interferometer construc-
tion will be given elsewhere. The improved mechanical
stability obtained with the present maser arises largely
by virtue of the fact that the tuning is accomplished
through the slight distortion of a highly rigid structure.
In other respects, the maser had properties similar to
those reported in the first He-Ne maser with the
exception that the device oscillated only on the strongest
(252 to 2p4 in Paschen notation at 11 522.76 A)? of the
five transitions of neon previously observed. The plates
used were flat to =\/100 over the beam diameter and
had a reflectance of 999, at the wavelength used prior
to insertion in the maser.*

3. EXPERIMENTAL RESULTS

The modes of oscillation were studied by observing
the difference frequencies produced when light from the
maser was focussed on the surface of a 7102 photo-
multiplier tube. The photosurface acts as a square-law
detector and one may observe all possible difference
frequencies up to the maximum frequency response
characteristic of the tube. This effect was first observed

3 The author is indebted to D. L. Wood for his help in firmly
establishing the identity of this line. The small possibility that the
strongest maser transition might have been the 2s,~2p7 line at
11 525.016 A had not previously been ruled out experimentally.

4 The author is indebted to D. R. Herriott for making these
measurements.
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HOLE BURNING EFFECTS

by Forrester, Gudmundsen, and Johnson® using in-
coherent light sources and more recently was used to
investigate the linewidths obtained in the first helium-
neon maser.l'> A previous report on the difference-
frequency spectrum obtained in this way from a He-Ne
maser has been given by Herriott® and, for the sake of
clarity, will be summarized here. Since the single-pass
gain obtainable from a He-Ne maser is small, one is
forced to use a Fabry-Perot cavity with an enormously
high Q in order to exceed the threshold requirement for
oscillation. In practice this implies a cavity width which
is much narrower than the Doppler width for one transi-
tion and that the frequencies of oscillation will be
primarily determined by the cavity resonances. The
dominant cavity resonance frequencies are determined
by requiring that the cavity length L be a half-integral
multiple of the wavelength. These resonant frequencies
correspond to the first even-symmetric radial modes
calculated by Fox and Li” and differ in frequency by
¢/2L=2160 Mc/sec for the present work, where ¢ is the
velocity of light in vacuum. Since these frequency
separations are small compared to the Doppler width,
the maser may oscillate on several of these frequencies
simultaneously. In addition to the even-symmetric
modes, Fox and Li have shown that the next longi-
tudinal modes of importance are those possessing odd
radial symmetry and that these differ from the former
by frequencies of the order of a Mc/sec with the present
geometry. Hence, as was reported by Herriott,® one
obtains a difference frequency spectrum of the type
shown in Fig. 2. That is, a peak at zero frequency corre-
sponding to each line beating with itself, followed by a
peak =21 Mc/sec away corresponding to all possible
differences between the first even- and odd-symmetric
radial modes having the same value of ¢/2L; a peak at
¢/2L corresponding to the differences between all even-
symmetric modes separated by ¢/2L and all odd-sym-
metric modes separated by ¢/2L, surrounded by two
satellites corresponding to the possible even-odd and
odd-even difference frequencies at approximately ¢/2L,
etc. As indicated by the arrows in Fig. 2, the satellites
obtained as a result of the beats between the odd-even

Fic. 1. He-Ne optical maser used. The “cut-away’’ section at
the left shows the location of the exit window and Fabry-Perot
plate. The discharge is driven by a 30-Mc/sec (20 to 50 watt)
supply through the three external electrodes shown. The plate
separation and angular alignment is controlled magneto-strictively
by coils (not shown) placed about each of the four Nilvar support-
ing rods.

5 A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, Phys.
Rev. 99, 1691 (1955).

6 D. R. Herriott, in Advances in Quantum Electronics, edited by
J. R. Singer (Columbia University Press, New York, 1961), p. 49.

7A. G. Fox and Tingye Li, Bell System Tech. J. 40, 453 (1961).
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Fic. 2. Fourier spectrum from possible difference
frequencies in the maser.

symmetric modes vary strongly with the interferometer
plate alignment, reaching a minimum separation from
the ¢/2L beats at parallel alignment. For the latter
reason, they are both easily identifiable, and unsuitable
for the present study. The discussion which follows is
concerned entirely with the central peaks obtained at
multiples of ¢/2L corresponding to the differences be-
tween the even-symmetric modes. That is, the low
power data were taken under conditions where the
satellites about the ¢/2L and 2(¢/2L) beats (and there-
fore the odd-symmetric modes) were absent.

The light output of the maser was found to have more
or less random polarization. The output varied from the
extreme case of linear polarization with arbitrary
orientation of the electric field vector to nearly perfect
circular polarization over time intervals in the order of
seconds. This result would be expected from ideal
cylindrical geometry and is in contrast with the be-
havior of the first He-Ne maser.:® In addition, the
various modes of oscillation in the present maser were
also found to have unrelated polarizations. The latter
was established by examining the behavior of the beat
frequencies when a linear polaroid was inserted in the
beam. Javan and Ballik® have observed that the central
¢/2L beat may sometimes not be observable without
the use of a polaroid. Their observation may be inter-
preted through the assumption that the two modes
producing the beat are polarized linearly at right angles.
The phototube, being a reasonably good square-law
detector, fails to respond to the beat since the difference
frequency is contained in the scalar product of the two
electric fields. The insertion of a polaroid at 45° to the
field components, however, restores the beat. That is,
the polaroid transmits components of the two fields
which are parallel. In order to avoid missing any of the.
beats in the present work, a polaroid was always inserted
in the beam and rotated until a location was obtained in
which all beats present were observed with comparable

8 The first He-Ne maser was linearly polarized in a direction
closely correlated with a striated pattern in the dielectric coatings.
The absence of such striated patterns in the present maser may
have resulted from the use of more modest bake-out temperatures

9 A. Javan and E. A. Ballik (private communication).
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F1c. 3. Splitting of ¢/2L and 2(¢/2L) beats with power.
Power increases from (a) to (d).

amplitude. For this reason, the relative amplitudes (for
example of the split components in Fig. 3) are arbitrary.

The first measurements were made on the absolute
frequency of the central peak corresponding to a differ-
ence frequency of ¢/2L. These measurements were
made under the conditions of low power in which this
beat was not split and the beat at 2¢/2L was not ob-
servable, i.e., the conditions under which the data in
Fig. 3(a) were taken. Measurements were made at
three discrete interferometer lengths and these data are
shown in Table I. The uncertainty in the absolute fre-
quency measurement (=220 kc/sec) arises primarily
from the variation of the beat frequency with power and
plate separation as discussed below. As is obvious from
Table I, the beat frequency is not equal to ¢/2L, but
is less than ¢/2L by about 1 part in 800. This effect may
be readily explained on the basis of mode pulling by the
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TaBLE I. Comparsion of measured beat frequencies with the
difference between calculated cavity resonance frequencies for
three separate cavity lengths.

Fractional difference
between ¢/2L and
measured beat

—(1.340.2)X1073
—(1.1£0.2)X107*
—(1.3+£0.2)X107%

¢/2L
(in Mc/sec)

161.316+0.022
158.713+0.020
156.189+0.018

Measured beat
(in Mc/sec)

161.10740.010
158.531+0.010
155.982-+0.010

Doppler line and is discussed in Sec. 13. It is a conse-
quence of the analysis in Sec. 5 and the data in Table I
that the loss in the interferometer exceeds the known
reflectance loss by a factor of about two.

