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tained, although in this case the cone angles are no
longer close to the theoretical values. The object of the
above calculation is to suggest that small perturbations
of the ferrimagnetic spiral may well be expected to bring
the model into even closer agreement with experiment.
A detailed comparison will require not only a further
refinement of the theory, but also the collection of more
complete experimental data from single crystals.
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The low crystal symmetry of antiferromagnetic CuC12 2H20 allows an antisymmetric, anisotropic,
superexchange interaction (Moriya interaction) of the form Die (SiXSsg between corner and base-center

copper ions. The classical magnetic-resonance frequencies and spin-wave frequencies have been derived for a
four-sublattice model from a spin Hamiltonian consisting of nearest- and next-nearest-neighbor isotropic
superexchange interactions, the Moriya interaction, and orthorhombic anisotropy energy. A set of high-

frequency exchange modes was obtained in addition to the usual antiferromagnetic resonance modes. The
former are characterized by the beating in opposition of ferromagnetic sublattices which would be degenerate
in the absence of the Moriya interaction. The exchange frequencies are proportional to the geometric average
of the ferromagnetic and antiferromagnetic exchange fields and are an order of magnitude larger than the
antiferromagnetic frequencies. A resonance absorption experiment is proposed to detect the exchange modes;
zero field magnetic resonance is expected at about 0.7 mm.

I. INTRODUCTION

T is well known' ' that the presence of anisotropy has
- - a marked effect on the properties of antiferromagnets.
Existing theories' ' of antiferromagnetic resonance in
copper chloride dihydrate have incorporated, in a phe-
nomenological form, the orthorhombic anisotropy energy
arising from the anisotropy of the g factor and from the
magnetic dipole and pseudodipole interactions. This
latter interaction, a combined effect of spin-orbit
coupling and exchange interaction, is of second order in
the spin-orbit coupling and is symmetric in the inter-
change of the two spins. Recently Moriya~ proposed a
new mechanism of anisotropic superexchange interaction
of the form

(x.),;=D;,"LS,XS,j, (&)

which is linear in the spin-orbit coupling, antisymmetric

j'This work was done in the Sarah Mellon Scaife Radiation
Laboratory and was supported by the U. S. Air Force through the
Air Force Once of Scientific Research of the Air Research and
Development Command.

' R. Kubo, Phys. Rev. 87, 568 (1952).' J. A. Eisele and F. KeBer, Phys. Rev. 96, 929 (1954).
s K. Yosida, Progr. Theoret. Phys. (Kyoto) 7, 25, 425 (1952).
4 C. J. Gorter and J. Haantjes, Physica 18, 285 (1952).
e J. Ubbink, Physica 19, 9 (1953).
e T. Nagamiya, Progr. Theoret. Phys. (Kyoto) 11, 309 (1954).
~ T. Moriya, Phys. Rev. Letters 4, 228 (1960); Phys. Rev. 120,

91 (1960). This theory provides a detailed spin Hamiltonian to
account for a macroscopic, phenomenological mechanism proposed
by I. Dzialoshinski, J. Phys. Chem. Solids 4, 241 (1958).

in the interchange of the two spins, and generally an
order of magnitude larger than the pseudodipole cou-
pling. According to Moriya the presence of this inter-
action in CuC12 2820 results in a canted equilibrium

spin configuration.
The eGect of the canted spin arrangement in copper

chloride is to introduce additional normal modes of
vibration in which originally degenerate ferromagnetic
sublattices (i.e., degenerate in the absence of the Moriya
interaction) beat against each other with a relatively
high frequency proportional to the geometric mean of
the exchange fields involved. Some of these high-fre-

quency modes exhibit a net magnetization and may be
excited by an rf field.

It is the purpose of this paper to derive the magnetic
resonance conditions and spin wave dispersion relations
for the exchange modes in antiferromagnetic CuC12 2820
and to propose a resonance absorption experiment to
detect them. The crystal structure and symmetry ele-
ments of CuCl~ 2H20, the spin superstructure, the
Moriya interaction, and the four-sublattice model are
described in the following section. In Sec. III the
resonance frequencies and normal modes of the four-
sublattice model are derived from the classical equations
of motion at O'K. An applied 6eld is included in the
equations of motion in Sec. IV, and its eGect on each of
the resonances is discussed. The present theoretical
results are compared with experiment and previous
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theory in Sec. V and numerical values for the exchange
and anisotropy fields are obtained. The spin wave
spectrum for small k is presented in Sec. VI and in
Sec. VII a resonance absorption experiment is proposed
to detect the exchange modes.
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s N. J.Poulis and G. E. G. Hardernan, Physica 18, 201 (1952).

