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Resistivity data taken in dilute alloys indicates that the scattering power of a point defect is relatively
unaffected by the proximity of other defects. The scattering power of defect pairs as a function of separation
is therefore investigated as a two-center scattering problem, and the theory is found to predict the observed
insensitivity of scattering cross section to defect separation for all realizable separations of the defects.

I. INTRODUCTION

N the interpretation of resistivity data obtained
during quenching experiments, it has been surmised
that the scattering cross section of a complex consisting
of several defects is equal to the sum of the cross
sections of the constituent point defects. Thus, for
example, the resistivity associated with « atomic
percent of divacancies has been taken as equal to 2a
atomic percent of single vacancies.
The validity of this assumption is not at all clear on
first examination since the resistivity due to point
defects is well known to obey the equation®

d7c o
AR=—"(I+1) sin®(n—nu41), (1)

F =0

where ¢ is the concentration, kr the Fermi wave vector
of the solvent lattice and #; is the phase shift of an
l-wave electron at the Fermi surface provoked by the
scattering effect of a defect. One might speculate that
with two defects in a small neighborhood of the lattice,
the phase shifts induced in a particular partial wave
would be roughly additive, so that the scattering power
of a double defect would, by virtue of Eq. (1), be of the
form of the square of the sum of the phase shifts of the
individual defects. For like defects, one would therefore
anticipate the resistivity to double if the defects
associated into pairs.

That this is not the case is evident from resistivity
data taken on dilute alloy systems, where a linear de-
pendence of resistivity on solute concentration, is found
up to concentrations at which it is certain that a con-
siderable number of solutes occupy sites adjacent to
other solute atoms. The objective of the present paper
is to investigate the resistivity due to pairs of defects
in the lattice as a function of their separation and in
this way to demonstrate the physical mechanisms be-
hind the approximate additivity of solute scattering
power.

*This work has been supported in part by the U. S. Atomic
Energy Commission.
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II. WAVE FUNCTIONS IN THE NEIGHBORHOOD
OF A DEFECT

Following the work of Friedel et al.,2? it is now well
established that valence differences between solute
cells and the solvent lattice are screened out inside the
solute cell, the resulting disturbance Ap(r) of the
electron density p(r) in the surrounding lattice taking
an oscillatory form which dies away with increasing
distance from a point defect approximately as*

Ap(r)~p(r) cos(2krr+ o), (2)

@o being a phase-shift dependent on the scattering
power of the defect.

For the purpose of calculating resistivity data, it is
convenient to treat the electron gas in terms of spherical
eigenstates

Yimn(kr,t) =yi(rs) j1(kpr1) Pi(cosb)e ™o 3)

centered around the scattering cell. Here, ji(kpri)
X Pym(cosf)e™¢ is the usual solution of the free-electron
wave equation for a spherical box, and ¥;(7,) is the
Wigner-Seitz wave function which makes the free elec-
tron waves into approximate Bloch waves, described
by Eq. (3).

If one considers the electron gas at a lattice site
neighboring a defect,® then the eigenstates which
describe the density are found to be mixed states

@, (kF,r) = ZZ 'Ylmn(kl";rl)\plm(kﬂ')’); (4)

with coefficients Yimn(kr,71) exhibiting an oscillatory
decay to unity with increasing distance r; from the
scattering center. However, the form of the mixing is
such that the quantity

|'Ylm(kF,7'1)|2=Zn]71mn(ki’,rl)IZ (5)

of any given partial wave in the electron gas near the
defect site is very little different from that to be
anticipated in the absence of the defect. Thus, in
nuclear resonance experiments for example, the Knight
shift® found is only a few percent different from the
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perfect lattice value even for nuclei in first-neighboring
sites to a large valence solute.®” Thus, the s-wave
content of the electron gas is virtually unaffected, as
also are higher-order waves.

One sees, therefore, that a second defect situated in
the proximity of a scattering center will be subject, at
least at the Fermi surface, to a distribution of incident
electrons which remains almost unmodified by the
neighboring scattering center. The implication, there-
fore, is that the electron scattering by a defect is
affected little by the presence of a second defect.

