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An investigation of the classical Heisenberg exchange energy
has led to the discovery of a new spin configuration, called a
ferrimagnetic spiral. The explicit construction of this state is ac-
complished by application of the Lyons-Kaplan generalization of
the Luttinger-Tisza method (GLT). For all B Bintera-ctions which
are suAiciently large to destabilize the Neel (collinear) configura-
tion, this spiral has lower energy than all previously proposed spin
configurations including those of Neel and Yafet-Kittel. Further-
more, this ferrimagnetic spiral is found to be stable against arbi-
trary small deviations of the spin vectors over a range of inter-
actions that is contiguous with the Neel range. It is also shown, by
further application of the GLT method, to have the lowest energy
over an additional large class of spin configurations. In view of
these results, it is likely that the ferrimagnetic spiral is the ground
state over its range of local stability.

The complete class of configurations possessing "equal relative

angles" (i.e. , invariance of the angles between spins under lattice
translations) is elucidated for the first time. It is shown that the
ferrimagnetic spiral has the lowest energy over this class of con-
figurations for a range of interactions which includes the range of
stability, and extends beyond it. It follows that for interactions in
the latter range, the relative angles in the ground state must not
possess translational invariance, in contradiction to earlier
hypotheses.

The neutron diffraction pattern resulting from general magnetic
spirals is discussed. The striking agreement between our theoretical
results and the complex pattern found by Corliss and Hastings for
manganese chromite supports the theory. In addition, the spin
configuration at the Curie point, in the molecular field approxima-
tion, is shown to be in accord with the observed temperature
dependence in manganese chrornite.

I. INTRODUCTION

ECENT experiments'' on spinel structures have
revealed the presence of spin configurations which

are neither of the Weep nor of the Yafet-Kittel4 types.
Although these experimental results are not necessarily
inconsistent' with the classical Heisenberg theory of
spin-configurational energy, it is important to determine
whether or not they are consistent. In this paper, we
shall first describe an attempt to rigorously find the
ground state of the classical Heisenberg energy, ' as-
suming reasonable exchange interactions. %e then dis-
cuss some of the ramifications of our results.

%e shall restrict ourselves to the consideration of
spinels where all the 8-site cations are of one ionic specie
and all the A-site cations of another (i.e., normal
spinels), where the crystal symmetry is cubic (as dis-
cussed in Appendix I),' and where only nearest-neighbor
A Band B Bantiferro-magne-tic interactions (J~tt and
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Jtrtr, respectively) are present. ' Then the ground state
depends only upon the parameter I defined by'

u= (4J++Sgt)((3J~ttSa)

The Neel configuration (3-site spins parallel to each
other and antiparallel to the B-site spins) is the ground
state for sufIiciently small values of this parameter u,
namely, for st~(tee=8/9. "u This result was proved
rigorously in reference 11 by using the generalized
Luttinger-Tisza (GLT) method described therein, and
our present effort to discover the true ground state for
u) No involves further application of the GI.T method.
A survey of many of the results of this investigation has
already been given, ' but without the necessary details
and proofs, which are included in the treatment below.

The initial steps in our procedure lead to a low-energy
state of the magnetic-spiral type. " The energy of our
spiral lies appreciably lower than that of the Yafet-
Kittel state. Furthermore, it satisfies the rather strin-
gent, necessary condition that the energy of any pro-
posed ground state for a range of u contiguous to uo
must lie lower than that of the Weel state whenever the
latter is unstable. The subsequent steps in the applica-
tion of the GI T method are directed toward proving the
above spiral to be the ground state, and in this respect

8 These restrictions appear reasonable, since materials exist
which a priori might be expected to satisfy them. However, they
are not essential, since our approach requires only that every ionic
specie be ordered in the crystal.
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our e8ort fails. However, this application succeeds in
proving that our magnetic spiral is the best over a large
and precisely defined class of spin configurations. In
addition, it yields a rigorous lower bound to the ground-
state energy.

Another stringent necessary condition for a configura-
tion to be the ground state is that of local stability, i.e.,
stability with respect to arbitrary small deviations of
all the spin vectors from their direction in the configura-
tion of interest. It is shown that our spiral is locally
stable for Np(Q(N" —1.3, and unstable for N&N". In
addition, that mode of spin deviations which most
rapidly destabilizes the magnetic spiral for u slightly
larger than I" has been determined, and the ensuing
configuration is shown to be ordered in a complicated
manner.

To put these results succinctly, we have found a spin
configuration which might be (and, subjectively speak-
ing, is likely to be) the ground state for eo ~&u (u", and
which is definitely not the ground state for u&N". In
at least part of the latter region, the true ground state
must be more complicated than our magnetic spiral, as
suggested by the small-deviation mode mentioned
above, and as shown by the detailed consideration of the
GLT method.

In the literature, various invariance hypotheses""
have sometimes been used to restrict the class of pos-
sible ground-state spin configurations. In Appendix V,
we elucidate all those configurations which possess
"equal relative angles, " i.e., where S(R) S(R') is in-
variant under the lattice translations. Then further
consideration of the GLT method yields a proof that the
magnetic spiral previously constructed has the lowest
energy of all such equal-relative-angle configurations
even for some u&u", so that there exist values of I for
which the ground-state spin configuration cannot pos-
sess equal relative angles. It is pointed out that this
result should not be surprising, despite existing in-
ductive evidence, since there is no a priori reason to
expect any such invariance hypothesis to be true in
general.

The most direct experimental means of ascertaining
the actual ground-state spin configuration is by neutron
diffraction. The calculation of the diffraction patterns
resulting from the configurations considered in this
paper follows most conveniently from a general expres-
sion involving the Fourier transforms of the spins. This
general expression leads to many additional scattering
points in reciprocal space even for as simple a spin
configuration as a ferrimagnetic spiral. These extra
scattering points considerably increase the difficulty of
deducing an appropriate spin configuration from ex-
perimental data, as is illustrated by the explicit details
for our magnetic spiral. Thus, some theoretical insight
into the type of configuration to be expected becomes

"H. A. Gersch and W. C. Koehler, J. Phys. Chem. Solids 5, 180
(1958).

'4 E. F. Bertaut, Compt. rend. 250, 85 (1961).

virtually essential for an interpretation of the experi-
mental results.

Finally, our theoretical findings are compared with
the experimental results for manganese chromite. ' If the
spiral model is used to interpret the measured mag-
netization, the appropriate value for I (—1.6) is
greater than I".Nevertheless, there are striking quali-
tative similarities between the observed diffraction
pattern and that predicted for our magnetic spiral. This
agreement supports our assumption of the classical
Heisenberg energy, as well as our belief that the spiral is
the ground state for Np&~u(N". It also suggests that the
spiral approximates the ground state for I as large as
1.6. The fact that a spiral can only be an approximation
in manganese chromite is one of the plausible explana-
tions given for the discrepancies between the observed
pattern and that predicted for our spiral. In addition,
the high-temperature spin configuration is calculated in
the molecular field approximation, and it implies a
Neel-magnetic spiral transition which appears to be
consistent with the available data.

II. APPLICATION OF THE GLT METHOD

A. Construction of the L110j Solution

The classical Heisenberg energy can be expressed' as

J'nv. mpSmr ' Smp~

where e, m identify the unit cell; v, p, identify the par-
ticular site within a unit cell; S„„is a unit vector in the
direction of the spin on the mvth site; and J„„
=S,S„J,, „,S, being the spin magnitude for the evth
site and J„„,„being the negative of the usual exchange
integral. Our problem consists of finding a set of unit
vectors S„„which minimizes this energy for normal
cubic spinels. The search for such a solution might
appear hopeless, since there is an enormous number of
individual spins in a crystal and since there is no a priori
restriction on the direction of any of these spins, as
noted in Appendix I. Nevertheless, the GLT method is
able to solve this problem rigorously" for u~& Np.

A thorough discussion of the GLT method has already
been given. "%e recall here that the technique involves
finding the minimum (over k and over the six branches
rr=1, 2, 6) of the eigenvalues X (k) of the matrices
defined by

where
P„„(k)=p„p„I.„„(1),

I.„„(k)=P„J„„,„expLik (R„„—R„„)j,
the R„„being vectors from the origin to the nvth site.
L(k) is given explicitly in Appendix II, both for general
k and for k=kL110j/V2. The P„are arbitrary real
parameters which are to be chosen so that the spin
configuration constructed from eigenvectors associated
with the minimum eigenvalues of Q(k) consists of unit
spin vectors (i.e., satisfies the so-called "strong con-
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FIG. 1. The sites in a primitive unit cell of the spinel structure.
The numbers v= 1, 2, ~ ~, 6 identify the various sites.

Xi(kp) =min, »pX (k[110]/K2) (6)

for u ~) uo. At this point in the calculation we temporarily
ignore all eigenvalues corresponding to k in directions
other than the $110],and hence restrict ourselves to the
$110]class of configurations, i.e., to those configurations
which can be constructed from arbitrary linear combi-
nations of any number of Fourier components as-
sociated exclusively with k's in the L110] direction.
Accordingly, it is convenient to restrict the choice of the
P. so that B(k/110]/K2) retains the symmetry of
L(kL110]/K2), i.e., so that the matrices Q(k/110]/V2)
are also partially diagonalized into 1g 1., 2 X2, and 3&(3
submatrices by transformation into the hatt„basis de-
scribed in Appendix II. This requirement yields

pi= pp=1,

p =p =p'( ),
ps= pp=p(&),

(7)

where the sublattice labeling is shown in Fig. 1.
It should be noted that restricting our choice of p„

places no restriction on the physically possible con-
figurations under consideration (i.e., configurations

straints" IS„,
~

=1). If such P„can be found, then the
method rigorously proves that the resulting configura-
tion is the true ground state, and is said to work.