II. THE MORIYA INTERACTION IN CuC12 2H20

The crystal of CuC12 2H20 is orthorhombic with
lattice parameters u= 7.38 A, b=8.04 A, and @=3.72 A.
There are two copper ions in the chemical unit cell at
(0,0,0) and (-', ,—',,0). Below the Neel temperature of
4.33'K, the spins of the Cu'+ ions take the antiferromag-
netic arrangement determined by the proton resonance
absorption experiment of Poulis and Hardeman. SWithin
the limits of the experiment, all the electron spins in a
given ub plane are parallel to each other and antiparallel
to the spins in the ub planes immediately above and
below. The direction of easy magnetization is the a axis.
Also intheunit cell arefour wa, ter molecules at (0, +u, 0)
and (-'„—', +m, 0) with m=0. 25, and four chlorine ions at
(+I, 0, +n) and (-,'&u, -'„&v) with v= 0.37. The copper
ions are subjected to an approximately orthorhombic
crystalline 6eld which has diferent orientations for the
corner and base-center ions. One of the principal axes of
the field coincides with the b axis of the crystal while the
other two axes are rotated about the b axis away from
the a and c axes by an angle +Ps for the corner ions and
—ps for the base-center ions. Thus the two magnetic
ions in a chemical cell are not crystallographical1. y
equivalent. The crystal structure and symmetry ele-
ments of CuC12 ~ 2H20 are shown in Fig. 1..

The interaction expressed by (1) is the antisymmetric
part of the general bilinear spin-spin interaction. In
crystals of high symmetry this interaction between two
magnetic ions vanishes, e.g. , when there is a center of
inversion midway between the two ions. This is easily
seen from the fact that if there is inversion symmetry
between ions 1 and 2, then D» ——Dsr, whereas it is true
in general that since Drs LSrXSsj=Ds~ LSsXS&j, we
have D» ———D». Lower crystal symmetry elements
impose less restrictive conditions on D. Since D is of

Ss= (D.Ds/4J')S„
S,= (Db/2J)S, .

(3)

Since (g—2)g=0.1 in CuCls 2Hso, the spin canting
caused by D is an order of magnitude smaller than that
caused by D & and the contribution to the energy from
D is two orders of magnitude smaller than that from
D&. Thus D has only a negligible effect and in ignoring
it we gain the advantage of a reduction'jn the number of
sublattices needed to describe the magnetization. A
four-sublattice model as shown in Fig. 2 seems reason-
able. The magnetic unit cell contains two chemical unit
cells oriented in the c direction as indicated by the ex-
periment of Poulis and Hardeman. ' It should be noted
that the a priori choice of a four-sublattice model re-
quires that the net effect of D be zero, as was pointed
out by Moriya. (What happens is that the D, contribu-
tions to the energy of a pair S;, S; are cancelled by the
contributions of a pair S;, Ss if S, and SI, are required
to be parallel. )

The four sublattice model shown in Fig. 2 is one in

order hg/g times the isotropic superexchange integral,
where g is the gyromagnetic ratio, while the magnetic
dipole and pseudo-dipole terms are another factor of

(Ag/g) smaller, this antisymmetric part of the anisotropic
superexchange interaction may provide the largest con-
tribution to the anisotropy energy when the crystal
symmetry is sufFiciently low.

There are inversion centers between all pairs of corner
(base-center) copper ions in copper chloride, so the
Moriya interaction vanishes between these pairs. How-
ever, between corner and base-center ions the highest
symmetry element is a twofold rotation axis perpen-
dicular to the line joining the ions. This symmetry re-
stricts the Moriya vector to the ab plane, i.e.,
D= (D„Db,0) The. re is no a priori reason for either D,
or D & to vanish and in fact they are of the same order of
magnitude. However, D, may be neglected as shown by
the following argument.

In the absence of a Moriya interaction the ground
state of a ferromagnetic or antiferromagnetic interaction
between two spins is one in which the spins are colinear.
The introduction of an antisymmetric coupling causes
the two spins to rotate in opposite directions in the plane
perpendicular to the Moriya vector. Starting with a spin
Hamiltonian consisting of isotropic superexchange and
Moriya interactions, the equilibrium position is de-
scribed by

tan20= D/J= (g—2)/g, (2)

where 20 is the angle between spins, D is the magnitude
of the Moriya vector, and J is the exchange integral,
defined as positive for ferromagnetic and negative for
antiferromagnetic interactions. If we assume that the
spins in copper chloride are initially held to the a axis

by a small anisotropy field, then by turning on the
Moriya interaction the following perpendicular spin
components are induced:
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FIG. 2. Moriya's four-
sublattice model of
CuC12 2820. All spins
are in the ac plane.
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which all spins on a given sublattice are parallel. The
nearest neighbors of an ion on sublattice 1 (2) are on
sublattice 3 (4), while sublattices 1 and 2 (3 and 4)
contain only mutually next-nearest-neighbor ions. The
interaction between nearest neighbors is antiferromag-
netic and that between next-nearest neighbors is ferro-
magnetic. This latter interaction must be included, not
only because we want to investigate the effect of the
Moriya interaction which is between next-nearest neigh-
bors, but also because without this interaction the
crystal would behave as a set of independent, linear
chains running along the c axis, which Oguchi' and
Marshall' have shown cannot be antiferromagnetic.