There are two interesting aspects of the data obtained
at increasing power levels:

(a) The frequency of the ¢/2L beat was found to
increase with increasing power. The magnitude of the
increase before splitting occurred (see below) was de-
pendent on the setting of the interferometer plates. It
varied from nearly zero to a maximum of about 30
kc/sec. As will become evident from the analysis in Sec.
5, such an increase is anomalous. That is, for any singly-
peaked line one would expect the pulling towards the
line center to increase with the number of excited atoms
and that the pulling would be less for a cavity resonance
near the line center than for one farther away from it.
Hence one would expect the frequency separation be-
tween adjacent cavity resonances to decrease with in-
creasing power. The same anomalous behavior was
encountered in the split components described below.
The anomaly is explained through the hole repulsion
effect in Sec. 13.

(b) A power-dependent splitting of the ¢/2L and
2(c/2L) beats was encountered. Figs. 3(a) through 3(d)
show data taken simultaneously on the central beats at
both ¢/2L and 2(¢/2L) with increasing rf power. The
data on the right show the ¢/2L beat (160 Mc/sec) and
those on the left the 2(¢/2L) beat (320 Mc/sec). The
frequency scale is the same in each case as indicated by
the 20 kc/sec interval shown, with the exception that
increasing frequency occurs in opposite directions for
the two sets of data. These data were taken by adjusting
the maser length so that the ¢/2L beat occurred within
the first if band of the spectrum analyzer used and by
tuning the local oscillator in the analyzer to correspond
to the 2(c/2L) beat. The data shown in Figs. 3(a)
through 3(d) were taken at increasing power levels,
where each figure represents about 10 oscilloscope
traces. In Fig. 3(a) the ¢/2L beat is present and the
2(c/2L) beat is not. As the power increases [ Fig. 3(b)],
the ¢/2L beat splits by an amount which typically was
in the order of 20 kc/sec and the 2(¢/2L) beat appears.
The separation between the two (¢/2L) components in
Fig. 3(b) was dependent on the interferometer length.
By changing the plate separation magnetostrictively,
the splitting shown in Fig. 3(b) could be varied from a
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maximum of about 30 kc/sec to a minimum of <1
kc/sec (i.e., 1 kc/sec was the minimum if resolution of
the apparatus used). With a further increase in power
[Fig. 3(c)], the ¢/2L beat breaks into three components
and the beat at 2(¢/2L) splits. Again the frequency of
the components was found to increase with power and
the splitting was dependent on the interferometer
setting. For some interferometer settings, the odd-
symmetric modes (as evidenced by the appearance of
the satellites in Fig. 2) were also present during condi-
tions typical of Fig. 3(c). Their presence or absence
seemed to have relatively little effect on the splitting
of the central ¢/2L and 2(¢c/2L) beats. Finally, at the
highest power level shown in Fig 3, the ¢/2L beat has
broken into four components and the 2(¢/2L) beat into
three.

The data in Fig. 3 may be interpreted in the following
way: Some nonlinear frequency-dependent pulling
mechanism exists whereby the differences between
adjacent oscillating modes are not identical In Fig. 3(a)
the gain is only sufficient for the two modes nearest the
line center to break into oscillation Consequently there
is one component at ¢/2L and none at 2(¢/2L) In
Fig. 3(b) the gain is adequate for three modes to oscil-
late; there exist two discrete frequencies at ¢/2L and
one at 2(¢/2L). In Fig. 3(c) four modes are oscillating;
there exist three different ways of obtaining the ¢/2L
beat and two for the 2(c/2L) beat. Finally, in Fig. 3(d)
the gain is high enough for five modes to oscillate ; there
exist four ways of obtaining the 160-Mc/sec beat and
three ways of obtaining the 320-Mc/sec beat. The
expected components at frequencies higher than 320
Mc/sec have since been observed.!

There are two important consequences of the inter-
pretation of the data in Fig. 3. The first is that one may
deduce the number of even-symmetric modes which are
oscillating from the beat splitting. The second is that in
the case of three simultaneously oscillating modes
[Fig. 3(b)] it seems probable that the frequency differ-
ence between the two ¢/2L components should increase
with the difference in frequency between the central
cavity resonance and the center of the Doppler line.
Hence, for example, the two ¢/2L beats could be used to
generate an error frequency (whose sharpness would be
determined by the linewidth of the oscillation)?! which
could be used in a magnetostrictive tuning device to
stabilize the central mode near the center of the Doppler
line. The second consequence follows from a reasonably
general symmetry argument. If we assume that the Dop-
pler line shape is perfectly symmetric about its center
frequency and that there are only three modes oscillat-
ing, any splitting in the ¢/2L beats must arise from an
asymmetric distribution of the three modes about the
Doppler center. That is, if the central cavity mode is

10 A, J. Rack (private communication).
11 The linewidths implied by the data in Fig. 3 are limited by the
resolution of the spectrum analyzer.
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precisely on the Doppler center, the pulling on the
other two resonances must be equal and opposite; hence

in this case no splitting can occur.

4. PARAMETERS IN THE PRESENT MASER

For convenience, we summarize the pertinent param-
eters characteristic of the present maser in this section.

The frequency separation of the cavity resonances
(¢/2L) is nominally 22160 Mc/sec (Table I). The wave-
length of the maser transition is 11 522.76 A and corre-
sponds to the 2s; to 2p4 line of neon in Paschen nota-
tion.? From direct gain measurements on this transition
under similar discharge conditions, the fractional energy
gain in a single pass through the interferometer should
be about 69%,. The known reflectance losses! (=21%)
imply a cavity width (Aw.) of about # Mc/sec [Eq. (3)
below ]. However, the data in Table I taken with the
analysis below, demonstrate that Aw, is closer to 1
Mc/sec and that the total energy loss per pass is about
29%. Hence the maximum gain available corresponds to
about three times the threshold for oscillation. The
latter is in good agreement with the maximum number
of modes observed [Fig. 3(d)] and the 800-Mc/sec
Doppler width assumed below.

In the limit of complete resonance trapping of vacuum
ultraviolet photons, the effective decay rates of the
upper and lower maser levels are about 107 sec™ and
8X 107 sec™!, respectively.’? The exact value of the
natural linewidth (Aw,) for the maser transition de-
pends critically on the unknown, vacuum ultraviolet
decay rate of the upper maser level. It is expected,
however, that 15 <Aw, <80 Mc/sec (see Sec. 10).

The full Doppler width at half-maximum intensity
for neon atoms at the temperature of the maser is about
800 Mc/sec. The inelastic collision with the He(23S)
atom by which the excited neon state is formed! is, of
course, exothermic by =1.5kT at room temperature.
However, since the He atom has £ the mass of the neon
atom, it will carry off most of the energy by which the
reaction is exothermic. Although the Doppler width will
increase with the gas temperature and hence with the
power output in the maser, it does so as the square
root of the absolute temperature. Hence a Doppler
width much in excess of 800 Mc/sec is not to be ex-
pected. It is inconceivable, for example, that the
Doppler width could increase sufficiently with power to
explain the magnitude of the anomalous power depend-
ence of the beat frequencies reported above.