For I ~& Np, the p„can be chosen" so that the minimum
eigenvalue over all k and n is

Xp=min X (0),

and the corresponding eigenvector satisfies the strong
constraints. Thus the GLT method works, and the
corresponding configuration (Neel) is thereby proven to
be the ground state. This proof breaks down for u) uo

because another eigenvalue, Xi(kp[110]/V2), becomes
degenerate wi. th A, o at u= uo ' " and lies lower than A, o

for larger values of u. The corresponding configuration
fails to satisfy the strong constraints. In other words,
the method fails for this choice of the p, when u) up.

Such behavior suggests that the device of "forced
degeneracy'"' be used to satisfy the constraints, i.e. ,
that the p„be chosen so as to retain the degeneracy of Xp

with

satisfying the strong constraints). It only restricts the
set of configurations which do not satisfy the strong
constraints, since minimization of the energy over a
weak constraint includes consideration of all physical
states, regardless of the choice of the weak constraint.
Thus, any information concerning physical states which
is obtained from consideration of a particular weak
constraint is rigorous, and cannot be contradicted by
another choice of P..

X,(kp) arises from the 3X3 submatrices, and its
definition as the minimum over k supplies one relation-
ship among the three unknowns P, P', and kp. The
forcing of the equality Xp=Xi(kp) yields a second equa-
tion involving these variables. As a result of this forced
degeneracy, the spin configuration can be constructed"
from a linear combination of the corresponding eigen-
vectors, Qp and Qi(kp), which have the general form
given by Eq. (87). If one assigns imp to 8„,"and Qi(kp)
to S„„*'and S„„&', then the strong constraints can be
written explicitly in terms of the components of these
eigenvectors. This procedure gives rise to three more
equations involving P, P', kp, and two new variables
which are the constants defining the linear combination.
After a considerable amount of algebra, the simultane-
ous solution of the five equations described above can be
reduced to the computational procedure given in
Appendix III.

For u& 2, the equations in Appendix III become in-
consistent with the requirement that the p„be real, "and
hence the foregoing calculation is valid only for uo « u « 2.
However, examination of the six branches X (kL110]/v2)
shows that the entire (flat) branch Xp (arising from the
1X1 submatrix) becomes degenerate with Xp and Xi(kp)
at u= u~= 2. Following this suggestion, the functions

p(n) and p'(u) are now chosen so as to retain the
threefold degeneracy

Xp ——li, (kp) =Xp (8)

for u ~&2. Simultaneous solution of the three relation-
ships given by Eqs. (6) and (8) yields explicit expres-
sions for P(n), P'(u), and kp. Then the three coefficients
defining the linear combination of the corresponding
eigenvectors suffice to satisfy the strong constraints, for
u~ & u & u2 ——3.817

At u= u2, the coefficient of the I =0 component in the
linear combination vanishes, and the strong constraints
can no longer be satisfied in the above fashion for u) u~.
This situation suggests that the requirement on 'Ao be
relaxed by retaining only the right-hand equality of
Eq. (8). The resulting equation, together with the defi-
nition of lii (kp) and the strong constraints, again permits
the determination of P, P', kp, and the coefficients of the
linear combination of eigenvectors.

All of the configurations obtained above are of the
magnetic spiral type' defined by

S„„=sin&„Lx'cos(kp R„„+y„)
+j' sin(kp R „+y,)]+a' cosy. , (9)
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$1 42) yl 'ys

%=44) Vs= —V4,

Ps=Ps, Vs=Vs=s.
(10)

where the orientation of the i', g', z' coordinate system
with respect to the crystal axes is arbitrary. Note that
the spins on each sublattice lie on a cone of half-angle
p„with their positions on this cone determined by the
other spiral parameters ks and y„. The calculated values
of these parameters for N~& No are given in Fig. 2, where

O /9 2

-20z

& -40

-60

u=-(4 J88 S8)/(5 J48SA)

4 6 8 10 42 14

The equations by which these parameters are calculated
are included in Appendix III for No~&u~&2, but are
omitted for larger u because the configuration is locally
unstable for N)N"=1. .298 . , as found in Sec. III.
Nevertheless, it should be emphasized that, for every
value of I, a set of P„has been found such that con-
6gurations constructed from eigenvectors associated
with the minimum (over n and k) eigenvalues of
S(k(110j/&2) satisfy the strong constraints. Hence the
GLT method "works" over the L110j class. This means
that no spin configuration whatsoever composed entirely
of Fourier components with k's in the L110] direction
can yieM a lower energy than the magnetic spiral de-
termined above.

The energies of the Neel, Vafet-Kittel, and magnetic
spiral configurations are compared in Fig. 3, which
shows the spiral energy to lie significantly lower than
the Vafet-Kittel result. It is interesting to note that
both the energy and its first derivative with respect to I
are continuous for all n, despite the changes in technique
required at No, I&, and u2 and the associated discon-
tinuities in the derivatives of the spiral parameters.

B. Investigation Over a11 A.

In the course of constructing the minimum-energy
spin configuration with Fourier components indexed by
k's in the L110$ direction exclusively, we have deter-

-80

FIG. 3. Energy as a function of the parameter I for various spin
con6'gurations in normal cubic spinels.

mined the corresponding values of the originally free
parameters P„. These values define a particular set of
Q(k) matrices. According to the GLT method, if our
[110jspiral yields the minimum eigenvalue of this set
of matrices, i.e., if

Xi(kp) &~X (k) for all rr and k

then our spiral gives the absolute minimum energy for
the original physical problem. However, a search over
the Brillouin zone reveals some wave vectors k for which
the above inequality is not satisfied, for all u) uo.

Such a result does not in general imply that the
configuration previously constructed is not the ground
state."Rather, it demonstrates the existence of lower-
energy spin configurations which satisfy the "weak
constraint"

(12)
n, u

but which do not necessarily satisfy the strong con-
straints ~S„,

~

=1. Since all physically possible con-
figurations (those which satisfy the strong constraints)
are included amongst those satisfying the weak con-
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Fzo. 2. Magnetic
spiral parameters for
normal cubic spinels.
Together with the re-
lationships given in
Eq. (10), these val-
ues completely de-
fine the spin con6gu-
ration as a function
of I, according to
Eq. (9).

5 For u)N2, the spiral is coplanar, in which case failure of the
GLT method does imply that the configuration is unstable and
cannot be the ground state. To prove this, we note that one of the
coordinate vectors in Eq. (17)say sf„„,can be chosen perpendicular
to the plane of the spins, so that g„„=g and is independent of n
and v. Then from Eq. (D2) it follows that F„„, v«=(J' „,

„) and F„„, „&t =0, so that F is partially diagonalized
into pq and g' submatrices. From the equations of reference 11, it
can be shown that the GLT matrix (before Fourier transformation)
is given by ~~„„, „=P„„P„J„„,„and that X „=)p „',where )
is that eigenvalue of 3 which corresponds to the initial equilibrium
con6guration in question. Finally, the energy change can be
written in terms of a small-deviation matrix g defined by rf „„,
=P„„p „F„„, „&&', which contains the submatrix Py»=3 —XI, I
being the unit matrix.

If the configuration is locally stable, then by definition the
submatrix g&& cannot possess negative eigenvalues, so that I must
be the minimum eigenvalue of 3. Conversely, if X is not the abso-
lute minimum eigenvalue of 3, then the submatrix @&& must
possess a negative eigenvalue, so that the configuration is unstable.
Thus we have proven that, whenever a coplanar con6guration is
locally stable, the GLT method works and proves it to be the
ground state (reference 11); and that, whenever the GLT method
fails for a coplanar con6guration, it is unstable and cannot be the
ground state. The above argument also proves that the destabi-
lizing mode consists of deviations out of the plane of the spins.
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FIG. 4. Intersection of the plane k, =0 with the "good" and "bad"
sets for I=1.39.

straint, it follows that the minimum energy over the
weak constraint always provides a lower bound to the
energy of the true ground state. Thus the lower bound
shown in Fig. 3 represents the minimum energy con-
sistent with Eq. (12), but the corresponding configura-
tion does not satisfy the strong constraints.

Furthermore, despite its failure to prove that the
$110)spiral is the ground state, the GLT method is able
to prove some other significant properties of this con-
figuration. Let us define the "good" set as consisting of
all k's in the first Brillouin zone" for which Eq. (11) is
satisfied, and the "bad" set as consisting of all k's for
which it is not. For the normal cubic spinel, this bad set
consists of one region surrounding k=ksL110j/V2 to-
gether with another region surrounding k= ks/011j/V2.
These two regions are small when I—No is small, but
grow as u increases. Nevertheless, the good set still fills
most of the Brillouin zone at I=1.39, as illustrated in
Fig. 4 for the k,=0 plane. It follows from the theory of
the GLT method that the $110j magnetic spiral con
strlcted above yields the absollte miminsum erIergy over all
comfiglrations composed of Pourier components draton
exclusively from the "good" set It, should be .noted that
this "good" set includes the L110j class considered
above, but it goes far beyond this limited class.