III. CLASSICAL CALCULATION AT O'K;
ZERO FIELD RESONANCE

For the dynamic case we use the equation of motion
which states that the rate of change of angular mo-
mentum of a system is equal to the torque acting on the
magnetization vector of the system and apply it to
each of the four sublattices:

dM, /dt=ysM, XH;, 2=1, 2, 3, 4, (4)

the effect of the crystalline Geld. Moriya and Yosida"
have shown that this anisotropy energy can be approxi-
mately expressed in the form

Eg=E '(K+2+Ksys)

per copper ion at the absolute zero of temperature,
where iV is the number of Cu'+ ions per unit volume and

P and y are the direction cosines of the sublattice
magnetization vector relative to the b and c axes, re-
spectively. (The crystal coordinates abc are equivalent
to the Cartesian coordinates hays in the same order. )
Since the anisotropy fields seen by each sublattice must
be equivalent, the expressions for these fields are

Hg;= —-'M '(QK M "K3E')
where 3EO is the magnitude of the sublattice magnetiza-
tion vector at O'K.

To find the equilibrium position and natural fre-
quencies, we transform Eqs. (4) and (5) to four inde-
pendent coordinate systems X;I';Z; such that Z, is in
the equilibrium direction of M;. These unitary trans-
formations are

x,=X, cosp; —Y, sing, sinlt, +Z; sing, coslt „
y, = F; coslt~+Z, sing;,

s,= —X; sing, —7', cosp; sining, +Z; cosp, coslt „
where the p; are the angles of rotation about the y axis
in a positive sense and the lt, are the angles of rotation
about the new X, axes in a negative sense. LA rotation
in the positive (negative) sense is defined as one which
would cause a right-handed screw to advance (retreat)
along the axis of rotation. ] Following these trans-
formations it is convenient to make the substitutions

in which the effective fields are $1 22r 01) 42 22r+t)2) (10)

Hi )iM2+AM2 mXM2+HA1+Ho,

H2 ———&M4+AMi+mX M,+Has+Ho,

Hs ———)~M,+AM4 —mX M4+H~s+Ho,

H, = —) M, +AM, +mXM, +H,+H, .
The constants X and A are the magnitudes of the anti-
ferromagnetic and ferromagnetic Weiss molecular held
parameters, respectively; m is a constant vector in the
crystal b direction representing the Moriya interaction
as a classical field; H, is the static applied field; and
ps=go/22rtc. We will employ an isotropic g equal to 2

throughout and so will have to replace experimental or
actual values of the applied field 8 by theoretical values
8' such that

H.'= (g./2)H„H, '= (gb/2)H„H' = (g./2)H' (6)

The anisotropy fields Hz, represent the orthorhombic
anisotropy, exclusive of the Moriya interaction, arising
from magnetic dipole and pseudodipole interactions and

2 T. Oguchi, Progr. Theoret. Phys. (Kyoto) 13, 148 (1955).
'4 W. Marshall, J. Phys. Chem. Solids 7, 159 (1958).

$2——222r —82, tjl4 g2l +84.

The angles 0, and lt; are shown in Fig. 3. Terms like
MXM~ in the equations of motion can be dropped since

FIG. 3. Definition of the polar angles of M;.

"T.Moriya and K. Yosida, Progr. Theoret. Phys. (Kyoto) 9,
663 (1953).
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The diagonalizing matrix for (13), i.e., the matrix in
which the columns are the eigenvectors of the resonance
matrix and represent the normal modes corresponding
to the resonance frequencies (eigenvalues), is pro-
portional to

I"rG. 4. Normal
modes of canted
CuC12 2H20.

COy

Mix 1
M2X 1

x 1
3f4x 1

Sf' zp
3f2~ ip
3f3~ iIJ,

3f4 Zp

Zp

Zp

Zp

Zp

1
1

—1
—1
ZP

$P

ZP

—ZV

1
1

—1

ZV

ZV

ZV

ZV

1
—1
—1

1
Zo

Zo

lo
Zo'

Zo

Zo

Zo

Zo

1

—1

ZT
—ZT

ZT

C02 M 3 C04 G05 . G06 Mv G08

8=8p= H /2H4, — (12)

which is correct through terms of order 00'.