Nevertheless, one cannot assume that the scattering
cross sections of the two defects simply add linearly to
produce a total cross section, for it will be recalled that
the partial waves of an electron scattered radially from
the defect region will be additive, and since the scatter-
ing cross section is proportional to the square of these
quantities, the resistivities would not be expected to
add linearly in the manner experimentally observed.

III. SCATTERING BY DEFECT PAIRS

In order to find the scattering cross section of defect
pairs, one must treat the scattering as a two-center
problem. In accordance with the discussion in the
previous section, the defects will be considered to
scatter independently, the asymptotic form of the
scattered waves resulting from an incident wave of
unit amplitude

‘pinc: ‘pkl«‘ (1’)6 ikr r,
being
Y1(r) =¢up (r) f1(0:1) e /1y (6)
and

Ya(rs) =¢ip (7) f2(02)e ™77/,

f1(8) and f5(6) being the scattering amplitudes exhibited
by the separate defects. As indicated in Fig. 1, the 0
and r are scattering angles and radius vectors from the
scattering centers to a point P with the subscripts
distinguishing between the two defects. Also shown
are the angles o and B3, the former being the angle
between the wave vector kr and the axis a joining the
defects, and B representing the angle between this axis
and the scattering direction §. We will use ¢ to denote
the angle between the plane containing ky and a and
the plane containing r and kp.

The asymptotic form of the complete wave may be
written down for large 7 in the form

Y=v¥1p (r)[eikp.n_l_ (1/71)]"1(01)6%1'1-1
+ (1/72) f2(02)e 2], (7)

which, as P becomes remote from the defect sites,
tends to

Y=g (r)[e™*rm 050+ (e%#/r){ f1(6)
+f2 (o)eikl«’a(cosa—cosﬂ)}:l,
7T. J. Rowland, Phys. Rev. 125, 459 (1962).
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F16. 1. The geometry of the scattering around a double defect.

with
01= 02= 0
and
r=ri=rs+a cosB.

From Eq. (8) we can write down the differential
scattering cross section of the defect pair:

| £60) 2= f10) |2+ f2(0) |2+A] FO) 2, 9)

where
ZAI f(e) ]2:f1(6)f2* (0)eikpa(cosa—cosﬁ)+C.C.’

is clearly the change in differential scattering cross
section associated with the proximity of the defects,
since the first two terms are the cross sections for the
isolated defects. For spherically symmetric scattering
centers producing phase shift 5; and {,, respectively,
in spherical waves of the type (3), the functions f;(6)
and f»(f) are known to take the form?3

1 »
f(0)=k— > (2141) exp(in) singPi(cosd), (10)

p =0

so that the interaction part of the scattering cross
section is

1 0 0
Alf(0)12=;a——2 > > (204+1) 2u+1)Pi(cosd) P (cosh)

Fo =0 n=0
X sinmg sing [ cos(ni—¢ ) cos{kra(cosa—cospB)}

+sin(n,—¢ ) sin{kra(cosa—cosB)}]. (11)

The value of A|f(8)|2 is a function of the angles
and 3 as well as 0. In the bulk metal, the incident wave
will be scattered by many defect pairs oriented in
random directions to the wave vector. In order to
continue with the calculation it is expedient to remove
this dependency by obtaining an average cross section
change due to the interaction of the defects, namely
(Al £(6)|?)av. This may be effected by means of the

8 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953).
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standard substitutions

¢ie cosf=§ i1 (20+1) Py(cost) ji(x) (12)
and
P;(cos¢ cosy-+sing siny cose)
L (l—m)!
= €m le(cosg)Pz"‘(cosv) cosme. (13)

m=0

(I+m)!