As can be seen from Eq. (9), the Fourier components
of magnetic spirals are nonzero only for k=0 and a
single &k/0. In addition, it is clear that similar spirals
constructed from any of the "cubic equivalents" of a
given k all possess equal energies. Since a detailed ex-
amination shows that the "good" set contains at least
one of the "cubic equivalents" of every k vector for all
N(st™1.35, and since the (1101spiral gives the mini-
mum energy over the "good" set, it follows that the

"Because of the symmetry of Q(irl, it is suKcient to consider
only the eighth of the zone with k, &0 and —k„(k~(k~.

L110j spiralis the minimum en-ergy magnetic spiral for u
at least as great as u'—1.35. This conclusion is not a
trivial result, since the general magnetic spiral involves
fourteen arbitrary parameters: three components of k,
six cone angles, and five phase angles (one phase being
arbitrary) "'

The GLT method also proves that, when u=NO, the
minimum energy is attained only by the Neel state,
since the eigenvalue Xi(ks) and those degenerate with it
by virtue of cubic symmetry are found to be the only
ones degenerate with P 0. Hence, every ground state for
the weak constraint problem is a linear combination of
these degenerate eigenstates. Furthermore it can be
shown that the only such combination that satis6es the
strong constraints yields the Neel configuration, so that
when N=uo, there is no other physical state that is
degenerate with the Neel state. It follows that, in the
exact ground state, each spin must move continuously
from its position in the Neel state as I increases past uo.
Our L110j spiral satisfies this condition.

with
S„„'=S„„+x„„,

(2S„„+x.„) x„„=0,

(13)

where S„„denotes an initial spin configuration, and S„„'
denotes that resulting from the deviations. If the initial
con6guration is an equilibrium state, it must satisfy

&my &nvmpsmp= &n,vsnvy (15)

where ~X„,
~

is essentially the magnitude of the molecu-
lar field at the npth site. Then from Eqs. (2), (13), (14),
and (15), it follows that the difference in energy be-
tween the new (primed) configuration and the initial
(unprimed) equilibrium configuration is

AE= g (J„., „b„„,„„h „)K,„„X,„—„. (16)
n, v, mp,

"Even with the assistance of a high-speed computer, the
straightforward minimization of the energy with respect to these
fourteen parameters would be a lengthy, if not impossible, task.

IIL sTABILITY oF THE Lllog MAGNETIc sPIRAL

Application of the GLT method has enabled us to
construct a $110j magnetic spiral which is the best
(110]configuration, to prove that it yields the minimum
energy over a larger class of spin configurations, to
prove that it is the best magnetic spiral for I(I', and to
prove that it is not the ground state for N&~ u2."How-
ever, the above results neither prove that this L110]
spiral is the true ground state for no&&I ~& u2, nor imply
that it is not. Hence, we turn to an investigation of the
local stability of the configuration to obtain further
information.

A con6guration is called locally stable if all arbitrary,
but small, spin deviations increase the energy, except
for those which correspond to uniform rotations of all
the spins. To calculate this energy difference, let X „
represent a set of length-preserving spin deviations.
Then
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our [110$spiral satisfies this stringent requirement sug-
gests that it is the ground state for N(u", but it does
not constitute a proof because metastable states of the
Heisenberg energy do exist."

For tt) u", some of the matrices M(k) develop nega-
tive eigenvalues, and hence the [110]spiral is unstable
(and cannot be the ground state) over this region of N.

At u=u", tr, (kt) =0 and

kiap= 2»r( —0.0339, 1.2016, 0), (20)
ll&

ht
Y

x„„=x„„r(„„+x.„»q„„. (17)

A Fourier expansion of the components X„„& ($=t, rt)

leads, as shown in Appendix IV, to the following ex-
pression for the quadratic (lowest-order) terms of the
change in energy:

aZ=P, P, ,, P„,, m„„«'(k)a„f(k)a„f'(k), (18)

where the M(k) are 12&&12 matrices given explicitly in
Appendix IV. These matrices yield eigenvectors % (k)
corresponding to eigenvalues p (k), with a minimum
eigenvalue defined by

ti, (k,) =min. ,,tr. (k). (19)

In terms of the matrices M(k) defined by Eq. (18),
the condition for local stability states that all of the
eigenvalues of these matrices must be positive, except
for those associated with uniform-rotational modes,
which will be zero. An equivalent statement of this con-
dition is that ter(kr) =0, where ki yields a uniform rota-
tion: e.g. , k~=0 or &ko for a ferrimagnetic spiral.
Numerical calculations performed with an IBM 709
computer showed this condition to be satisfied for all
u&u"= 1.298- and violated for all u&u". Hence, the

[110)magrtetic spiral is stable against small, but othertoise
arbitrary, deeiatiorrs of the spirts for n(st". The fact that

"By comparison of Eq. (15)above with Eq. (14)of reference 11.

FIG. 5. Coordinate system used in the investigation of local
stability. This system "moves" with the spins in the sense that
each spin has its own individual coordinate system.

This expression is completely general, and involves no
assumption as to the magnitudes of the spin deviations.

Let the initial equilibrium configuration be the [110]
magnetic spiral determined in Sec. II(A). Then it can
be shown" that X„„=P„'Xr(kp).Noting that, from Eq.
(14), 1t„.must be perpendicular to the initial spin S„„to
first order, we choose („„and rf„„ to be unit vectors
orthogonal to each other and to the spin S„., where rf„,
is also perpendicular to the cone axis, as shown in Fig. 5.
It follows that, to first order,

which does not correspond to a uniform rotation. The
associated, unnormalized eigenvector is given by

+i(ki) = (1, 1, 3.41, 3.41, —0.35, —0.35, +1.15i,
+1.15i, 2 —86i,. —2.86i, 2 —04i,. 2 —04i). , (21)

where the components of ei(ki) correspond to the
Fourier transforms of the small spin deviations ac-
cording to Eq. (D7). (The convenience of placing kp —ki
within the first Brillouin zone forces ki, as given by
Eq. (20), outside the zone. There is, of course, an equiva-
lent interior value determined from ki'=K —ki with
Kap = 2rr[020j.The equivalent eigenvector will then have
the components [er(kr') j.&= [Or(kr) j„& exp( —iK y„),
where the g, define the locations of the various sites
within the unit cell of Fig. 1.)

The particular eigenvector Nt(kr) shown above yields
that set of spin deviations which first destabilizes the
initial spiral configuration and which, therefore, most
rapidly reduces the energy for values of I slightly larger
than st". The spin deviations corresponding to Eq. (21),
aside from an over-all magnitude, "may be described as
follows: Each deviation X „ends on an ellipse B„„which
is centered on the tip of S„„and lies in a plane perpen-
dicular to S„„.The principal axes of h„„lie along („„and
g „, and their respective lengths are proportional to

~
[+r(kr)g„&

~
and

~
[+r(kr)g„~ . The angle between the

deviation K „and („„varies as a plane wave propagating
in the k~ direction, and the resulting configuration is
illustrated in Fig. 6 for one of the sublattices. It should
be noted that this configuration is ordered, notwith-
standing its complexity, in the sense that a precisely-
defined, long-range correlation exists amongst the vari-
ous spins. Furthermore, if the [110$spiral should be the

"To verify the existence of such states, note that the [110$
spiral is degenerate with similar, locally stable spirals with k
vectors in equivalent directions ([110], [101$, etc.). In other
words, the energy expressed as a function of all the spin vectors has
local minima at a number of different points in the spin-space,
these points corresponding to the same value of the energy. Now
imagine the crystal to be continuously distorted from cubic sym-
metry. Since such a distortion can be represented by a continuous
variation of the exchange parameters, the energy function will
still have local minima at points that are close to the minimum
points for the cubic case for small distortions. But the arbitrariness
of the distortion makes it clear that some of the local minima will
possess higher energy than others, the higher ones being
metastable.' We have not calculated the absolute magnitude of the devia-
tions which approximately minimizes the energy for small, positive
values of I—e". Such a computation would involve fourth-order
terms in the energy and would be far more complicated in this case
than in reference 10.
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FIG. 6. Schematic illustration of the mode which destabilizes the
[110j magnetic spiral at u=u", drawn for one of the spinel
sublattices. The cone axis has been taken to lie along the [001]
direction, so that the (001)plane shown above contains the x and y
components of the initial spin vectors. The short arrows indicate
the projections of the small deviations and their associated ellipses
upon the (001) plane, since actually these ellipses lie in planes
perpendicular to the initial spins. For the purpose of illustration,
the size of these ellipses has been greatly exaggerated.

true ground state for u(u", then perturbation theory"
suggests that the complicated configuration described
above would be the ground state for u slightly larger
than u".