The secular determinant is formed from the re-
maining eight linear, independent equations in M;
and 3f ~.

MXMX
0

0 e

0 0
0 0

r
r —

g

HJ, 0
0 HA

~X~X
0 0
0 0
e 0
0

HA 0
0 H),

r —
q

MJ~ 3I2~

p Hs. —
H4 p

H), 0
0 H),

0
0 e

0 0
0 0

3f3~ 3f4~

Hg 0
0 H),

p H4—
(13)

0 0
0

0 c

where p= —i4p/yp, p= (Hi+H4+H~8p+H p), q= [Hi
+H4(1 28p')+2H~8p+H, ], —and r= LH4(1 —28p')
+2H Hp] Setting the determinant equal to zero we find
the eight resonance frequencies:

4oi= —4ps =pp(2HiH, ) ',

pps= —074=ps(2HyH s ) ',

4ps = —4p p
= 4pr = —4ps = 27pP4 (Hi+ H4) ]',

where Hs' Hs+H '/2HA——
"Although M and 3II~ are actually proportional to singlet or

coscot, the phase relations can be identified from the complex
amplitudes of the normal modes.

the magnetization vectors are assumed to be pre-
dominantly in the Z directions. Let all M; =MD and
define Hi= X3Ep, H4=AM p, H„=mMp H s= p (Ei/Mp),
and H, = p(Es/Mp). Assume all Mx and M" propor-
tional to exp(i4pt). "

In the absence of an applied field in the y direction all
f;=0 and the equilibrium position is in the xs(ac) plane.
When the applied field in the xs plane is also zero, then
all 0;=0 and the equilibrium condition on 0 is

tan28= 2H /(2Hs. +H, ). (11)

Since Hg))H ))H„we can write

where I4= (H,/2Hi)', v= (2H&/Hs')', o.= DHi+H4)/
H4]&, and r=o ' In a. given mode all four sublattice
magnetization vectors precess in equal size ellipses about
their individual equilibrium directions. The normal
modes are shown in Fig. 4.

Modes 1 and 2 represent a net magnetization vector
oscillating in the crystal b direction. The corresponding
frequency, ~4p

~

=pp(2HiH„. )l, is one of the antiferromag-
netic resonance frequencies derived by Yosida' and
others' —' for a two sublattice model. Modes 3 and 4,
which also correspond to antiferromagnetic resonance,
have a net magnetization vector oscillating along the c
axis. In this case the four-sublattice model resonance
frequency differs from that of the two-sublattice model
by the inclusion of a term proportional to the Moriya
coupling constant, but reduces to the latter in the ab-
sence of the Moriya interaction.

The net magnetization vector oscillates along the a
axis in modes 5 and 6 and is zero in modes 7 and 8.
These modes correspond to the relatively high frequen-
cies ~4p

~

=2yp(H4(H&, +Hg)]*' which we have termed ex-
change frequencies since they are proportional to both
the ferromagnetic and antiferromagnetic exchange fields
and are approximately an order of magnitude greater
than the antiferromagnetic resonance frequencies. Al-

though the Moriya interaction constant does not appear
explicitly in the exchange frequencies, the corresponding
modes are dependent on the canting between ferromag-
netic sublattices. In the absence of the Moriya inter-
action this canting vanishes and the four sublattices
degenerate to two. In this case the exchange modes do
not appear. In view of this fact, an experimental at-
tempt to excite mode 5 (or 6) with an rf field should
confirm or deny the existence of the Moriya interaction
in CuC12 ~ 2H20, and in the case of confirmation should
provide quantitative information on the strength of the
exchange interactions. The frequencies co5 and cv7 are not
actually degenerate, but diGer by terms of order 00'.

However, since only mode 5 is excitable by an rf field,
the difference between co5 and co7 is not significant at
present.
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A. Field in the Preferred Direction (a axis)

A small field in the a direction establishes a new
equilibrium position in the xs plane. The angles shown
in Fig. 3 take the values

Op=82=Op —0,
8s=84= 8p+8,

(16)

where 8p is still given by Eq. (12) and where 8,
=8pPIp/2(Hy+Hg) j. By including Hp in the equations
of rn.otion we have a new secular determinant which has

"L.Neel, Ann. phys. 11, 232 (1936)."J.van den Handel, H. M. Gijsman, and N. J. Poulis, Physica
18, 862 (1952).

IV. CLASSICAL CALCULATION AT O'K;
EFFECT OF A FIELD

We now consider the effect of a static magnetic field
applied parallel to each of the crystal axes. To have a
detectable effect on the magnitude of the exchange fre-
quencies the applied field will have to be quite large, of
the order of magnitude of the exchange fields. Only for
materials such as CuC12 2H20 and MnC12. 4H20 with
very low Weel temperatures are large enough fields cur-
rently obtainable. We will see that only in the b direction
in copper chloride can a field be applied that is large
enough to affect noticeably the exchange frequencies
without simultaneously overcoming the Moriya inter-
action on which they are dependent.