On performing the averaging integrals the following
expression is obtained for the average differential
cross section due to the interaction:

<A]f(0>l2>av—_ >y (2141) (2u+1) Py(cosb)

F 1=0 n=0

X Pr(cos®)d(nn) 2 (2m~+1)P,.(cost) jn2(kra), (14)
m=0
where
8 (ne,¢ ) = sing singy, cos (n— ¢ ).
Hence, making use of the relationship

0

> (2m~4-1) P, (cosh) 7.2 (kra)

- in[ 2kra si 2
=sm|: a sin(8/ )]=A(kFa,6), 15)
2kpa sin(6/2)
we obtain the final form
(Al f6) l“’)av——— lZ Z(2l+1) (2u~+1)Pi(cosd)
X Prn(cos)d(n,in)A (kraf). (16)

The weighted cross section which is appropriate to
the momentum transfer associated with resistivity is

0= f T(Alf(ﬁ)l 2)av(1—cosh) sindd, (17)

and using the value of (A| f(6)|?).v giving in Eq. (16),
the value of Q may be obtained analytically in useful
form. It is interesting, first, to observe the behavior of
Q in the limits of large and small kra. When kra is
small (say kra<1) the value of 4 (kra,d) is essentially
unity, so that the value of (A| £(6)|2)ay becomes

(Alf(ﬁ)P).v——— > % (241 2u1)

F =0 n=0

X Pi(cos8) P, (cost)d(ni,¢n). (18)

The expression for the total scattering power of the
defect pair is identical with Eq. (18), provided &(n;,¢x)
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is replaced by
6’(.’”,§‘n)= I f1(0> l >+ l f2<0) ] 2+6(ﬂ17§ﬂ)

i singp; sing gy COS(Epl_gqn)y (19)

n=0

Ms

11

I
o

2
=2
q,p=
where £;=m; and £,={;, and use has been made of

the standard equation for the cross section of a single
spherical defect, namely,

|f(0)|2-———— Z Z (2141) (2n+1) P1(cosb) P, (cosh)
kp? 1=0 n=0

X sing; sing, cos(m;—n,).  (20)
Thus, §(n;,¢.) is a perfect cross term between the cross
sections of the separate defects, and the total resistivity
for similar defects and small Zzra

16mc »
AR= > (1) sin?(g,—

Fo1=0

Ei), @

as anticipated in the Introduction.

The behavior of 8(n;,¢,) at large values of kra is
dominated by the shrinking of 4 (kra,0) by a factor kra.
Because of the zero value of (1—cosf) at =0, this
results in a decay of amplitude ~ (kra)~2 with increasing
k ra.

The integration involved in Eq. (17) has been
performed to find the coefficients of §(n0,¢0), 6(n1,¢1),
and 6(no,{2) as a function of kra. These two coefficients
are indicative of the form of the higher-order terms
whose computation is made unnecessary by the rapid
convergence of the phase shifts with increasing order.

The coefficients may be obtained in the form

aoo(w) = (8/u*)[2u sinu+ (2—u?) cosp—2],

a1 ()= (24/u®)[ (2880 — 1344424 T4ut— ub) cosu (22)
~+ (2880 — 38413+ 10u5) sinu
—2880—96u2—2ut],
aoa(ﬂ)= —%{aoo(u)—%au(ﬂ)}, (23)
with u=2kra.

Expressions for the higher terms take the form of
longer polynomials in p multiplied by trigonometric
functions as in Egs. (22) and (23).

Figure 2 shows the coefficients of &(no,{0), 8(n1,{1),
and 8(no,¢2) plotted against u. It will be observed that
the amplitude undergoes a zero before reaching the
first-neighboring site and thereafter oscillates with
rapidly decreasing amplitude. There are therefore no
sites at which the resistivity of a defect pair is different
by more than a few percent from the resistivity associ-
ated with the separated defects, in agreement with the
resistivity data obtained in dilute alloys. It will also
be evident that in solvents of higher valence where the
Fermi wave vector is larger with respect to thereciprocal
lattice vector than in monovalent metals, the effect of
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F16. 2. The variation of various interaction terms with defect
separation. The point 4 marks the interatomic distance in fcc
lattices, and B that for bce lattices.

the interaction term on the resistivity will be reduced
still further.

IV. DIVACANCIES

While the results of the preceding treatment are
readily applicable to dilute alloys, it is still difficult to
make any precise statement as to the effect on residual
resistance of the association of vacancies into multiple
voids, since, in these cases, the scattering power is
closely related to the considerable relaxation of the
lattice around the defect area.