IV. IMPLICATIONS REGARDING INVARIANCE
POSTULATES

As discussed in Appendix I, there is no a priori reason
to expect any of the symmetry of a crystal lattice to be
reAected in a spin configuration which minimizes the
exchange energy. Nevertheless, one is tempted to specu-
late that the particular nature of such spin problems
might cause the crystal symmetry to show up in the
classical ground state in some simple form, in accord-
ance with existing inductive evidence. For example, in

any Bravais lattice the ground state is always a
spiral"; hence Bertaut's" equal-relative-angle hypothe-
sis LS(R) S(R') is a function only of R—R'7 is in-

variably true in this large class of problems. A generali-
zation for more complex structures is

S „S „=f„„'(R „—R„„)= f„„(R„—R„), (22)

i.e., the angle between a pair of spins is a function only
of the types of sites (v and p) and the vector connecting
the corresponding sites, this angle being independent of
the location of a spin of one type within its own sub-
lattice. Then the inductive evidence is even more
imposing, since in every case where the ground state of
the classical Heisenberg energy has been found rigor-

"The hypothesis U in reference 14.

ously, "the equal-angle condition expressed by Eq. (22)
is always satisfied for at least one of the various de-
generate ground states, and usually for all of them. We
shall now show that for some u values, the ground state
does rtot satisfy the invariance property (22).

By means of the GLT method, our (1107 magnetic
spiral can be proven to be the best equal-relative-angle
configuration for u(u'. This proof requires the result of
Appendix V, where it is shown that all configurations
which satisfy Eq. (22) can be written in the form

S „=Q„(k)exp(ik. R„„)+Q„*(k)exp( —ik R„„)
+Qu Q„(u) exp(iu R„„), (23)

where v. =-',I and k is "ordinary" (i.e., not a x). In other
words, every such configuration contains at most one
ordinary k, plus x's, the class of ferrimagnetic spirals
being a special case with Q„(x)=0 for uAO.

As seen in Sec. II(B), the GLT method guarantees
that our [1107spiral has a lower energy than any con-
figuration constructed from Fourier components with
k's drawn exclusively from the "good" set. Investigation
of this "good" set shows it to contain all the x's for
values of u at least as large as u', as well as some cubic
equivalent of every k for u(u'. Since any cubic sym-
metry operation leaves the energy invariant and carries
one x into another x, it follows that any configuration
given by Eq. (23) must be degenerate with some
cubically equivalent configuration having Fourier com-
ponents drawn exclusively from the "good" set when
u(u'. Therefore our $1107 magnetic spiral yields the
lowest energy of any configuration which satisfies the
equal-relative-angle condition of Eq. (22) for u(u'.

However, in Sec. III we found the L1107 spiral to be
locally unstable, and consequently not the ground state,
if u)u". From this fact together with the result of the
preceding paragraphs, it follows that Eq. (22) cannot be
satisfied in the ground state for u" (u(u'. Thus there
must exist ground state spirs -cortfigurations where, for
some sp) mu) arsd p)

S(R„„) S(R„„)WS(R„„+R„)S(R „+R„). (24)

Although our proof holds only for u(u', Eq. (24) will

probably be valid over a larger range of u. Furthermore,
there is no doubt that Eq. (24) will hold over a class of
distorted spinels, since continuous distortions can be
represented by continuous changes in the interaction
parameters and the minimum-energy spin configuration
can be chosen to be a continuous function of these
parameters. "

"We list these cases: (A) Arbitrary J;;. All Bravais lattices
(reference 11), corundum structure [N. Menyuk, Quarterly
Progress Report on Solid State Research, Lincoln Laboratory,
M.I.T., July 15, 1961, p. 59, ASTIA 262282], and hexagonal-
close-packed structure [T. A. Kaplan, Phys. Rev. 124, 329
(1961)].(3) Restricted J,;.ABAB linear chain (references 11 and
39), tetragonally distorted spinels (reference 9), and cubic spinels
with nonmagnetic A sites [T.A. Kaplan, Massachusetts Institute
of Technology Lincoln Laboratory Group Report 53G-0036, 1960
(unpublished) ].

"Since any distortion from cubic symmetry will lower that
symmetry, and hence will not increase the degeneracy.
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In Appendix I it is shown that a classical ground state
need not satisfy invariance conditions; the counter-
example given above goes further in that it proves the
attractive equal-relative-angle hypothesis not to be
generally valid. Other invariance postulates have been
introduced in the literature, as discussed in Appendix V,
but the intractability of the enumeration of all the
corresponding spin configurations prohibits any similar
treatment. Nevertheless, the failure of one of them casts
doubt on the others, and this doubt is strengthened by
the existence of a counterexample to the Gersch-
Koehler condition" for the case of an Ising linear chain,
where the configurations can be enumerated. '4

V. NEUTRON DIFFRACTION

A. General Considerations

The underlying purpose of our attempt to find the
theoretical ground state of the classical Heisenberg
energy is to provide the necessary connecting link be-
tween experiment and the fundamental theory. Tra-
ditionally, the approach of the experimental diQrac-
tionist has been based on the assumption that the spin
configuration will reflect much of the symmetry of the
crystal lattice. However, as discussed in Appendix I and
Sec. IV, the crystal symmetry implies nothing about the
spin symmetry. In general, the spin system will possess
no symmetry in the conventional sense, the configura-
tions of Secs. II and III being good examples. As shown
below, the Fourier components of such configurations
yield the most convenient description of the resulting
neutron diffraction.

Neutrons are scattered both by nuclear and magnetic
forces. However, Halpern and Johnson have shown"
that the resulting intensities are purely additive when
the neutrons are unpolarized. It follows from the above
treatment, that the magnetic contribution to the in-
tensity of unpolarized neutrons elastically scattered
from a single crystal is proportional to

o(e) = IP(e) I' —ls P(e) I' (25)

where e is the neutron scattering vector (difference be-
tween the scattered and incident neutron wave vectors),
t', is a unit vector in the direction of e, and

P(e) =P„,, S„f„(e)S„„exp(ieR„„), (26)

f„(e) being the form factor which describes the effect of
the distribution of electrons around an ionic core."'

"T.A. Kaplan and D. H. Lyons (to be published)."0. Halpern and M. H. Johnson, Phys. Rev. SS, 898 (1939).
"The standard theory by means of which neutron diBraction

experiments are interpreted involves Eq. (25), in which the symbol
S„represents the quantum-mechanical average value (0 ~ S„~0) of
the ath spin in the ground state (we are considering only 2"=0).
One can obtain Eq. (25) with this definition of S„by omitting all
terms in the Halpern-Johnson result that involve transitions from
one state of the crystal to a different one ("inelastic" terms). How-
ever, because the crystal is macroscopic and, therefore, has
densely-spaced levels (with spacing much smaller than the experi-
mental energy resolution as well as the incident neutron energy),

This result can be derived simply from the work of
Corliss, Hastings, and Srockman" by writing
=e(e S,) —S„„,and thereby removing their sublattice
assumption.

The cross section o(e) differs from the "structure
factor" of reference 28 by a numerical factor and by the
necessary inclusion of the summation over all the unit
cells in a crystallite. To eliminate this summation, we
note that any arbitrary spin configuration can be
written in terms of its Fourier components,

S„„=PgQ„(k) exp(ik R .).
Since R„„=R„+9„,it follows that

(2&)

P(e) =+K,~ D(k+e —K)F(K,k),

where the structure factor is given by

(29)

F(K,k) =P.f,(K—k)S„Q,(k) exp(iK 6„), (30)

and where D(h) is sharply peaked at h=O.
The foregoing equations show that the scattered

neutron intensity can be appreciable only when e=K
—k, where k must be a wave vector associated with a
nonvanishing component in the Fourier expansion of
S„„Li.e., Q.(k) AO for some v7.

it is not reasonable to omit the inelastic terms. It is more reason-
able to expect that the contribution of all the terms in the Halpern-
Johnson formula to the intensity in a Bragg peak is given by the
static approximation Lsee L. Van Hove, Phys. Rev. 95, 13N
(1954)g as in the case of X rays, since the Bragg peak involves only
energy changes much smaller than the incident neutron energy.
The use of the static approximation is equivalent to replacing the
products of the average spina (0

~
S l0}(0~S ~0) (as occur in Eq.

(25) if the S„are interpreted as (0~ S ~0)) by the average of the
products (0)S„S )0}.

Although this static approximation involves a negligible change
in the predicted intensity for a Bragg peak when one uses either
the spin wave or the molecular Geld approximations, the use of the
average of the product in the cross section would obviate the
difficulty which arises in the exact quantum-mechanical theory of
antiferromagnetism; in this case (0

~
S„(0)=0 for the exact ground

state, but of course (0)S„S )0) is not zero. A similar difficulty
arises in the case of spirals where, for example, the average values
(0

~
S„)0) would not look like a ferrimagnetic spiral because of the

translational invariance of the exact quantum-mechanical ground
state; again the use of the static approximation would remove the
difhculty.

Furthermore, it may be shown that Eq. (25), for large 3l, de-
pends on the S„only through the correlation function I'
=3f ' Z„S„S„+~.That is, the neutrons "see" the spin system via
Eq. (25) only through the spacial average I' of the products
S„S + . Regarding the S„as classical variables, this correlation
function (for R within a domain) will be the same as the classical
ensemble average (S„S„+,), (averaged over the degenerate states
at T=0). Therefore, in this classical picture, the standard use of
Eq. (25) amounts to the assumption of the static approximation.

"These expressions for the cross section have also been used
recently by W. C. Koehler [Acta Cryst. 14, 535 (1961)g to derive
the intensity associated with spirals in Bravais lattices.