5. MODE PULLING ANALYSIS

We are only concerned with the dominant modes of
even radial symmetry corresponding to longitudinal
propagation in a plane parallel Fabry-Perot inter-
ferometer. In what follows it is assumed that steady-

2W. R. Bennett, Jr., in Advances in Quantum Electronics,

edited by J. R. Singer (Columbia University Press, New York,
1961), p. 28.
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state oscillation has been obtained in the system and
that no coupling effects exist between simultaneously os-
cillating modes through time-dependent nonlinearities
in the medium. These assumptions are likely to break
down at some point. However, what is sought are
manageable, approximate solutions which will explain
the dominant mode pulling effects.

The oscillation frequency in the maser is determined
primarily by a condition on the phase of the electric field
and the phase shifts of importance all arise from single-
pass time delays. By definition, the phase shift resulting
from a wave traveling once through an interferometer of
length L at a phase velocity ¢/# (where # is the refrac-
tive index) is

o=2mvLn/c. 1)

For a standing wave to build up in the cavity, the single-
pass phase shift must be an integral multiple of =. Hence
the evacuated cavity (#=1) has resonant frequencies
which are separated by ¢/2L.

From Eq. (1), the dispersion (d¢./dv) for the evacu-
ated cavity (n=1) is a constant. It is convenient to
express d¢./dv in terms of the fractional energy loss per
pass f and the full width of the cavity resonance at half-
maximum intensity, Avo.. To accomplish the latter, we
visualize a situation in which energy (U) is placed in the
evacuated cavity in the mode of interest. This energy
decays exponentially with time at the rate (¢/L)f. As
a result, the frequency response of the interferometer is
not perfectly sharp and one may define a Q for the
evacuated cavity given by

21ruch Voe
Qﬂc: = .
(cf/L)U Ay,
From (1) and (2),
9./ dv=2wL/c= f/Avo.= const=22X 108 rad-sec. (3)

2

For’the present system, a'single-pass loss of one percent
corresponds to Aro:=2(1/2)Mc/sec.

There will, in general, be some entirely negligible
contribution to (d¢./dv) arising from the resonant
nature of the mirror reflectance coefficient. For example,
in the present case the mirror transmission loss varied by
a factor of two over a total range of about 1000 A (or
2X10% cycles/sec). If one then estimates the dispersion
at maximum reflectance using a Lorentzian line shape
[Eq. (9)], it is seen that the contribution from the
mirrors is about 5X 105 rad-sec. Hence the inclusion
of this term alters Eq. (3) by about 2 parts in 107. The
inclusion of this term in the analysis given below
merely changes the final pulling term in Eq. (22) by the
same fractional amount and has no important effect on
the absolute frequency of the oscillation. We therefore
ignore this contribution to (d¢./dv).

The introduction of the amplifying medium changes
the refractive index in the system, thereby altering the
single-pass phase shift from that obtained in the
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evacuated case. Oscillation therefore occurs at another
frequency 7, differing from the cavity resonance fre-
quency »g., such that the single-pass phase shift is still
an integral multiple of . Since the cavity dispersion is
large compared to that for the amplifying medium,
oscillation occurs close to »o, and the pulling is small. Tt
is convenient to formulate the problem in terms of the
difference in frequency from the cavity resonance. In
particular, the maser oscillates at that frequency 7 such
that

(8¢c/0v) (9—voe)+AD,,(7) =0. 4)

Here, A®,,(7) is the total change in single-pass phase
shift at the actual frequency of oscillation which is
caused by the insertion of the medium. A®,(7) is
composed of two parts and, from Eq. (1), may be
expressed as

AP, (7)= (2xL/c)[(no— 1)+ (n—1)1p
= (2rL/c)(no—1)5+Apn(v). (5)

The first term in Eq. (5), (2wL/c) (no—1)9, arises from
the density of ground-state atoms in the maser and from
the density of excited atoms which may participate in
neighboring transitions (e.g., the 235—23P of He at
10 830 A). That is, this first term arises from a refractive
index which is essentially independent of the frequency
over the range of interest. Its main source in the
helium-neon maser is the He(1S) at 1 mm Hg for which
(no—1)=25X10-8.13

From Egs. (3) and (5), Eq. (4) may be expressed,

()

We include the effects of #, by defining
and Allc:—‘ AV()C/’}’L(). (6)

o= voo/ Mo
Hence the oscillator frequency (») is given by

P=v,— (AVc/f)AS"M(’_’)- (7)

For the helium-neon case, Av, in Eq. (6) differs negli-
gibly (=5 parts in 10%) from Awg, in Eq. (3). Similarly,
the frequency separation between adjacent cavity reso-
nances differs by the same negligible constant amount
from ¢/2L. For an arbitrary setting of the inter-
ferometer, 7y does introduce a pressure-dependent shift
in the oscillator frequency of about 13 Mc/sec per mm
Hg of He. However, in the special case that v, is tuned
to the center of a symmetric line (see below), the
oscillator frequency is independent of », and this
pressure-dependent shift vanishes.

The term A, (7) in Egs. (5) and (7) is a function of
the fractional energy gain per pass g(»). Since the latter
varies with frequency over the transition responsible for
the amplification Ag,, does also. Generally, Ap. goes
through zero at the line center (v.), is negative

13 American Institute of Physics Handbook (McGraw-Hill Book
Company, Inc., New York, 1957), pp. 6-21.
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(“‘anomalous dispersion”) for frequencies less than vy,
and is positive for frequencies greater than »,. Equation
(6) therefore predicts a shift in the direction of the line
center.

Threshold for oscillation occurs at that frequency 7y,
satisfying both Eq. (7) and the condition g(#r)= f. The
latter generally results in a transcendental equation for
pp. In the special case of a Lorentzian line, the trans-
cendental nature of this equation is removed.

The existence of a steady-state oscillation above
threshold obviously implies that the gain at the fre-
quency of oscillation must saturate at

g()=1. 8)

In the case of homogeneous or “natural” broadening,
gain proportionality is always maintained over the line.
That is, the reduction of the gain at frequency 7
necessary to satisfy Eq. (8) produces a proportionate
reduction of the gain at all other frequencies. Hence in
the case of homogeneous broadening, the oscillation

frequency is always given by its value at threshold and

there is no direct power-dependent pulling effect. In the
case of inhomogeneous broadening (applying to the
He-Ne maser), the interpretation of requirement (8) is
more complicated.

6. ASSUMPTIONS ON LINE SHAPE

In general, Agp,, will be a function of the single-pass
gain and for a given line shape could be calculated
numerically from the Kramers-Kronig relations.

For a Lorentzian line, it may be shown (see Appendix

I) that ( | & )
N_gm Vm—VI_ N V— ¥)2 T
Aen(l= Avy, | (Av,)? ] O

where the fractional energy gain per pass at the fre-
quency v is given by

g()=gn[1+4(vm—v)*/ (Avm) I (10)

Here, as in the rest of this paper, we adopt the notation
that g, is the fractional energy gain per pass at the line
center (v,), and that Aw,, is the full width of the line
at half-maximum fractional energy gain. The approxi-
mations in (9) and (10) arise from the assumption that
v+v,=2v and that g,<<1. Equations (9) and (10) may
be expressed

Ao (¥)=2Z—g(») (Ym—v)/Avp. (11)

The Lorentzian form will be used in this paper to obtain
an accurate expression for the pulling in the case of
natural broadening and to allow for the holes produced
by inhomogeneous broadening in the case of the helium-
neon maser.