Twenty-five years ago Neel'3 predicted the existence
of a critical field strength in antiferromagnetics for the
case of a field applied along the axis of easy mag-
netization. At this critical value of the field the anti-
parallel magnetizations would turn from the easy axis to
a hard(er) axis perpendicular to it. This spin flopping
was observed in CuCl~ 2H20 at a field strength of about
6500 oe by van den Handel, Gijsman, and Poulis. '
When the spins in copper chloride swing from the a axis
to the b axis (second-preferred direction) upon applica-
tion of an HO=6500 oe in the a direction, the canting
caused by the b component of the Moriya interaction
vector is reduced in proportion to the reduction in the a
component of S. Since S.in the flopped position depends
primarily on a balance of torque between the applied
field and the antiferromagnetic exchange field, the re-
duction in 5, amounts to more than a factor of 10. At
this point it should be recalled that in restricting our-
selves to a four-sublattice model, we forced the net
effect of the u component of the Moriya vector to be
zero. Thus there is no new source of canting becoming
operative after the spins have flopped to the second-
preferred direction. Essentially then the situation is
amenable to analysis on a two-sublattice model in which
the exchange modes are nonexistent. The net result of
these observations is that we can limit our consideration
to Hp (7000 oe or about (1/20)H&, when Hp is applied in
the a direction.

in which the upper signs correspond to ~i, 2 and
and the lower signs to ~34 and 78

where $i ——f1+4Hp'(H p'+H. )/Hi(Hp' K—)'3' »d b
=Hp/PIq(H&, +Hi)]1. For Hp=6500 oe the maximum
effect on the exchange frequencies of (17) is about &5%.
Due to the uncertainty in the magnitudes of the ex-
change and anisotropy fields, this range is not large
enough to make an experiment feasible. The Eqs. (17)
reduce to Eqs. (14) when Hp is decreased to zero The
normal modes corresponding to the frequencies (17) are
given by Eqs. (15) with modified values of p, , v, p., and r
which are not important here.

B. Field in the z Direction (c axis)

The equilibrium positions of the four-sublattice mag-
netization vectors remain in the xs plane when Ho is in
the 2' direction For Ho small compared with Hq, i e,
Ho&10' oe, the equilibrium angles are

8i=84=8p+8:,
02= 03=00—0„

where 8,=(Hp/2Hi). The effect of this applied field
amounts to only a perturbation of order 0,' on the zero
field resonance frequencies or3~, but

Mi= cps ~ 'y—p(2HiH~+Hp )*~ (19)

in place of the expression (14). The normal modes (15)
apply with the replacement

li -+ (Hp'+2Hi, H, )&/2Hi, (20)

The action of the s field is similar to that of the Moriya
field. Whereas the latter reduced the energy by canting
the ferromagnetic sublattices an angle 28p the former
has caused the antiferromagnetic sublattices to cant by
an angle 28,. Equations (18) indicate that the ferromag-
netic canting does not change for Ho&10' oe However,
when the applied field is the same order of magnitude as
the antiferromagnetic exchange field, the antiferromag-
netic canting is greatly increased while the ferrorn. agnetic
canting is reduced. It is convenient to describe the large-
field equilibrium position by the angles

Hi=04=0,

8s =8s= —8+28,
(21)

where 8=H /(2Hq+Hp sin8) being half the angle be-
tween sublattice magnetization vectors Mi and Ms (Ms
and M4), and sin8=Hp/2H&, . For Hp=Hq, wehave8=30'
and S=-,'0,.

The secular equation including a large applied 6eld in

the roots

( /„) =H;+H, LH, (1~g,)+H.'(1~g,)],
17

(p~/yp)s =4Hs (H~+ H~) (1+b),
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the s direction has the roots

sai= uo—=go(Ho +2HbH, )*,

oao= ~4=To(i2Hs(H b'f1+ (H~'/2Hb)$2]}b,

sas ———pio ——2yp/Hb(H), +Hb)]'
&& L1—Hp'/4Hb (Hi+He) ]'*,

pip= cap= 2"ro[Hb(Hi+Hb)]'
&& L1—(H,H /2H, o)i-,]:

(22)

magnetization vector with a component proportional to
sing oscillating in the s direction.