2s L. M. Corliss, J. M. Hastings, and F. G. Brockman, Phys.
Rev. 90, 1013 (1953}.

P(e) =Px,„ f„(e)S„Q„(k)expLi(k+e) 9,7
Xg„expLi(k+e) R„7. (28)

Here the summation over e is the familiar interference
function consisting of essentially delta-function peaks
whenever k+e—K=O, K being any reciprocal-lattice
vector. Hence we write
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Thus, associated with each point K in reciprocal space
there is a number of scattering points, K—k, equal to
the number of different k's for which there are nonzero
Fourier components of the spins. The k=0 Fourier
component produces magnetic peaks only at the nuclear
peak locations (e=K). The peaks arising from k=0 will

be called "fundamentals, " and all others will be called
"satellites. " It should be emphasized that the funda-
mentals are not necessarily larger than the satellites; for
example, in the case of simple spirals Q„(0)=0, so that
all the scattering is through the satellites. Ke also point
out that since all antiferromagnetic spin configurations
observed before the advent of spirals are just particular
cases of simple spirals, each involving one special k
vector, their diffraction pattern can be described con-
veniently in the above language (all the peaks being
satellites in Bravais lattices). Such a description has an
advantage over the conventional method of reindexing
the peaks on a new unit cell, since it does not suffer from
the drastic discontinuity that occurs in the conventional
method, when the k vector changes slightly from such
special values.

For the general magnetic spiral defined by Eq. (9),
the only nonzero Fourier components are Q,*'(0) and

Q, "'(ko)= —iQ„"(ko). Consequently, Eq. (30) gives

F(K,O) =O'F*'(K,O) =O'F(K,O),

F (K,ko) = (x' —ig')F *'(K,ko) = (*'—ig')F (K,kp).

Then the explicit evaluation of the sum over k in Eq.
(29) yields

P(e) =z' Px D(e—K)F(K,O)+(9'—ij')
@ax (D(e+ko —K)F (K,kp)

+D(e—ko—K)F(K, —ko) j. (32)

Provided that ko is not equal to half of a reciprocal-
lattice vector, D(e+ko —K) and D(e —ko—K') cannot
simultaneously be nonzero for a given e. Then the
magnetic cross section of Eq. (25) becomes

o(e)=L1—(t": z')'$ Px D'(e —K) ~F(K,O) ~'

+L1+(e z')'1 Px LD'(e+kp —K)
~

(FK,kp)
~

+D'(e —ko—K)
~
F(K, —ko) ~'j. (33)

Recalling that a' is the direction of the cone axis and,
hence, of the net magnetic moment, we see from Eq.
(33) that the application of an external magnetic field
along the scattering vector e will reduce the intensity of
the fundamentals (e= K), while increasing the intensi-
ties of the satellites (e=K+ko).

In the case of diffraction from polycrystalline samples,
one must average (33) over all crystal orientations.
There are two aspects of such an averaging process in
the presence of spirals which are different from the more
familiar cases, and which enter in a significant way to
the intensity calculations. One of these is the fact that
in general the direction of the cone axis i' will be
correlated with the propagation vector ko, due to

anisotropy forces; hence one must calculate the diffrac-
tion pattern for a given z' relative to ko and to the
crystal axes, instead of replacing (e z')' by an average
value. The other arises from the higher probability of
having more than one scattering point contribute to a
given powder peak (a satellite of one K might contribute
at the same scattering angle as a fundamental at a
different K, etc.). Given the experimental data, the
existence of such coinciding contributions can cause
serious difficulty in the construction of a suitable spin
configuration.

B. Details for a Normal Cubic Spinel

The neutron diffraction pattern calculated for our
L110$ magnetic spiral exemplifies the general properties
discussed above. For one, single-domain crystallite,
there are associated with each reciprocal lattice point K
three scattering points, K+ko, K—ko (the satellites),
and K (the fundamental). However, for the value of ko
computed in Sec. II(A), the magnetic scattering from
the following pairs of scattering points coincide in the
resulting powder diffraction pattern: (220) —kp and
(002), (222) —ko and (220), (202)+ko and (113), (400)—ko and (222), and (222)+ko and (330)—ko.

Once the positions of possible diffraction peaks have
been determined, the next step is the explicit evaluation
of the corresponding structure factors. Because of the
pairing of the sublattices (v= 1 and 2, 3 and 4, 5 and 6)
which occurs in our L110$ spiral, the structure factors
F(K,O), F(K,ko), and F(K, —ko) all vanish identically
for &Kao/2ir= (200), (020), (420), (240), (204), (024),
etc. In addition, calculations based on the spiral parame-
ters of Fig. 2, with values of S„appropriate to manga-
nese chromite, lead to negligible structure factors" for
the satellites (111)&ko and (331)+ko, to very small
ones for (000)&ko, and to generally small ones for many
of the other scattering points in reciprocal space. Thus
the predicted pattern becomes greatly simplified. In
particular, the only appreciable peaks correspond to
(111), (111)&ko, (220) and (222) —ko, (400), (002) and
(220) —kp, (002)&kp, (222) and (400)—ko, (113) and
(202)+ko, (113)—kp, (202) —ko, and (113)+ko, ar-
ranged approximately according to decreasing intensity.
Half of the above peaks occur at the nuclear positions,
so that only a few "extra" peaks are to be expected.

If I is slightly greater than I", the $110) spiral is
unstable with respect to a certain mode of small spin
deviations, as described in Sec. III. As given in Ap-
pendix IV, the resulting deviated spins possess several
additional nonzero Fourier components, corresponding
to six more k vectors, so that there will be six additional
scattering points associated with each reciprocal-lattice
point. Obviously, the resulting neutron diffraction pat-
tern will be much more complicated than that of the
magnetic spiral.

'9 Here we employed the standard approximation of using the
same form factor for all the ions.
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When the deviations are sufficiently small, the diffrac-
tion peaks arising from the $110j spiral will remain
essentially unaltered and some small, additional peaks
will appear because of the deviations. The relative in-
tensities among these additional peaks can be calculated
in a straightforward manner from Eqs. (21), (D8), (25),
(29), and (30), together with the spiral parameters of
Fig. 2 and the definition of the ( „s1 „coordinate
systems. Such a calculation shows that the largest of
these additional peaks lies approximately midway be-
tween the (000)+kp satellite and the (111)fundamental.

VI. COMPARISON WITH EXPERIMENT

A. The Ground State (4.2'K)

Experimental results could be used to test the validity
of the classical Heisenberg approximation if the theo-
retical ground state were known. Despite our failure to
rigorously determine the ground state, much informa-
tion can be gained by comparing our calculated neutron
diffraction patterns with those obtained from experi-
ment. In particular, an examination of the similarities
and discrepancies between the observed and theoretical
properties of manganese chromite (to date, the only
normal cubic spinel with a non-Neel spin configuration
which has been carefully investigated') leads to several
important conclusions. The discussion below illustrates
how the configurations given in Secs. II and III can
facilitate the interpretation of observed neutron pat-
terns on the one hand, and on the other, how the ex-
perimental a posteriori knowledge of the actual ground
state can serve to illuminate the theoretical approach.

We used a vibrating-coil. magnetometer" to measure
the spontaneous magnetization of a polycrystaHine
sample of pure" manganese chromite, and our value of
about 1.2 yii per molecule is in agreement with Jacobs'
previous findings. " Calculation of the theoretical de-
pendence of the net moment upon I from the spiral
parameters of Fig. 2 shows that the smallest value of I
consistent with the measured magnetization must lie
between 1.50 and 1.75 when reasonable moments are
assigned to the Mn++ ions. In the present context, the
significance of this result is that I must be greater than
si", so that the [110j magnetic spiral cannot be the
ground state.

Corliss and Hastings' have recently investigated the
above sample of MnCr204 by neutron diffraction, and
we refer the reader to their paper for a quantitative
comparison between theory and experiment. However,
we wish to discuss here the over-all qualitative agree-
ment between their experimental findings and the pat-
tern expected from our L110) spiral for u—1.6. The
magnetic contributions to the experimental diffraction

'0 K. Dwight, N. Menyuk, and D. Smith, J. Appl. Phys. 29, 491
(1958}."E. Whipple a,nd A. Wold, J. Phys. Chem. Solids (to be
published)."I.S. Jacobs, J. Phys. Chem. Solids 15, 54 (1960).

pattern at 4.2'K consist not only of fundamental peaks
at the nuclear positions, but also of several large "extra"
peaks whose locations agree strikingly with the satellite
positions calculated from the kp computed for our $110)
magnetic spiral. In addition, there is qualitative agree-
ment in the intensities, which can be summarized as
follows: None of the theoretical peaks with negligible
predicted intensities were observed, all of the peaks with
large predicted intensities were observed to be large, and
there were no other large magnetic peaks in the experi-
mental pattern. Furthermore, there were a number of
small peaks ((10%%uo of the largest satellite) found ex-
perimentally which are predicted in the right order of
magnitude as well as in the right locations. Finally, an
external magnetic field applied along the scattering
vector caused the fundamentals to decrease in intensity
and the satellites to increase, as expected for a ferrimag-
netic spiral (see Sec. V(A) j.