4D, E. Thomas (to be published) has extended his ‘“Tables of
Phase of a Semi-Infinite Unit Attenuation Slope” (Bell System
Monograph 2550) to handle general problems of the present type

numerically. His results for the special case of a Gaussian have
been verified analytically by A. Javan.
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What actually is involved in the helium-neon maser
is a Gaussian distribution of Lorentzian lines resulting
from the thermal motion of the excited neon atoms and
the corresponding Doppler shift of the atoms’ center
frequencies. Hence, in the limit (holding here) that the
natural linewidth is small compared to the Doppler
width, the line much more closely resembles a Gaussian
than a Lorentzian.

We are primarily concerned with effects taking place
within the full width of the line at half-maximum
intensity and in the limit of small energy gain. In the
limit of small gain, it is apparent from the Kramers-
Kronig relations's that the phase shift increases linearly
with the gain. Hence for any typical symmetric line, the
phase shift introduced by the amplifying medium may

be expanded in the series
2
)+ ] a2

V=V Vim—V
Apm(v)=— ag,n(——)[l - b(—
AVm AVm

where the constants e¢and b will depend on the lineshape.
Since A¢g,, must have odd symmetry about the line
center, approximation (12) involves the assumption
that [(vm—v)/Av,]<<1. Hence, approximation (12)
will be extremely good over a considerable range within
the central portion of the line and will fail rapidly for
frequencies occurring near the half-intensity points on
the gain curve. Approximation (12), of course, consists
of the first two terms in the expansion of the sine func-
tion and for manipulative reasons it is convenient to
express A, in the latter way. In particular, a “best fit”
of numerical calculations;made by Thomas" demon-

strates that
Vm—V >
0.3Av,,

A (v)=2—0.285¢,, sin(

is an exceptionally good_approximation for a Gaussian.
Both “angles” in Eq. (13) are expressed in radians. The
errors introduced by a literal interpretation of (13) are
less than 19, for |[vn—»|<0.4Av,. Equation (13) is
=69, low at the half-intensity points on the curve.
For |vm—v|>0.5Ap,, the error increases exponentially.
The corresponding fractional energy gain for the
Gaussian is,

omemen (1) ]
o exp| —| — .
§LI=8 P 0.0Avm>
From (13) and (14)
0.98 ) l:( Ym— ¥ \2 <Vm——v
Apnm(r)=—0.2 —— ) |sin{ ———
on(?) 8(2) exp 0.6Aum>:| 0.3Avm>
(15)

holds for a Gaussian within the central region of the
curve.

(13)

(14)

16 See, for example, J. H. Van Vleck, Radiation Laboratory Series
(McGraw-Hill Book Company, Inc., New York, 1948), Vol. 13,
Chap. 8.



586 wW. R.

7. HOMOGENEOUS BROADENING

For a homogeneously broadened Lorentzian line, (7),
(8), and (11) yield

7= 2DVt vulve)/ (Avm+Av,)

for the oscillation frequency where definition (6) is
assumed.’® In the limit that Ay, <Av,, (16) becomes

Av, Ay,
= zlc—l—(vm— Vp)<~—>[1“”’”‘+ N ']y (17)

Vi Avy,

(16)

and in the Lorentzian case, the pulling is linearly de-
pendent on the frequencies. The latter would, of course,
not be true in the case of an inhomogeneously broadened
Lorentzian line above threshold. As may be seen by
comparing the expanded terms of Egs. (9) and (13), the
phase characteristic of the Lorentzian is actually about
twice as nonlinear as that of the Gaussian near the line
center.
For a Gaussian line, (7), (8), and (15) yield,

Vm— P \2 Vm— P
p=v,+0.28:Av, exp[(— ) :I sin<— ), (18)
0.6Av,, 0.3Av,,

and the pulling is nonlinear even in the homogeneously
broadened case. For frequencies very near the line
center in the limit that Av, <Aw,,, Eq. (18) becomes

5= vet (vm—ve) (0.94Av,/ Av,,)
X[1—0.94(Ave/Avy)+- -+ ]

(19)

Hence, for frequencies near the center of the line in the
limit Av<<LAv,, the main difference between the Gaus-
sian and the Lorentzian is a 69 reduction in the pulling
factor.

Equation (18) only applies to the helium-neon maser
in the case of threshold for the first cavity resonance.
For an inhomogeneously broadened line, an expansion
of the threshold pulling term in powers of Av./Av,, is
misleading. The neglected nonlinear terms are generally
much larger than (Av./Av,,)% The latter is apparent for
Eq. (18), but is also true of Eq. (16). The inhomogene-
ously broadened case may be more realistically treated
through the method given below.

8. GENERAL APPROXIMATE SOLUTION
FOR OPTICAL MASERS

Generally for optical masers, Av,>>Av, and Ag,(v)
will be a slowly varying function of the frequency over
the cavity resonance. We may therefore expand Ag,, in
a Taylor series about the cavity resonance frequency,
obtaining

Aom= (A@n)y,+ (A @,/ dv),,(v—ro)+ . (20)

16 Equation (16) is equivalent to a result quoted by C. H.
Townes, in Advances in Quantum FElectronics, edited by J. R.
Singer (Columbia University Press, New York, 1961), p. 10.
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Substituting Eq. (20) in Eq. (7) yields

V=p,— (AVc/f)A<Pm(Va)
X[l‘_ (AVc/f)(aAﬂl’m/aV)vG"_ . ] (21)

As may be seen by comparison with Egs. (17) and (19),
this last approximation is equivalent to an expansion of
the pulling terms in powers of (Av,/Av,) which still
retains the nonlinear properties of the phase character-
istic. Typically, (Av./Av,)=21073. Hence the oscillator
frequency is given by

=y.— (AVC/f)A‘Pm(Vc); (22)

where errors in the second term of about a part in 10
(i.e., about 200 cycles/sec in the absolute frequency for
the helium-neon maser) may be expected. Agn.(v.)
represents the actual phase shift introduced by the
amplifying transition at the cavity resonance in the
presence of oscillation. Equation (22) may be solved
numerically using the methods of Thomas" in the
general case (e.g., asymmetric lines) for both homoge-
neous and inhomogeneous broadening.

9. EFFECT OF HOLES

It is in the interpretation of requirement (8) that an
important difference arises between the helium-neon
maser and, for example, the ammonia maser (or more
generally, between the present oscillator and most other
oscillators). In the present system, the line is primarily
broadened by the Doppler effect. Consequently, reduc-
tion of the gain at the frequency 7 in order to satisfy
Eq. (8) does not imply a proportionate reduction of the
gain at other frequencies. If the converse were true (as
in the case of homogeneous broadening), a second
cavity mode would generally not go into oscillation;i.e.,
the saturation requirement (8) at the first resonance
would prevent the second cavity resonance from reach-
ing threshold. In the present case, (8) is satisfied by
burning a hole in the line. g(7) saturates at f, whereas
the gain over the rest of the line continues to increase
with pumping rate. In other words, the phase shift
introduced at the cavity resonance continues to increase
as the number of upper state atoms increases at fre-
quencies well removed from the hole. We shall satisfy
requirement (8) in the following analysis by subtracting
the phase shift which would have been produced by
atoms in the hole from the phase shift introduced by the
entire distribution in the absence of oscillation. In
evaluating these phase shifts, we make use of the same
approximation implicit in Eq. (22)—mnamely, that » may
be replaced by ».