In the case of divacancies, it appears likely that the
relaxation predominantly concerns the four common
nearest neighbors of the two vacant sites.? If the net
relaxation around a divacancy is about twice that of a
single vacancy, the form of the relaxation makes it
reasonable to treat the divacancy as two vacancies
whose individual scattering power is preserved, sepa-
rated by roughly the undisturbed nearest neighbor
distance. According to the results of Sec. III, the
resistivity due to the double defect will then be close
to twice that due to a single vacancy. However, this
conclusion depends upon the validity of the conditions
of lattice relaxation specified above. In general, it
would be anticipated that for a smaller relaxation of the
double defect, the resistivity would increase above
that for the two single defects, and vice versa.

It is interesting to compare these conclusions with
those obtained in other calculations of divacancy
scattering power.

Asdente and Friedel® have studied the resistivity
due to spherical lattice voids of varying size, and find
that for voids of ~10% vacancies, the scattering cross
section tends to the classical value provided that
proper account is taken of the charge repelled from
the defect site. For small spherical voids corresponding

9 S. Yoshida and J. S. Koehler, Acta Met. 8, 878 (1960).
( 10 M) Asdente and J. Friedel, J. Phys. Chem. Solids 11, 115
1959).
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in volume to less than three or so vacancies, they find
that the resistivity is almost proportional to the
volume, with only a slight maximum at about twice
the atomic volume. Thus they find, essentially, that
for voids of this small size, the resistance is proportional
to the number of vacancies contained, in agreement
with the discussion of Sec. IIL.

Seeger!! has performed calculations of the resistivity
due to divacancies for two different assumptions
concerning the shape of the defect. In the first, the
divacancy was assumed to give rise to a spherically
symmetric scattering potential, and in the second the
potential was taken as ellipsoidal corresponding to the
asymmetry of the actual defect. The calculations
yielded the same resistivity to about two percent,
demonstrating an insensitivity of scattering power to
the shape of the scattering center which may, in any
event, be anticipated from the fact that the non-
spherical structure of the defect region is fairly small
with respect to the Fermi wavelength.

Neither of the calculations of Asdente and Friedel
nor that of Seeger takes account of the lattice relaxation
around the defect regions and therefore taken together
cannot be regarded as more than indicative of the
actual electron scattering occurring at a divacancy.
Nevertheless, to the extent that they predict only a
small resistivity change on the association of two
unrelaxed vacancies to form an unrelaxed divacancy,
they are in agreement with the present theory, which
predicts this result for association of any pair of defects
whose individual scattering potentials are not affected
by the association. Unfortunately, the case of a di-
vacancy may not be in this category, because the
effective scattering potentials could well be modified
by changes in lattice relaxation. Moreover, the change
in relaxation may well be different for vacancies asso-
ciating in different lattices so that the resistivity change
on association may also vary.

V. CONCLUSION

It has been shown that the total scattering power of
a pair of defects in a metal lattice contains a contri-
bution which is a rapidly-decreasing oscillatory function
of the separation of the two defects, due to the inter-
ference between the partial waves of an electron
scattered from the defect region. The interference
becomes an efficient source of averaging only when the
defects are separated by a quarter wavelength so that
in the neighborhood of kra=m/2, the first minimum of
the interaction term is found. Thereafter, with in-
creasing separation of the defects, the averaging remains
efficient so that the interaction term is close to zero.

However, the smallest interatomic distance with
respect to the reciprocal Fermi wave vector which is
found in metals—that in fcc lattices of monovalent
metals—is given by kra=3.47, so that in no case will