In addition to the above agreement with a spiral
model, there are important discrepancies. The observed
diffraction pattern included two small "additional"
peaks which do not arise from the ferrimagnetic spiral,
and the fundamental peaks were all smaller than those
predicted for the spiral, although the predicted satellite
intensities give fair agreement. ' A consideration of all of
the above aspects of the experimental results strongly
suggests that the actual low-temperature spin configura-
tion in MnCr204 is almost, though not quite, a ferrimag-
netic spiral, in the sense that its principal Fourier
components are given approximately by our t 110$
magnetic spiral.

In order to appreciate the significance of this con-
clusion, it is necessary to recall the logical structure of
our theory. To begin with, we assumed that the classical
Heisenberg theory with only nearest-neighbor 2-8 and
B-B interactions would give a reasonabl. e 6rst approxi-
mation to the actual spin ordering in manganese chro-
mite (or any normal cubic spinel). Then we constructed
a L110$ magnetic spiral, and showed that it satisfies
several stringent conditions upon possible ground-state
spin configurations, leading us to believe that this spiral
probably is the ground state for I&I"—1.3. For I&I",
the spiral is de6nitely not the ground state. Neverthe-
less, we may consider it here to be an approximation in
the variational sense.

In the above spirit, we used the measured magnetic
moment to determine our single adjustable parameter
I, obtaining I—1..6 and thereby fixing all the remaining
spiral parameters (wavelength, cone angles, and phases).
Upon further comparison with the diffraction results,
the calculated spiral showed a striking qualitative
agreement. Moreover, the existence of real discrepancies
is in accord with our result that the spiral cannot be the
ground state for I—1..6. Thus the experimental result
agrees with the conclusion of our chain of reasoning.
Keeping in mind the considerable complexity of the
diffraction pattern, and the fact that our theory con-
tains only one adjustable parameter u which determines
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the best over an enormous variety of spin configurations,
it is quite reasonable to conclude that this agreement is
not fortuitous. Hence, the comparison with experiment
supports the entire logical structure, including our basic
assumption, and suggests that the exact theoretical
ground state in our model for u—1.6 does not differ
greatly from our spiral.

If this difference were sufficiently small, then the
deviational mode calculated in Sec. III should improve
the agreement between theory and experiment. How-
ever, this is not the case, since the largest of the peaks
expected from the destabilizing mode LSec. V(B)] is
absent from the experimental pattern. One possible
explanation for this discrepancy is that Au=1.6—u"
might not be sufficiently small in the sense of the
convergence of perturbation theory, so that higher order
terms might be very important. Another possibility is
that our model neglects some important interactions.
The latter view is given credence by the fact that the
experimental diffraction pattern for zinc chromite"
evidences a long-range ordering of the spins, which, to-
gether with Anderson's result, " strongly suggests the
existence of next-nearest-neighbor 8-8 interactions. "
Furthermore, it is possible that the rather high sensi-
tivity of spiral-like configurations to impurities could
be a contributory factor.

B. Temperature Dependence

In Appendix VI, the spin configuration appropriate
to the Curie (or Neel) temperature is calculated in the
molecular field approximation. Knowing u, one can
reasonably infer the qualitative temperature depend-
ence of the spin configuration of a normal cubic spinel
from the results of Appendix VI. For example, upon
decreasing the temperature of a material with u= 1.6, it
will first become ferrimagnetic with a Keel-type con-
figuration where (S,) are all collinear. At a lower
temperature, the spin configuration will change to a
$110j magnetic spiral which, at a still lower tempera-
ture, will become unstable with respect to some par-
ticular mode of small spin deviations, resulting in a
more complicated ground state. The transition from the
Neel-type to spiral configurations has been observed in

manganese chromite. ' The onset of the deviational

mode, besides being difficult to define, would occur at an
experimentally awkward temperature in manganese
chromite, so that it is not surprising that it has not been
observed. Thus, the temperature dependence yields
additional qualitative agreement between our results
and the experimental findings.

VII. SUMMARY

We have assumed that the classical Heisenberg energy
with only nearest-neighbor A-8 and B-B interactions
will give a satisfactory description of the magnetic
properties of normal cubic spinels. Sy using the GI T
method in an attempt to minimize this energy function
of many (=10") variables, we have obtained a spin
configuration which is of lower energy than any previ-
ously obtained whenever the Neel state is unstable (i.e.,
u)8/9). This configuration is a ferrimagnetic spiral
with its propagation vector in the L110] direction; the
remaining parameters (cone angles, etc.) are given as
explicit functions of the single exchange parameter u.

The above spiral is probably the ground state for
8/9&~n(1. 298. This conclusion is suggested by the
following properties which are proven rigorously for this
range of u: The spiral has lower energy than any
neighboring configuration (i.e. , it is locally stable); and
it is the lowest over an additional large class of con-
figurations, which includes all ferrimagnetic spirals, all
equal-relative-angle configurations, and many others.
However, it should be realized that these results do not
constitute a rigorous proof that the spiral is the ground
state for this range of u.

The spiral is definitely not the ground state for
u&1.298, since here it is found to be locally unstable.
Furthermore, we prove that, for a finite range of u in
this instability region, the ground state must be a more
complicated configuration in which the angles between
spins are not translationally invariant.

Our general theoretical approach is supported by a
consideration of the experimental data for manganese
chromite. This support arises from the striking simi-

larities between the complicated neutron diffraction
pattern observed by Corliss and Hastings' and that pre-
dicted by our spiral model. Moreover, since this model

gives u—1.6 for manganese chromite, the agreement
suggests that our ferrimagnetic spiral is a good approxi-
mation to the actual ground state even for values of u
appreciably greater than 1.298.
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APPENDIX I. SYMMETRY

Since various usages of terms relating to symmetry
have occurred in the literature, a statement of our defi-
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nitions seems desirable. We are concerned in this paper
with the minimization of a function in which spin
vectors are the unknown variables and exchange inter-
actions are the parameters. In general, the largest group
of symmetry operations that leave the Heisenberg ex-
change energy of Eq. (2) invariant is the full space
group of the crystal before the association of spin
vectors with the lattice sites. All the operations 0 of this
space group (Fd3m for a normal cubic spinel) leave the
exchange interactions invariant,

J(OR„„,OR„„)=J(R„„,R„„). (A1)

Equation (A1) expresses the only dependence of our
spin problem upon symmetry, no a priori assumptions
about the symmetry of the crystal with spi24s being
made. 36

The translations V'„under which the structure is in-

variant are included in the above space group, and the
corresponding displacements R„define the Bravais
lattice associated with the structure. Given any par-
ticular site, the translations 9"„generate a complete
(exhaustive) set of "equivalent" sites with positions
R„„=R„+p„,this set being called the pth sublattice.
(We shall refer to a crystal as Bravais if all the magnetic
ions fall on a single sublattice, and non-Bravais other-
wise. ) In our terminology, two sites are equivalent if and

only if they are connected by a translation of the space
group, and such equivalence is independent of any as-
sociation of spin vectors with the sites.

Finally, it is clear that the invariance of the Heisen-

berg energy function with respect to specified symmetry
operations does not in itself imply that a ground-state
spin configuration be similarly invariant. For example,
the classical ground state need not be translationally
invariant nor even belong to the class of equal-relative-
angle configurations (see Appendix V), for the same
reason that an even function f(x)= f( x) need no—t
attain its minimum value at x= —@=0.The invariance
expressed by Eq. (A1) implies only that all spin con-
figurations which are interrelated by the space group
operations be degenerate.

36The other approach to the problem of spin configurations
would be to take certain symmetry properties of the crystal mth
spinsincluded as known from experiment, and investigate only the
class of configurations consistent with these properties. This ap-
proach has been successful in simple cases, but in more complicated
cases the magnetic symmetry is so low that little can be learned
about the existing spin configuration from this approach. I'urther-
more, this approach avoids the important fundamental problem of
determining if the classical Heisenberg theory yields a valid
approximation to the magnetic properties.

APPENDIX II. THE MATRICES

For a cubic spinel having nearest-neighbor A-8 and
B-Binteractions only, and with the sublattice definitions

given in Fig 1. , Eqs. (4) yield the matrix

0 0

0 0

L(k) pi* gi 0 —2,ug12 2ut'13 2uf14
(81)

3~ABSASB 4t2 'g2 2u012 0 2ut 23 2uf24

213* n3 2uf13 2uf23 0 —2'ui 34

0 0

L(k[1107/V2)

3~~a~~~a

where

0 —,'u —2'ug

—,'u 0 -', uP

—2,ug —,'up 0

21ut 32ut' —,'ug'

g= cosp —(i/3) sinp,

g'= 1—(4/3) sin'p,

g= cosp,

t =cos2p,

,'uf-
21ug

1uyI

0

(83)

(84)

with p= (ka3)/(42. This matrix can be partially
diagonalized by transforming it from the sublattice
basis used above into a new basis de6ned by the follow-
ing linear combinations of the sublattice basis vectors:

$1= (1/V2) (0, 0, 1, —1, 0, 0),

Q2
——(1/v2) (1, —1, 0, 0, 0, 0),

Q3= (1/V2) (0, 0, 0, 0, 1, —1),

g,= (1/v2) (1,1,0,0,0,0),

Q3——(1/K2) (0,0,1,1,0,0),
Q3= (1/V2) (0,0,0,0,1,1).