Before taking explicit account of the holes, we make
the following two observations:

(a) Since atoms on opposite sides of the cavity
resonance (v,) contribute to the gain at », with the
same sign, the total gain at ». is determined primarily by
those atoms whose center frequencies fall within the
resonance by about one natural linewidth. Hence,
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variations in the upper state density at large frequency
separations from the cavity resonance do not affect the
gain at v, appreciably, and a hole burned at one reso-
nance does not have an important first-order effect on
the gain at another resonance.

(b) Since atoms on opposing sides of the cavity
resonance contribute to the phase shift at », with
opposite sign, the net phase shift at », is determined
primarily by atoms which are well removed from the
cavity resonance. Hence the absence of atoms (i.e., a
hole) at one resonance can have a large first-order effect
on the phase shift at another resonance. The presence
of a hole at one resonance reduces the pulling at another
resonance which would have existed in the absence of
the hole. That is, two holes always tend to repel each
other. However, since a hole represents a symmetric
removal of atoms about a cavity resonance to first order,
a hole does not have a first-order effect on itself.

It is shown in Appendix IT that the probability for
stimulated emission is a Lorentzian function of the
frequency separation between the mode of oscillation
and the center frequency of the atoms involved. In
addition, it is shown that the full width at half-
maximum for this probability distribution is a function
of the power in the mode and, hence, of the gain at the
resonance. We therefore assume that the holes burned in
the line will be Lorentzian in shape and have widths
dependent on their location in respect to the line center.
Although the Lorentzian hole shape would only hold
strictly for a constant distribution of atoms, it is
apparent that it will represent a good first-order ap-
proximation at low powers in the present case.

By analogy with Eq. (9), the phase shift introduced
at frequency », by a Lorentzian hole centered at
frequency »y, is

Di(rn=wa)r  4(n=w)' 7
A(pH(Vg): |_1+ } ) (23)

H1 L le

where D; is the depth of the hole at »; and H; is the full
width of this hole at half-maximum intensity. The sign
on Eq. (23) is opposite to that for Eq. (9) since we are
concerned with phase shifts introduced by the absence
of atoms. Since we are only interested in the phase shift
produced at one resonance by holes at different reso-
nances [observation (b) above], |vi—ws| = (¢/2L). In
the low power limit, we may assume that the hole widths
are less than the hole separations and consequently that
4(v1—v2)”>>H 2. This approximation introduces an error
of about 5% in the evaluation of Agy for the hole
widths required below to explain the anomalous in-
crease in beat frequency with pumping rate. Therefore,

s (S

where we have defined D;=g(1)—f in conformance

(24)
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F1c. 4. “a” illustrates the choice of hole depth used to satisfy
Eq. (8). “b” illustrates the resultant line shape at threshold for the
fourth cavity resonance when v,—»;=40 Mc/sec. Avn,=800
Mc/sec and ¢/2L=160 Mc/sec. Equal hole widths of 64 Mc/sec
have arbitrarily been assumed. ‘¢’ (the solid curve) illustrates the
resultant variation of the total phase shift for the condition in “b”’.
The dashed curve represents the phase shift introduced by the
original Gaussian. The dotted curve shows the departure of
approximation (13) from the actual phase characteristic of the
Gaussian.

with saturation condition (8). This choice of hole depth
is illustrated in Fig. 4(a) for the case of three resonances.

The total phase shift introduced at frequency »; by
N Lorentzian holes at frequencies »; is then

Aen (.i)%i=1%#ﬂ<§(ji—f)(Z:?iljj)‘

From Egs. (22) and (25) the oscillation frequency for
the jth cavity resonance is given by

Ay Ave ‘Z‘, <g(i) 1)( )
4 =1 =\ | ViV

(25)

c
72vi———Apu(v)) ———
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where by definition g(¢)= f for a hole to occur at fre-
quency »;. The quantities g(¢) are related by Eq. (14)
and Ag, is given by Eq. (13) for a Gaussian line. For
a Lorentzian line, Egs. (9) and (10) obtain.

A numerical evaluation of the total phase shift over
the central portion of a Gaussian line is illustrated in
Fig. 4(c) for three Lorentzian lines. The errors intro-
duced by approximation (13) are also indicated in
Fig. 4(c).

10. HOLE WIDTHS FROM STIMULATED
EMISSION

From Eq. (I1.11) of Appendix II, the full width (H)
of a hole produced by stimulated emission is

7a+'yb 1 2V 2\ ¥
S !
2m Ya¥b
v. and vp represent the decay rates of the upper and

%
lower maser levels, respectively, and the matrix element
V is given by

@7

| V[2=|eEs(2)a,n/2]? (28)

where E, is the amplitude of the electric field in the
cavity mode. E¢* is proportional to the power (P)
expended in the mode and may be readily expressed the
latter way through the known cavity Q and volume
(v=108 cm?®) of the discharge;
E=4P/ (vAv.). (29)

The upper maser level may decay by several transitions,
hence

Ya=YabtYact "+, (30)
where
2 482
Yab=———|%ap|=Z—|2as|% (31)
3 BR3 7R3

where A and #% are, respectively, the wavelength for the
transition and Planck’s constant divided by 2w. Com-
bining Egs. (27), (28), (29), and (31) yields

Yabd 7\31) 5
1+ ) ,
YaYo FvAv,

where cgs units are used and the coefficient outside the
square root,

(32)

7a+'Yb(
2w

Apv,= (’Ya+7b)/27r) (33)

represents the natural linewidth for the transition.

If the decay rates in Eq. (32) were determined
entirely by known spontaneous radiative values, the
interpretation of Eq. (32) would be straightforward.
The effective decay rates for the two maser levels have
approximate values? of

Y2107 sec™?,

34
Y28 107 sec™. S
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However, the vacuum ultraviolet portion of the decay
rate of the upper maser level is unknown. The resonance
trapping process [which determines the effective, long
lifetime of the upper maser level given in Eq. (34)] will
interrupt the phase of the wave function used to obtain
Eq. (27) by some unknown, large extent. Consequently,
an unambiguous interpretation of Eq. (32) cannot be
given and we may only examine two limiting cases. The
first limit is obtained by inserting the values (34) in
Eq. (32). Here one obtains the minimum hole width
(15 Mc/sec) at threshold and the maximum dependence
of the hole width on power. From the measured power
in the beam and estimates of the other parameters
involved, the hole widths in this limiting case might
extend to about 50 Mc/sec at the highest output powers
obtained. The second limit is obtained through the
marginal observation of a clean ¢/2L beat at low powers
in another He-Ne maser having twice the length of the
present one. This observation implies that the natural
linewidth for the transition is less than 80 Mc/sec.
Hence in the second limiting case maximum hole widths
of about 100 Mc/sec might be obtained at high powers
from stimulated emission.

A related point of interest arises here which should be
noted. Namely, because of the phase-interruption
process, more output power is to be expected from a
maser transition in which the upper state is optically
connected with the ground state than for one which is
not. That is, the hole widths in the former case will be
larger, even if the effective decay rates and oscillator
strengths for the two maser transitions are identical.

11. EFFECTS OF ELASTIC SCATTERING

There exist only two likely sources by which the upper
state atoms may migrate over the Doppler distribution
during their lifetimes:

(1) large-angle elastic scattering,
(2) small-angle elastic scattering.