If the applied field is large, e.g. , Hp H), =10' oe, the
eigenvalues of the secular equation are

sai ———sap
——yoL2HbH, (1—H 'p/ 4Hb')]'

pa4 7p——fH p'+2 HbH b']l,

sas ———boo= 2yoL(Hb+Ho'/4Hi, ) (Hb+Hb)]',

sa7 sap 2 roach(Hb+Hs. Ho /—4Hb)]*.
where 1 i ——[1+Hop(Hb Hb)/—4Hg'Hg Hps/—16HisHbf,
t o L

——1—
H op Hb/4H bo (Hb+ Hx) —Hob/16H &,

s (Hb+ Hs) ],
and l s

——(1—Hp'/4Hb')*'(1+Ho'/4HbHg) —' lf IIp 10'——
oe, then p~s in (22) is about 10%%uo lower than the zero
field oas, and co7 in (22) is about 3%%uo lower than its zero
field value. Further increase in the strength of the
applied. field will overcome the Moriya canting and
eliminate the exchange modes altogether, so the static
field dependence of ~5~ does not provide a suitable
tuning range for a resonance absorption experiment. The
normal modes corresponding to (22) are again given by
Eqs. (15) if we make the replacements

p —+ (Hp'+2HiH, )~/2Hi,

v ~ (2Hb/[H bi i+ (H '/2Hg)i p]}l(1—Hp'/2Hb'), '
(23)

~ ~ L(K+Hb)/Hb]'*Ll —Ho'/4Hz(K+Hb)]*'

$H /(Hb/H )]'t 1—(H,H /2Hs. ')g ]'*.

C. Field in the y Direction (b axis)

When Hp is applied in the y direction a new equi-
librium position is established in which the magnetiza-
tion vectors are rotated out of the xs plane by the angles

P, shown in Fig. 3. ln this case all P;=P, where

sing =Hp/2Hb

pip ~ y p(2HbH b'+H p')'

v ~ 2Hb/(2HbH b'+Hop)**,
(25)

the resonance frequencies and normal modes are the
same as for the. zero field case. The transformations (9)
with QYO remove the degeneracy of the F, axes of the
four equilibrium coordinate systems with the result that
the normal modes 7 and 8 now have a nonzero net

and all 0,=0p. As in the previous situation when Hp was
in the s direction, the applied field produces a canting of
the antiferromagnetic sublattices and decreases the
angle between the ferromagnetic sublattices. This latter
effect does not appear explicitly as it did in the s-field
case because 20p is no longer the angle between ferro-
magnetic sublattices, but is now only the angle between
their projections on the xs plane and as such remains
constant independent of P.

When Hp is small compared with the antiferromag-
netic exchange field it is essentially a perturbation and
appears in terms of order P. Except for the substi-
tutions

For Hp= 2)&10' oe, co5 is about twice as large as its zero-
field value and co7 is about one-third smaller than the
zero field coy. The eigenvectors of the normal modes are
represented by Eqs. (15) after making the following
substitutions:

P ~ LH./2Hb(1 —H, '/4Hb')]l

v ~ 2Hb/(Hp'+2H), H b') '*,

a ~ $(Hb+Hb)/(Hb+Hp'/4%, )]',
r —& $Hb/(Hi+Hb Hp'/4H —)b]'.

(27)

The exchange resonance best suited for experimental
detection is co5,6. With the applied field in the y direction
and a variation in its magnitude from 0 to 2&& 10' oe, the
resonance frequency is increased by a factor of two. The
net magnetization vector in modes 5, 6 has a component
independent of Hp oscillating in the x direction and a
component proportional to Hp oscillating in the s
direction. The x and s components are 90' out of phase
and are approximately equal in magnitude when
Hp=10' oe.

V. COMPARISON WITH PREVIOUS WORK AND
NUMERICAL ESTIMATES

Several authors' ' have derived the antiferromagnetic
resonance frequencies of copper chloride dihydrate
based on a two sublattice model with nearest neighbor
interactions only. A detailed summary of these calcula-
tions is contained in the review article on antiferromag-
netism by Nagamiya, Yosida, and Kubois (NYK).
Since a two-sublattice model of CuC12 2820 does not
allow a Moriya interaction, these authors did not obtain
the exchange resonance frequencies. The antiferromag-
netic resonance frequencies derived in the present paper
and in those reviewed by NYK are equivalent if, in the
latter, the quantity E'&, representing the b component of
the anisotropy, is replaced by

Ei' If.i+ (H'/Hs. )3IIp,
—— '

where E~= 2' pHq. The Moriya interaction, which is an
anisotropic superexchange interaction, contributes only
to E&, which otherwise arises primarily from the spin-
symmetric anisotropic superexchaiige, and not to E2,
the c component, which is mainly due to magnetic
dipole interactions. ""

"T.Nagamiya, K. Yosida, and R. Kubo, Suppl. Phil. Mag. 4, 1
(1955).
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The critical field strength in the a direction at which
the spins turn from the u axis to the b axis is

TABLE I. Resonance wavelengths (mm).