(85)

The matrix elements in this new basis are de6ned by

I.„„'(k[110]/v2)= (Q„,i.(k[110]/+2)Q„), (86)

414 g4 2uf14 2uf24 2ui 34 0

where the functions p, and i;; are given by

gi ——31(exp[ik (113)]+exp[ik (311)]+exp[ik (131)7),
q2= 13{exp[ik (113)]+exp[ik (131)7+exp[ik (311)7),
q3= 31fexp[ik (113)7+exp[ik (311)]+exp[ik (131)]),
q4 ———', fexp[ik (113)]+exp[ik (131)7+exp[ik (311)7),

p» ——cos[k (220)], |23
——cos[k (022)],

f» ——cos[k. (202)], f34= cos[k (202)7, (82)

1 14
——cos[k. (022)], i 34 cos[k (220)7,

with the notation (kkl) =sap(hz+kg+h).
For k in the [110]direction, the above matrix can be

written explicitly as

0 0
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and the resulting matrix consists of 1)&1, 2)(2, and
3)&3 submatrices along the diagonal, these submatrices
corresponding to Q~, $2 and g~, and Q4, Qq, and Q6. The
behavior of the matrix Q, related to L by Eqs. (3) and

(7), is completely analogous.
Both Xo and X&(ko) arise from the 3)&3 submatrix.

Hence both of the corresponding eigenvectors will have
the general form

%'(k) =a(k) & +b(k) &5+c(k)&6

= (1/v2) (a,a,b, b,c,c). (B7)

The right-hand side of Eq. (B7) explicitly gives the
components of %'(k) in the sublattice basis, and the
multiplication of these components by suitable numbers
a"(k) gives &."(k) (u =x', y', s') which define" the corre-

sponding spin con6guration according to

S„„"=g~P„P„"(k)exp(ik R„„).

APPENDIX III. THE SOLUTION

to be the first and fourth quadrants exclusive of —s./2;
and

y3= y4
———',~[1—sin(r'T/Q. ')],

y5 =76———',m.fi —sin (rT/n) ].
(C12)

where
Z», P Z nv, mn &nv, mn Xnv Xmiv (D1)

+nv, mn (J nvmn ,bnv, mn~mn)(nv' 4mn ~ (D2)

It now becomes convenient to express the components
of the small deviations in terms of their Fourier trans-
forms, given by

X„„»=PWCA„»(k) exp(ik R „) (D3)

APPENDIX IV. THE MATRICES FOR
SMALL DEVIATIONS

By means of Eq. (17), it is possible to rewrite Eq. (16)
in the form

with )= i, q. Then the change in energy can be written
as

The solution of the simultaneous equations described
in Sec. II(A) can be reduced to the following computa-
tional procedure, valid for the region np« I~& 2. First a
value is chosen for k. Then, with p=kao/402, one can
evaluate:

hE=Pg P», ». Q„,„M„„»»'(k)A„»*(k)A„»'(k), (D4)

where the 12&&12 matrix M(k) is simply the Fourier
transform of the matrix I', The explicit evaluation of
these matrix elements involves the use of Eq. (DS)
given below, and yields:

(C1)h= 1—4 simp'

A =h'(k+1)/16,
8=h (h'+9k'+ 21k+5)/18,
C= —4 (2h'+ 11k+17)/9;

(C2) M„„rr(k)=-', cosP, cosg„(I'„„(k)+P„„*(—k)]
+sing„sin&„L,„(k),

D5
M„„r"(k) =—i cosp„l I'„„(k)—I'„„*(—k)]=M„„&r(k),

M,„-(k)=-,'Ll „„(k)yl„„*(—k)],
p'= (—8+L8'—4AC]'*)/2A,

p"=p'hLp'h(h —1)—16]/Lp'h(h+3)+16k+32] v

n= (8+p'h)/2 p(1+k),
n'= (p,'h —4 p'n)/4 p';

(C3)

where the 1 „„are obtained from the components of the
(C4) matrix L(k), given in Appendix II, according to

r = (h+3)»(8k+16+3 p'h)/2 p(h'+4h+7)
r'= 3Lp'h —2 pr (h+3)']/4 p'(h+2);

(CS)

2 = p2pv2((prv2 Av&T2)/+v2(rv2 ~v2) p2(T2 ~2)] ' (C6)

P=p/u and P'=p'/u;

X/3 JgsS~Ss =—,'P'uh;

E=2Ny(1+P2+P' 2]. --
(C7)

(C9)

Q~ ——p2= 2~m —cot 'T,

$3——Q4= ~~~—(sinr') cot '(r'T/n'),

$5——p, =-',s —(sinr) cot '(TT/n), —
(C11)

where the range of the arc cotangent function is de6ned

Thus one obtains that value of u for which the chosen
value of k is ko. The remaining spiral parameters p„(the
cone angles) and 7„(the phases) can be found by further
evaluating:

(C10)

I „„(+k)=LL„„(ak+k,)—b„„z,(k,)P„-2]
&&expt i(y„—y„)]. (D6)

The eigenvalues p (k) of the M(k) matrices are as-
sociated with eigenvectors of the form (in the above
basis)

~ (k) =C(A,r(k), A, r(k)v, Agn(k) v

A, (k), ",A, (k)), (D7)

where C is a normalizing constant, and also with
e *(k), since M*(—k)=M(k). Thus the components
of the small deviations along („.and T»„„are directly
related to the eigenvectors of M(k) through Eq. (D3).
Furthermore, the coordinate system which "moves"
along with the spins S „ is related to the stationary
i', g', s' system of Eq. (9) by

(„„=cos&.Lz' cos(ko. R .+y„)
+g' sin(ko R„„+y„)]—z' sing„. (DS)

T»„„=—z' sin(ko R .+y„)+j' cos(ko. R„„+y„).
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It follows that, given the eigenvector associated with an
eigenvalue, say iii(ki), of M(k), one can straight-
forwardly calculate the x', y', s' components of the
corresponding deviations X„„.Thus the Fourier analysis
of the resulting deviated spins S„. will contain con-
tributions from &k= ki, kp+ki, aiid kp —ki in addition
to &k=0, kp. If all of these k vectors lie in the "good"
set defined in Sec. II, then the results obtained there
prove that the deviated configuration must yield a
higher energy than the L110] spiral. In other words,
instability can only arise when at least one of these k
vectors lies in a "bad" set. This information simplifies
the examination of local stability, since it restricts the
volume of k space which must be examined.

Multiplication of Eq. (E1) by exp(ik" R„)and summa-
tion over R„yields

8(k+k"—k', K)T„(k) T„*(k')exp( —ik'. R~)
k, k', K

=f"(R.)Zx ~(k",K), (E2)

which must hold for all k" and for all R~. t Here
8 (k,k') = 1 when k =k' and is zero otherwise, and K is 2m

times a reciprocal lattice vector. ] The information of
interest arises from k"WK, since setting k"=K merely
gives an expression for f„„(R„).After summing over k
in Eq. (E2), we drop the prime from k' and obtain

Q T„(k—k"+K) T„*(k)exp( —ik R )=0 (E3)
k, K

for all k"&K. We multiply Eq. (E3) by exp(ik' R„)
and sum over all R„.This procedure leads, after a few

steps, to
(E4)Px T,(k' —k"+K) T„*(k')=0

for all k"/K. But one can show that, for any value of

APPENDIX V. EQUAL-RELATIVE-ANGLE
CONFIGURATIONS

Equation (22) defines the class of all configurations
possessing the equal-relative-angle property. In order to
investigate this entire class, we will need an explicit
elucidation of all such configurations, which can be
achieved in the form of a classification of permissible
Fourier components.

Let us express the S„„ in terms of their Fourier
transforms Q„(k), as in Eq. (27) and define T„(k)
=Q„(k) exp(ik p„). It is also convenient to define

T„(k)=0 for all k not in the first Brillouin zone (BZ),
which can be done without any loss of generality be-
cause any set of spins can be written in the form of
Eq. (27) where the summation goes only over this zone.
Then, with R =R„+R~, Eq. (22) becomes for all

v, p, R„and R„,

P T„(k) T„*(k') expLi(k —k'). R„—ik' R~]

=f„„(R„) (E1).

k' —k", there is only one K, say Ki, which will bring
k' —k"+K into the BZ. Thus Eq. (E4) is equivalent to
requiring that T„(k'—k"+Ki) T„(k')=0 for all k"&K
and all k'. In other words, writing k=k' —k"+Ki,

T, (k) T„*(k')=0 (ES)

for all k, k' in BZ with the restriction k —k'WK. This
result contains all our desired information since it is a
necessary and sufficient condition for the validity of
Eq. (22).