We have separated the elastic (atom-atom) scattering
process into these two groups both because the nature of
the differential scattering cross section readily permits
this separation and because the effects of the two
processes are in opposite directions.

Process (1) results in violent changes in velocity of
the upper state maser atoms and, hence, in changes in
the location of the atoms’ center frequencies which are
comparable to the full width of the Doppler line. This
effect therefore tends to restore the gain proportionality
condition which holds, for example, over the entire line
in the case of natural broadening. Thus, process (1)
tends to oppose the burning of holes in the line. Its
effects, however, are small in the present case. The total
large-angle scattering cross-section for atoms in the
upper neon maser state on ground state He atoms is
unknown. However the known!? diffusion rates of the

17 A. V. Phelps and J. P. Molnar, Phys. Rev. 89, 1202 (1953).
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metastable He(23S;) and Ne(3 3P,) levels in their own
gases both correspond to total (‘“hard sphere”) large-
angle scattering cross sections of about 107'% cm? at a
pressure of 1 mm Hg, and a temperature of 300°K. Since
the upper Ne maser level has a similar configuration
(4 1Py is LS notation) to the Ne(33P,), it seems un-
likely that the total large-angle elastic scattering cross
section would be appreciably different in the present
case. Hence we expect the total large-angle collision
rate for the upper maser level for the pressures in the
maser (1 mm Hg of He and 0.1 mm Hg of Ne) to be
about 0.5X 107 sec™’. The latter corresponds to about
half the known!? decay rate of the upper maser level.

Process (1) therefore takes place 220.5 times per atom
on the average and the probability of the atom landing
in a hole at low powers may be neglected.

The small-angle collisions, however, will result in
the widening of a hole burned in the line. In the real case,
the tail of the Van der Waals interaction, the possibility
of molecular bonds, etc., will increase the differential
scattering cross section enormously at small angles. The
magnitudes of these interactions are unknown in the
present case. However, one may estimate the size of the
effect by assuming a hard-sphere cross section corre-
sponding to typical diffusion rates. From the quantum
mechanical treatment of the hard-sphere problem,'®
there is always a cone of small, finite half-angle,

0gh/ 2Hm7}rela, (35)

within which the scattering is nonclassical and within
which the total scattering rate is generally about equal
to the total large-angle scattering rate. Here, 6 is given
in the center of mass system, u. is the reduced mass,
ve1 the relative velocity, % is Planck’s constant, and a is
the molecular diameter. This type of effect is difficult to
observe experimentally and would not be included, for
example, in the elastic scattering cross section measured
in a diffusion experiment. We next assume that the
average small-angle scattering event corresponds to
scattering in the center-of-mass system through an
angle 6/2. This average small-angle collision between
the excited neon atom and a ground-state helium atom
therefore causes the excited neon atom to change its
center frequency by an amount,

Oy =dvner/c=8vra1v/ 6c=2hv/ 24 unca. (36)

We next choose “a” to correspond to the classical hard-
sphere scattering cross section determined from the
diffusion data in reference 17 (i.e., ma?=10"1% cm?) and
obtain the result

=230 Mc/sec. 37)

That is, the typical step is about equal to 30 Mc/sec
and on the average half the atoms will make one such
step in their lifetimes. Hence holes burned in the

18N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Clarendon Press, Oxford, England, 1949), 2nd ed.,
Chap. II.
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Doppler line might be enlarged by =215 Mc/sec due to

small-angle scattering.

12. SEMI-EMPIRICAL REPRESENTATION
OF HOLE WIDTHS

From the discussion in Secs. 10 and 11, the hole widths
at low powers will approach an unknown constant value
falling in the tens of Mc/sec range. From the discussion
in Sec. 10, it is apparent that well above threshold the
hole widths will increase as the square root of the power
in the mode. The power in the mode itself will be ap-
proximately proportional to the product of the hole
width and the hole depth. Hence at high powers one

expects
H=Hg@)~—f1/1,

where the constant H, will also be in the tens of Mc/sec
range. Hence we may represent the width of the ith

hole by
HShot+Hog(@)—f1/f (38)

over the entire range in power. The adoption of Eq. (38)
permits the evaluation of Eq. (26) with a minimum
number of adjustable parameters.

13. COMPARISON OF MODE PULLING ANALYSIS
WITH EXPERIMENT

Since the distribution of atoms is peaked at frequency
vm, there will be a definite order of appearance of the
various possible cavity resonances. We shall enumerate
these cavity resonance frequencies in order of their
appearance:

vi, v, v3+ -+, where - cp3<p<pp<ver--. (39)

Condition (39) corresponds to the one illustrated in
Fig. 4 and will be assumed below in the cases for which
Eq. (26) is evaluated. In making the present compari-
sons we consider only the Gaussian line for which Egs.
(13), (14), and (15) apply.

Evaluation of Eq. (26) for the first two resonances

(va> 1) yields
o) ol (7 ()]
c/2L

am Vm—v1—c/4L
—0.565—Av, sin( ) cos( ), (40)
f 0.6Av,, 0.3Av,,

where g(1), g(2), and g, are related through Eq. (14)
and it is assumed that g(2)= f>¢(3).

The first case of interest corresponds to threshold for
the appearance of the ¢/2L beat and, therefore, the
data in Table I. Here, Eq. (40) reduces to

ve—9122(c/2L)[1—0.94(Av,/ Av,) ] (41)

plus terms of order Av.(¢/2LAv,,)3. The latter amount to
frequency fluctuations in the order of 10 kc/sec and are
within the limits of error quoted in Table I. Comparison

vo—
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of Eq. (41) with the data in Table I implies that Ay, =1
Mc/sec, since Ar,, 22800 Mc/sec. This value of Ay, is in
discrepancy with the value (220.5 Mc/sec) obtained
from Eq. (3) for the known (0.99) mirror reflectance
coefficient and suggests that some additional loss of
about 19, per pass is present in the maser other than
that introduced by the mirror reflectance coefficient.
Fox and Li'® have made tentative estimates which
indicate that a loss of this approximate magnitude might
arise from mode mixing at the end plates from flatness
irregularities. In support of this contention we note
that the present maser obviously has more loss than the
first one reported' since it oscillated only on the
strongest of the five transitions of neon previously
observed. Here the main difference between the two
masers is that the first maser had Fabry-Perot plates of
considerably higher quality. It is conceivable that the
reflectance films in the present maser deteriorated by
the required amount during bakeout,® in which case the
contention is not clearly established. It was found, how-
ever, that the loss implied by the data in Table I re-
mained constant within the limits of error quoted over
six months of continuous operation. In what follows, we
assume that the ratio Av./Av,,=21/800 has been experi-
mentally determined from the data in Table I.

The second term in Eq. (40) increases with the power
and consequently is capable of explaining the anomalous
behavior of the ¢/2L beat reported in Sec. 3. The hole
repulsion effect, however, can only explain this anoma-
lous behavior if it dominates over the third term in Eq.
(40). The variation of the beat frequency above thresh-
old will obviously be a complicated function of the loca-
tion of »; in respect to the line center. There are two
extreme limiting cases and we only consider these. Be-
cause of the large number of exponential terms, it is
simplest to solve Eq. (40) numerically. The results
quoted below are for the parameters characteristic of the
present maser—namely ¢/2L22160 Mc/sec, Av,=2800
Mc/sec, and Av =21 Mc/sec. In evaluating Eq. (40) we
express the total excursion of the beat between threshold
for its appearance and threshold for the next cavity
resonance. Hence, through the use of Eqgs. (14) and (38),
only two adjustable parameters 4o and H, appear in the
final result.