H„= (2HiH b')-', (29) Mode
Applied Geld in oersteds (y direction)

0 5X104 10' 2X 10'

which is a solution of the second of Eqs. (17) for s&s=0
and is the same expression as given by NYK when E&
is modified as explained above. The critical field has
been deduced by Ubbink' from antiferromagnetic reso-
nance measurements of Ubbink et al." as 6560 oe.
Taking into account the anisotropy of the g factor, this
field strength must be multiplied by (g,/2) =1.10.'4'r

For the four-sublattice model the Weiss molecular field
parameter )i is equal to (2/gi). The perpendicular sus-
ceptibility has been measured" as 1.70)&10 ' per gram,
but must be modified for use in the present theory:

xr (theory) = (2/g, )'px&(experiment), (30)

"J.Ubbink, J. A. Poulis, H. J. Gerritsen, and C. J. Gorter,
Physica 18, 361 (1952)."J.Itoh, M. Fujimoto, and H. Ibamoto, Phys. Rev. 83, 852
(1951).

where p=2.38 g/cm'. The value of the saturation
sublattice magnetization is ~%pe, so we have H), =1.16
)&10' oe. Substituting the values of H„and H), in Eq.
(29) we find H b'= 224 oe.

Using 3-cm waves Ubblink et al. ' observed antiferro-
magnetic resonance in CuC12 2H20 at 1.2—1.4'K with
H, =5050 oe. Since there was very little temperature
dependence of the resonance field below 3'K, this 6eld
strength should be approximately correct for O'K. With
co/ys ——3.36&&10' oe corresponding to 3-cm waves, the
second of Eqs. (17) was used to determine the ratio
H, /Hb' 3.52 and con——sequently H, =788 oe. The ex-
perimental anisotropy fields Hb' and H, are equivalent
to (Ei'/1V) =5.22X10 ' cm ' per ion and (E&/X)
=18.4)&10 ' cm ' per ion. Moriya and Yosida, " with
later revisions by NYK, calculated the anisotropy con-
stants theoretically as (Ei/Ã)=5. 43&&10 ' cm ' per
ion and (E,/E) =34.7)&10 ' cm ' per ion. H we assume
E1'=2E1, then the theoretical anisotropy constants
both exceed the experimental values by about a factor
of two.

Oguchi' and Marshall" have calculated that J'/J
=0.3 and 0.138, respectively, where J' is the ferromag-
netic exchange integral and J is the antiferromagnetic
exchange integral. From molecular field theory Hb/H&,
=J's'/Js where s=2 and s'=4 are the numbers of
nearest and next-nearest neighbors in CuCl~ 2H20, re-
spectively. Therefore we assume that 3.21)&104 oe
&Hg(6.98&(104 oe. Table I contains the resonance
wavelength in millimeters for each normal mode for
several values of the applied magnetic Geld. These
wavelengths are predicted on the basis of the preceeding
rough analysis of parameters and of course the measure-
ment of the parameters will redetermine the values.

The parallel susceptibility provides a molecular field
theory relation between the Moriya and exchange field

1, 2~
3) 4
5, 6b
7, 8b
5 6c
7 8c

7.90
14.9
0.774
0.774
0.469
0.469

8.10
2.04
0.712
0.791
0.450
0.478

8.83
1.03
0.583
0.842
0.407
0.500

17.4
0.514
0.390
1.27
0.301
0.667

a Based on experimental data.
~ Based on Marshall's value of J'iJ =0.138.
0 Based on Oguchi's value of J'/J =0.3.

parameters at O'K,

= ass/2As ()i+A), (31)

but, lacking both a theory of the temperature depend-
ence of xll for a four-sublattice model and a measure-
ment of y„at a sufficiently low temperature, Eq. (31)
can be used only to put an upper limit on the magnitude
of H . Van den Handel, Gijsman, and Poulis" have
found Xtl to be an increasing function of temperature,
their lowest determination being at 1.5'K: yll=0. 18
&(10 ' per gram. With this value of gl l as an upper limit,
we find H &~ 5400 oe using Marshall's value of J'/J and
H &~1.3&&10' oe using Oguchi's value of J'/J.

Another estimate of the magnitude of the Moriya
energy was obtained by comparing the theoretical ex-
pression for —', (gb —2) obtained by first-order perturba-
tion theory with the expression Moriya~ obtained in a
similar manner for the b component of the Moryia
vector. The result, involving several quantitative ap-
proximations, is Db=(gb 2)J' T—he va.lue of gb de-
termined from the susceptibility measurements of van
den Handel et al. '4 above the Neel temperature is 2.03,
while that determined from the paramagnetic resonance
experiments of Itoh, et al." at room temperature is
2.075. Using the average value of gb we find Os=1.6',
and H =2800 oe for an average value of Hq ——5.1&(104
oe. Finally we estimate the component of the ortho-
rhombic anisotropy held in the b direction as Hb ——Hb—H '/2Hb= 167 oe.