Let us write T„(k)= a„(k)+ib„(k), where a and b are
real vectors in three-dimensional space. The reality of
the spins requires that

a„(k)= a„(-k),
b„(k)=—b„(—k),

(E6)

for all kW 2K, which we shall call "ordinary" k vectors.
"Special" k vectors i'd=2K occur at the origin and at
points on the surface of BZ, and in the latter case —x is
not in BZ, so that T„(—x)=0 for ip in BZ. For the
"special" k vectors, reality of the spins gives

b„(R)=0. (E7)

for all ordinary k and all v. We can also choose v =p, but
consider all k and k' such that k&k'&K. Then both
Eq. (ES) and the equation obtained from it by replacing
k' with —k' hold, implying that

a„(k) a(k') =b„(k) b„(k')
= a, (k) b.(k')=b„(k) a„(k') =0 (E10)

for all k, k' such that k&k'WK. But since k, k' are in
BZ, k—k'= K only if k= k', and k+k'= K only if either
k= —k' or k= k'= x. Hence the restriction k+k'WK is
satisfied by all ordinary k, k' such that kW&k'. Thus
we can combine Eqs. (E9) and (E10) to reach the con-
clusion that the four vectors a„(k), b„(k), a„(k'), and
b„(k') must be mutually orthogonal (for a given pair
k, k'), which requires at least one of them to be zero.
But then Eq. (E9) states that at least two of these
vectors, an a and a b for the same k vector, must be
zero. This argument shows that, within a given sub-
lattice v, there can be at most one nonzero Fourier
component associated with ordinary k's, a Fourier com-
ponent being conveniently defined as a pair LT„(k),
T.(—k)].

Furthermore, Eq. (ES) can be rewritten in the form

a„(k) a„(k')+b„(k) b„(k')=0,
a„(k) b„(k')-b„(k) a„(k') =0,

for all p, p and for all k, k' in BZ with k—k'A K.
We can put k'= —k and i =p, in the above equation.

Using Eq. (E6), we obtain the conditions

g 2 + 2

a„(k) b„(k)=0,
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Now suppose that T„(k) and T„(k') are nonzero for
ordinary k, k' with kW&k' and vAtr. An analogous
argument again applies, and leads to a contradiction.
Hence, we have the following important conclusion: In
any spin configuration, satisfying the equal rel-atine an-gle

condition of Eq. (ZZ), there can be at most one nonzero

ordinary kFo-urier component, and the h vector must be

the same for all v. It can also be shown from Eq. (ES)
that the set of vectors a„(k), b„(k) must be coplanar for
all v, and from Eq. (E9), that they must be of equal
length and orthogonal in pairs.

Next we assume that T„(k) and T„(u) are nonzero,
where k is ordinary and u goes over the set of special h

vectors. Then Eqs. (E7) and (E8) yield

a„(k) a„(sr)=b„(k) a„(v.)=0
E11

a, (sr). a„(sr') =0

for all v, p, , x, and x' with x4x'. The first pair of equa-
tions, together with Eq. (E9), shows tha, t all the a„(u)
must be collinear. Then the last equation implies that
the a„(u) can be nonzero for only one value of u, when

an ordinary k is present.
If there is no ordinary-k component, T„(k)=0 and

only the last of Eqs. (E11) remains. This orthogonality
condition permits the a, (ir) to be nonzero for as many as
three different ~ vectors. There are no further possi-
bilities.

To summarize, we have shown that every spin con-

figuration which satisfies the translational invariance of
the scalar product of a pair of spins for all pairs, as
defined by Eq. (22), must belong to one of the following

classes:

(a) Simple Spirals These ar.e defined as spin con-

figurations for which nonzero Fourier components occur
for precisely one ordinary k vector. This k vector is

arbitrary and the spins are all parallel to one plane, the
orientation of this plane relative either to k or to the
crystal being arbitrary. The other degrees of freedom
are the phases of the simple spirals on the various
sublattices. The general expression for this class of spin
con6gurations is

S„„=i'cos(k R„.+y,)+j' sin(k R„„+y„), (E12)

where z' and j' are orthonormal vectors and the y„are
the arbitrary phases.

(b) Ferrimagnetic Spirals. Here there are nonzero
Fourier components for precisely two k-vectors, one of
which is the special vector k=0. This class is defined in

general by Eq. (9), and is discussed in the text.
(c) Alternating Spirals These conf.igurations are simi-

lar to (b) except that their special vector is a nonzero x
at the boundary of the Brillouin zone, instead of the
+=0. The de6ning equation is

S„„=sing„[i'cos(k R„„+y„)+it'sin(k R „+y,)1
+z' cosp„cos(u R„+y„'), (E13)

where y„' is either 0 or m, and can depend upon p.

Pictorially, the spins on a given sublattice v all lie on the
surface of a cone with half-angle p„, but the cone axis
alternates "up and down" as one moves from site to
site along the direction of v. (since x R„ is a,lways a,

multiple of a).
(d) rCo.nfigurations. In this class there can be one,

two, or three special-k Fourier components, but no
ordinary k vectors. The defining equation is

S„„=P T„(v.„)cos(ir„R„), (E14)

This result completes the elucidation of all possible
spin configurations which satisfy the invariance condi-
tion of Eq. (22). As far as we know, this is the first time
that this class has been obtained explicitly.

Other invariance postulates, more complicated than
that of Eq. (22), have been used in the literature. ""
For example, Gersch and Koehler elucidated the com-
plete class of Ising (i.e., collinear) configurations on
Bravais lattices for which S(R) [S(R+R')+S(R—R') j
is independent of R.We found that the added complexity
makes such an elucidation intractable for spins of more
than one dimension even in Bravais lattices.

APPENDIX VI. HIGH-TEMPERATURE
APPROXIMATION

According to the molecular field approximation, ""
the effect of thermal fluctuations in the directions of the
unit spin-vectors S, can be expressed as an average
value given by

(S.,)= „,(S)Sd, (F1)

where the integration is over all possible orientations of
a unit vector S, each orientation being weighted by the
probability density

p„„(S)=Z„„'exp(PS H „).
s7 E. F. Bertant, Compt. rend. 252, 76 (1961).
's J. Villain, J. Phys. Chem. Solids 11, 303 (1959).
3' M. Freiser, Phys. Rev. 123, 2003 (1961).
4s T. A. Kaplan, Phys. Rev. 124, 329 (1961).

(F2)

where the T„(tv) are any real vectors which satisfy the
conditions T„(sr„) T„(u,)=—0 for all v, ti if pAq, and

Pv ~

T, (u„) ~'=1. If the configuration conta, ins nonzero
Fourier components for three different r.'s, then it can
be expressed as

S» i' T„(—u—i) cos(u, R„)+j'T„(vs) cos(us R„)
+z'T„(us) cos(vs. R„), (E15)

with Pv[T, (harv)j'=1, i.e. , the T„(vv) for a given p
must be parallel for all v. If only two different x's are
present, then the T„(uv) must be parallel for all v for
one x, and must lie in the perpendicular plane for the
other x. For a single x, there is no restriction upon the
directions for the various sublattices.
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Here P= 1/kT, the normalization is given by

Z, = exp(PS H„„)d~, (F3)

and the molecular field corresponding to the Heisenberg
energy is

Hnv 2 Pmv J vn, m(vSm )v. (F4)

The above equations result from approximating the true
joint-probability density of a set of spins by a product
of independent individual probabilities (p—II„„p „),and
then minimizing the free energy

A = EpdQ+kT p lnpdQ

over the p„„.
The transition temperature T, corresponds to the

maximum T for which Eq. (F1) possesses a solution
with (S „)WO for some vb, v. For temperatures slightly
less than T„(S„„)will be small and the higher order
terms in the expansion of the integrand of Eq. (F1) in
powers of PH„, can be neglected, giving

(Snv) = MPH v=n3P Pmv &nv, mv(Smv) ~

By substituting the Fourier transforms

(S.„)=Pq (Q„(k)) exp(ik R.„.),

(F6)

(F7)

multiplying both sides of Eq. (F6) by exp( —ik' E,),
and then summing over e, one obtains

(Q„(k))= —-', P Q„L„„(k)(Q„(k)), (F8)

where the matrices L(k) are those given in Appendix II.
Equation (F8) has the form of an eigenvalue equation,

so that nonzero solutions exist if and only if ——,kT is
equal to an eigenvalue of L(k). Hence T, is determined
by the minimum eigenvalue of L(k) and the associated
eigenvector defines the spin configuration appropriate
to T,.

We have investigated these matrices for the normal
cubic spinel with nearest-neighbor A-8 and B-B inter-
actions. The minimum eigenvalue of L(0),

ho=min X (0),

is the absolute minimum over all n and k for all
u&uo(T, ) =2.177, as shown by calculations over all k
using an IBM 709 computer. The corresponding con-
figuration is of the Keel type, the ratio of the magnitude
of (S,) for the J3 sites (v= 3, 4, 5, 6) to that for the A
sites (v=1, 2) being equal to

~

L3u —(9u'+128)'j/16~.
For all u) uo(T, ), the minimum eigenvalue of
L(kL110]/v2),

X~(ko) =min , ~X (k/iiOj/2), (F10)

is the absolute minimum over all n and k. The associated
eigenvector is of the form given in Eq. (37), and the
corresponding configuration is an antiferromagnetic
L110j spiral, which of course is degenerate with all its
cubic equivalents. The value for po=koao/442 varies
from 0.911 at uo(T, ), through 0.962 at u= 3, to 1.012 as
u —+ ~. It is interesting that the above value for po at
uo(T, ) is identical with the value for po at uo when T=0.

Since uo(T,))u", it appears that for uo(u(u",
there will be at least one transition between T= T, and
T=O if our ferrimagnetic spiral is the ground state.
Similarly, for 1.298(u& 2.177, there will be at least two
transitions, one between Weel-type and spiral configura-
tions, and another between the spiral and the deviated
spiral.