The first limiting case corresponds to a symmetric
placement of the two cavity resonances about the
Doppler line. Here the minimum hole repulsion effect
should occur since both resonances cross threshold
simultaneously and the two hole widths must be the
same minimum value at threshold. A numerical solution
of Egs. (14), (38), and (40) for the present maser in this
limiting case yields

(172"— f’])mﬂx'— (1-/2_ ﬁl)thresh

=0.75[ho+0.25H,—607] kc/sec, (42)
where the bracketed quantities are expressed in Mc/sec.

¥ A. G. Fox and Tingye Li (private communication).
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The fact that an interferometer setting could be found
(Sec. 3) for which the ¢/2L beat was nearly independent
of power suggests that the bracketed quantity in Eq.
(42) is very close to zero. Hence we expect

ho+0.25H =260 Mc/sec (43)

for the present maser.

The other limiting case occurs at »;=»,. Here the
first hole may be enlarged considerably through stimu-
lated emission before the second resonance occurs and
the maximum hole repulsion effect should arise. This
limit is complicated in the real case by the fact that both
the second and third cavity resonances cross threshold
simultaneously. Here the two ¢/2L beats are identical
and splitting (see below) does not occur until the fourth
and fifth cavity resonances cross threshold. The effect
of the third hole will not alter the present estimate
substantially, however, and we shall ignore its presence
(i.e., the effects of the holes at vs and »3 cancel at »y,
whereas the effects of the holes at »; and »; are additive
at ). A numerical evaluation of Eqs. (14), (38), and
(40) in this limiting case (v1=v.) yields

(1—’2 - i’l) max~ (172 - ﬁl)thresh

1.3[7i+0.55H,— 607 ke/sec  (44)

for the parameters in the present maser. The bracketed
quantities are again given in Mc/sec. If we assert that
the extreme 30 kc/sec shift of the beat reported in Sec. 3
occurs in the second limiting case, Egs. (43) and (44)
imply that 4;=240 Mc/sec and Hy=280 Mc/sec. These
values obviously do not represent precise measurements.
However, they are sufficiently close to the estimates
given in Secs. 10 and 11 to indicate that the hole repul-
sion effect is the correct explanation for the anomalous
power dependence of the beat reported in Sec. 3.

Finally, it is important to note that Eq. (26) also
predicts a splitting of the ¢/2L beat which is compatible
with the magnitudes observed. Evaluation of Eq. (26)
for three asymmetrically placed holes yields

N3 Av,

= o () ()]
R R G

where no terms contained in Egs. (13) and (26) have
been neglected. g; and H; are the fractional energy gain
and hole width at »,, respectively; gs and H; are
similarly defined at »3; and g, is the fractional energy
gain per pass at the line center. Equation (45) holds only
for the case where gz= f and the gain at the fourth
cavity resonance is below threshold for oscillation.
Equation (45) predicts that the beat splitting will vanish
for v, =1, since in this case go=g; and Hy=H;.

(pe— 1) — (11— 73)
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In spite of its formidable appearance, Eq. (45) is a
fairly linear function of (v»—»:). The main nonlinear
term arises from the power dependent part of the hole
width in Eq. (38) and enters Eq. (45) as the difference
between the squares of two small quantities. For the
same reason, Eq. (45) is not strongly dependent on the
parameter H, at low powers. The splitting is primarily
determined by the last term of Eq. (45). Its maximum
value occurs at vn—v1=%(c/2L) and at a value for g,
such that the fourth cavity resonance is just below
threshold. For the present maser, the maximum value
of the second term is a little over 50 kc/sec and hence
somewhat in excess of the maximum splitting (=230
kc/sec) observed. By definition [Eqgs. (38) and (39)],
the first term in Eq. (45) is positive and, hence subtracts
from the nonlinear phase characteristic of the Gaussian.
At low powers this subtracted term is mainly deter-
mined by the width, %, in Eq. (38). For the present
maser, the inclusion of %, in Eq. (45) would reduce the
maximum splitting by about 0.5 kc/sec per Mc/sec of
ho. Hence for the value of %, estimated above (=240
Mc/sec), the first term of Eq. (45) would reduce the
maximum splitting from the second term to about that
value observed. However, the neglect of the possibility
of a slight variation in the mirror reflectance coefficient
with polarization may render this close agreement
fortuitous. The second term in Eq. (38) will certainly
increase with the power and at some point may cancel
the nonlinearity responsible for the splitting in Eq. (45).
It seems evident from the experimental results (Fig. 3)
that this limit is not reached in the present case until
more than three modes oscillate.

The evaluation of Eq. (45) for more than three holes
is straightforward and not terribly interesting. As the
nonlinearity contained in Eq. (45) implies, the splitting
increases with the number of modes which go into
oscillation. In general, the number of components at
n(c/2L) is (N—n) where N is the number of holes
(Nz=n) and these components will not be spaced with
perfect evenness. In each case, the absolute frequency
of the component increases with the pumping rate if
the hole repulsion effect predominates. For a symmetric
distribution of holes about the Doppler line, the
number of components at #(¢/2L) is reduced.

14. CONCLUSION

There exists one perplexing aspect of the hole burning
interpretation which should be mentioned. At the
highest power levels shown in Fig. 3, the odd-symmetric
modes also go into oscillation, as evidenced by the ap-
pearance of the 1-Mc/sec satellites in Fig. 2. (These
satellites are also split by amounts in the general order
of 20 kc/sec.) A question naturally arises regarding the
mechanism by which two modes separated by an
amount substantially less than the natural linewidth
can go into oscillation simultaneously. We note, how-
ever, that this question exists regardless of the inter-
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pretation of the beat splitting. It seems probable that
the answer to this question lies in the different spatial
distributions of the two modes.

The main interest in the beat splitting phenomenon,
of course, arises from the possibility of using this
phenomenon to make an absolute frequency standard in
the optical range. As mentioned in Sec. 3, this might be
accomplished by the generation of an error frequency in
the case of three oscillating modes and the use of this
error frequency to adjust the plate separation. The
central resonance may then be filtered out with a
suitably designed (low quality) Fabry-Perot interferom-
eter. It seems likely from the data in Sec. 3 that this
error frequency would be in the general order of about
0.5 kc/sec per Mc/sec separation of the central cavity
resonances from the center of the Doppler line and that
the sharpness®! of the maser oscillation would not be a
prime limitation on the absolute stability obtainable in
practice. Throughout the present analysis it has been
assumed that the line shape for the transition is sym-
metric. This assumption will obviously break down at
some point, and it is likely that the ultimate limit would
be determined by pressure-dependent effects. The
presence of other isotopes of neon can introduce such
line asymmetries and it would obviously be desirable to
isolate one of these isotopes for use in such a standard.
From Thomas’ numerical calculations and the natural
abundance of Ne? in Ne, the main effect of this line
asymmetry would be to introduce a power-dependent
frequency shift at the Doppler center in the order of
30 kc/sec. The presence of other isotopes of neon will
also result in slight changes in the nonlinear part of the
phase characteristic. In this connection it should be
mentioned that no significant difference was found in
either the mode pulling or beat splitting effects when the
present maser was operated on a neon sample containing
99.99, Ne2 as opposed to neon samples containing the
normal isotopic abundance.