11 A, Seeger, J. Phys. Chem. Solids 6, 324 (1958).
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the interaction term reach more than a small fraction of
its potential value which could, in principle, double
the infinite separation value of the total scattering
power of a pair of identical defects. Thus, the linearity
up to surprisingly high concentrations of the resis-
tivity of dilute alloys is explained in terms of the
insensitivity of total scattering cross section to de-
fect separation. Further, the theory permits the
prediction that, provided that the total lattice relax-
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ation associated with the defect pair is not greatly
modified in the process, the joining of two lattice
vacancies into a divacancy will not result in a large
fractional change in residual resistance.
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Magnetic measurements have been made on a Eu-H sample of composition represented by the formula
EuH, s over a temperature range extending from 4.2° to 300°K. The magnetization-temperature data for
the sample, which for simplicity is termed EuH,, indicate a Curie point at 24°K. Field dependency studies in
the liquid helium range reveal saturation effects and remanence, confirming that EuH, has become ferro-
magnetic at these temperatures. The observed saturation moment at 4.2°K is ~6.0up (Bohr magnetons) per
Eu atom. For 7>30°K the susceptibility shows a Curie-Weiss dependence on temperature and the effective
moment is 8.4 up per Eu atom. EuH,, the saturated hydride of Eu, is unlike the highest (i.e., saturated)
hydrides of the other lanthanide metals which have been studied—GdHj;, ThH; and HoHs;— in that it alone
exhibits magnetic ordering at low temperatures. As the hydrogen-saturated metals lack conduction electrons,
the coupling between the localized 4 f electrons is expected to be very weak and magnetic ordering is expected
to occur only at very low temperatures if at all. Thus the behavior of the several trihydrides is in keeping with
expectation whereas that of EuHs is not. The coupling mechanism in this case is not well understood ; it may

APRIL 15,

be due to direct overlap of the 4f orbitals.

TUDIES of lanthanide hydrides show that when
they are hydrogenated to saturation, they cease to
be metallic conductors.!=® This and other properties* of
these materials indicate that when hydrogen is taken
into the metal, it absorbs electrons from the conduction
band to form the H~ anion and, moreover, in the fully
hydrogenated metal the conduction band is entirely
depopulated. Acquisition of the supernumerary hydro-
gen electron from the conduction band rather than from
the core electrons is confirmed by the fact that the mag-
neton number is unaffected by hydrogenation.

The removal of the conduction electrons in the lan-
thanide metals should have strong implications as
regards the cooperative magnetic phenomena which
occur in these materials at low temperatures, since ex-
change in them is generally regarded as operating via
the conduction electrons. Specifically, we might expect

T From a thesis submitted by R. L. Zanowick to the Graduate
Faculty of the University of Pittsburgh in partial fulfillment of the
requirements for the Ph.D. degree, November, 1961.
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( 1;3. Stalinski, Bull. acad. polon. sci. 5, 1001 (1957) and 7, 269
1959).

2 J. C. Warf and K. Hardcastle, Office of Naval Research, Final
Report August, 1961, (unpublished).

3T, Peltz and W. E. Wallace, (unpublished measurements).

4 A. Pebler and W. E. Wallace, J. Phys. Chem. 66, 148 (1962).

that alignment in the hydrides will, if it occurs at all,
develop at temperatures much lower than in the cor-
responding element. This expectation has been con-
firmed for the fully hydrogenated materials HoHs,®
ThH; and GdH;,® which give no indication of either
Curie or Néel points down to 4.2°K. In addition, for
HoH; and TbH,, in which the conduction band is con-
siderably depleted, the Néel points are quite low com-
pared to the parent metal, occurring at 8° and 45°K,
respectively.® After observing these gratifyingly pre-
dictable behaviors, we decided to examine the hydride
of the more complex metal europium. Among the
lanthanides Eu is atypical in that (1) its structure is
bee, (2) it is divalent and hence at saturation forms only
a dihydride, and (3) the question of whether its mo-
ments are aligned at low temperatures (i.e., <10° to
15°K) is regarded by some as being as yet unsettled.”

Europium was hydrogenated using techniques pre-
viously employed in this laboratory.? Despite very
considerable effort the maximum hydrogen content

5Y. Kubota and W. E. Wallace, paper presented at the Seventh
Annual Conference on Magnetism, November, 1961 and sub-
mitted to J. Appl. Phys.

:lY.) Kubota, R. L. Zanowick, and W. E. Wallace (to be pub-
lished).

7 See, for example, R. M. Bozorth, and J. H. Van Vleck, Phys.
Rev. 118, 1493 (1960).