(l, m)1 (L, m)2

—2D P (Si&&S„)
(L, m)2

+X—'5—' P LEi'(Sp)'+E, (Si')'] (32)

where ( )1 under the summation sign means pairs of
nearest-neighbor cations; ( )2 means pairs of next-
nearest-neighbor cations; and J, J', and D are positive
constants representing the anti ferromagnetic, ferromag-

VI. SPIN WAVE SPECTRA

The spin Hamiltonian for CuC12 2H20 may be ap-
proximated as follows:

3('.=2J P (Si S )—2J' P (Si S„)
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netic, and Moriya exchange integrals, respectively. Al-
though the anisotropy terms in this Hamiltonian have
the form of single-spin anisotropy, which is constant for
S=—,', these terms are actually the phenomenological
resultant form of the two-spin magnetic dipole and
pseudo-dipole interactions derived for CuC12 2H20 by
Moriya and Yosida. " The resemblance to single-spin
anisotropy is due to the symmetry of the sublattice
magnetizatiori vectors with respect to the crystal axes.
Since the anisotropy in (32) depends not on the magni-
tude of the individual spin quantum number, but only
on the angles between the macroscopic magnetization
vectors and the crystal axes, we will assume for our spin
wave treatment that this single-spin form of the
anisotropy behaves as if S)2. The constants E&' and E2
have the same values as in the classical calculation.

Adapting the Holstein-Primakoff" method of spin
deviation operators to our four-sublattice model, intro-
ducing spin waves, and making appropriate canonical
transformations, we reduce the Hamiltonian (32) to the
harmonic oscillator approximation. Aside from the zero
point energy we find the following spin wave spectra for
small k:

+&,s (&)= LgJ«s/N+ 2 (Js)' (d+ crd') &'3*',

Es,4(k) = $2Js(4Kt'/N+D's'/2J')
+2(Js)'(d+nd')k'1', (33)

Es.s(k) E7,8(k) =2(J's'(J&+ J's')
+2(Js)'Pd —(n+2n')d']k') *,

where d and d' are nearest- and next-nearest-neighbor
structure factors, n= J's'/Js, and we have now inserted
S=—', as the magnitude of the spin quantum number for
a single atom. The equilibrium position is in the xs plane
and at O'K is given by es D/2J' which ——is equivalent to
the value of the equilibrium angle derived classically.
The classical frequencies (14) are equivalent to the
energy eigenvalues (32) at T=O'K for k=0.

The spin wave spectra may be considered to have low-
and high-frequency branches which are somewhat analo-
gous to acoustical and optical branches in that the
magnetization vectors of next-nearest-neighbor sublat-

rs T. Holstein and H. Primakoff, Phys. Rev. SS, 1098 (1940).

tices 1 and 2 (3 and 4) oscillate in phase in the low-
frequency modes and 180' out of phase in the high-
frequency modes. The introduction of the Moriya
energy has not altered the minimum energy needed to
excite a k=O spin wave. This energy is E3,4(0) and
corresponds to about a 1'K gap. As pointed out by
Eisele and Keffer, ' the existence of such a gap leads to a
complicated temperature dependence for the magnetic
specific heat compared to the T' dependence of an
isotropic antiferromagnet. Petersen and Phillips, "how-
ever, have observed a T' dependence of the magnetic
specific heat of CuC12 2H20 below 0.55'K contrary to
theoretical prediction. This discrepancy may be ex-
plained by the theory of Pincus and Winter'0 in which
the magnetostrictive terms in the Hamiltonian produce
a magnon component in the thermal phonon spectrum
allowing phonons to participate directly in magnetic
processes.

VII. CONCLUSION

The introduction of the Moriya energy into the spin
Hamiltonian for copper chloride dihydrate has resulted
in a set of high frequency exchange resonance modes not
previously predicted or observed. Although the ex-
change frequencies do not involve the Moriya constant
explicitly, the amplitude of the exchange normal modes
is proportional to the canting between next-nearest-
neighbor spins which is caused by the Moriya inter-
action. We propose a resonance absorption experiment
on CuC12 2H20 in the antiferromagnetic state below
4.3'K to detect the exchange resonances and verify the
existence of the Moriya interaction. The rf field should
be in the crystal a or c direction with a wavelength of
approximately 0.6 mm and the static applied field
should be in the crystal b direction with a magnitude
varied from about 5X10' to 2&10' oe.
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