There are two more important sources of practical
difficulty in utilizing the beat splitting effect to deter-
mine the absolute frequency of the central mode in
respect to the Doppler center. The first consists of the
possibility that the mirror reflectance coefficient may
vary slightly with polarization.® If two modes were
polarized in one direction and the third orthogonally,
this effect could introduce an additional shift in the beat
splitting. The effect enters by changing the hole depth
and therefore the magnitude of the hole repulsion term.
From Eq. (45) the shift in the splitting would amount
to about $Av,(2LH/c)Af/f, where Af is the extreme
variation of the fractional loss between the two orienta-
tions and H is the width of the hole for the orthogonally
polarized mode. For example, for a hole width of 100
Mc/sec, a 19, variation in the mirror losses between the
two extreme orientations would shift the beat splitting
by about 2 kc/sec. Second, it has been found by
others®!® using different observational techniques that
the difference frequency between the two ¢/2L compo-
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nents [Fig. 3(b)] jumps discontinuously to zero at some
point below about 1 kc/sec. Under these conditions the
2¢/2L and ¢/2L beats are both harmonically related?
and phase-locked” to a very high degree. Hence one
completely loses track of the absolute frequencies at this
point and it seems apparent that a minimum absolute
frequency uncertainty in the order of 2 Mc/sec will
exist. This effect is definitely not contained in Eq. (45).
Although Eq. (45) does contain a slight nonlinear
dependence on (v,—v1), the nonlinear terms are much
too small to give, for example, a cubic equation with real
roots or a point of inflection near the origin. The effect
probably has its origin in nonlinear time-dependent
properties of the medium, which, as previously stated,
have been neglected for reasons of simplicity.

Neither of these effects would prevent one from using
the beat splitting phenomenon to obtain a high degree
of relative frequency stabilization when the central
mode is slightly detuned from_the Doppler center.
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APPENDIX I

The phase shifts associated with a given line shape
may be calculated most generally using methods equiva-
lent to the Kramers-Kronig relations.! The assumptions
on the following derivation are that the process obeys
causality (i.e., the amplitude gain function is analytic
in the lower half of the complex w plane), that the gain
is small, and that the running wave is amplified linearly
as it traverses the cavity. Although the gain saturates
in the system during oscillation, we assume that ampli-
fication by this saturated gain characteristic is still
linear.

We let K(w) be the complex, fractional amplitude
gain in the medium defined by

1+ K (0) =[1+4K(w) ] exp[ —ig(w)],

where Ko(w) is the fractional amplitude gain per pass
and ¢(w) is the additional single-pass phase shift result-
ing from the amplifying medium. Taking the logarithm
of (I.1) and expanding in the limits K (w), Ko(w)<1,

K (w)=2Ko(w) —icp ().

(1.1)

(1.2)

We note at this point that the fractional energy gain
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per pass, go(w), is
Z20(w)=22K o(w). (1.3)

We assume K (w) vanishes at w=- o, 47, and has
no singularities in the lower half-plane. Then

K (w)dw
f = 07
wW—wy
where the integral is taken along the real axis, skirts
under the pole at wy and is closed in the lower half of

the complex w plane. Substituting (I.2) and equating
real parts,

(L4)

0 Ko(w)dw
¢(wo)=—(1/) —, (L.5)

—» wW—wy

where (I.5) represents the principal part of the integral
on the real axis. Equation (I.5) is more convenient for
the Lorentzian than the usual form of the Kramers-
Kronig relations deduced from it.

We take for the Lorentzian,

Ko(0)=K . (A)[ (Aw)2 44 (wpn—w)? | (1.6)

where the approximation w+w.,=22w has been made.
Although K(w) has a pole in the lower half-plane, K (w)
does not. We next take,

K o(w)dw
I= f —_—
W—wWop
where the path of integration runs along the real axis,

skirts under the pole at wy and is closed in the upper
half-plane. From (L.5), (1.6), and (L.7),

—mp (wo)FmiKo(wo)=2mi Y, (Residues).
Hence,

¢ (wo)=—2K (o) (wm—w0)/Aw
= — golwo) (wm—w0)/ Do (1.9)
yielding Eq. (11) of the text.

L7

(1.8)

APPENDIX II

The hole widths may be evaluated through a standard
application of time-dependent perturbation theory.?
We assume that the two maser levels are described by
the wave function

Y (r,0) = Ayt Bys. (IL.1)
Satisfying

(Ho+H')V =ihd¥ /ot (11.2)

in the presence of the electromagnetic field. Hy is the
original Hamiltonian and H’ the time-dependent per-

2 A similar analysis for levels having different decay rates has
been given for the ground state of positronium by V. W. Hughes,
S. Marder, and C. S. Wu [Phys. Rev. 106, 934 (1957), Appendix
1. The approximation, v 3>, appropriate to the latter reference
has, however, not been made here.
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turbation. The subscript “a” denotes the upper maser
level and “b” the lower. The probability amplitudes 4
and B are functions of the time. We take the electric
field to be linearly polarized in the z direction. Hence,

H'=—ezE, coswi= — (ezEy/2) (e*t-+e~0t), (I1.3)

Since the perturbation is electric dipole in nature, only
off-diagonal matrix elements arise. Neglecting the anti-
resonant term and the interaction with all neighboring
levels, )

A= (V/iyeitos0tn— (y,/2)4,

B=(V/ih)eito—w0tsa— (v,/2)B,
where the spontaneous decay rates vy, and 7y, of the

upper and lower maser levels have been introduced
phenomenologically. From (I1.3)

V=—%eE(2)a,s (I1.5)

wy represents the resonant frequency of the atomic
transition and w the frequency of the oscillating field.

We seek those solutions to the coupled Egs. (I1.4)
satisfying the initial conditions

A=1 and B=0 at (11.6)

Condition (I1.6) corresponds to putting the atom in the
upper state at t=0. The total probability that the atom
decays by stimulated emission is then given by

(I1.4)

1=0.

o / "B (IL7)
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Through standard methods, the solution of Eqs. (11.4)
for B(f) subject to initial conditions (I1.6) is

ih (u—+3va) (wr+37a)
14 (ur—n-)

B()=

[er—t—erttTgilo—wnt  (T1.8)

where

pe=—3[3(vatve)+i(w—wo)]
33 (ve—vo)+i(w—wo) P— [ 2V /B2

Hence

(11.9)

2 2

7

(—F57va) (rt3v0)

(y—p)

Ps:'yb

0

X/ |er—t—em+t|2dt.  (11.10)
0

After some algebraic manipulation, Eq. (I1.10) reduces

to
B Yo(vatvs) | 2V/1|?
4(w—wo)vayst (vavo k| 2V/A]%) (yatve)?

yielding Eq. (27) of the text.?! Aside from the minor
approximations made in formulating Eqs. (11.4), this
expression for the probability function is exact.

(11.11)

8

21 Note added in proof. A result equivalent to Eq. (I1.11) has been
obtained from the density matrix method by W. E. Lamb, Jr.,
andyT. M. Sanders, Jr., Phys. Rev. 119, 1901 (1960).
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Fig. 3. Splitting of ¢/2L and 2(¢c/2L) beats with power.
Power increases from (a) to (d).



