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Energy Bands in Iron via the Augmented Plane Wave Method*
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Results of numerical calculations of the band structure of
body-centered cubic and face-centered cubic iron are reported;
the calculations have been carried out according to the aug-
mented plane wave (APW) method of Slater. A total of 55 points
in the 1/48 of the Brillouin zone has been examined in the bcc
case; this provides sufhcient information for construction of a
density-of-states curve which is presented. For the fcc structure,
calculations have been performed at 17 points of high symmetry;
no density-of-states curve is calculated.

The potential used is that of Manning and consists of the argon
core plus 7 valence electrons. The lattice constants are taken as

a =3.647 &(10 cm for the fcc lattice and a =2.861)&10 cm for
the bcc lattice. Fortunately, the latter constant is one of the three
used by Stern in a modified tight-binding calculation of the co-
hesive energy and band structure of iron. Rather good agreement
is found between the present calculation and Stern's.

The APW method seems a promising one inasmuch as the con-
vergence in terms of number of plane waves is reached in about
40 plane waves (this for a point in the Brillouin zone having rto

symmetry). Moreover, the method is one which is quite adaptable
to a digital computer and has been programmed for the Whirlwind
computer (by Saffren) and for the IBM 704 and 709 computers.

INTRODUCTION

'HE energy bands of solids have long been of
interest although it has been only in recent years,

with the advent of the large scale digital computer, that
it has proved possible to obtain solutions to this problem
in which one can have confidence and so assess the
limits of validity of the one-electron approach. Reviews
of the energy band formalism and the results (both
early and postwar) have been given by Slater, Reitz,
and Callaway. ' '

Here, we report on calculations of the energy band
structure of body-centered cubic and face-centered
cubic iron. As in the other band calculations on iron,
these calculations take no direct account of the mag-
netization; thus, the one-electron potential is taken to
be independent of the spin-orientation of the electron
for whose wave function we are solving. The calcula-
tions were carried out using the augmented plane wave
(APW) method developed by Slater in 1937.4

The APW method was first applied to copper by
Chodorow. ' A variant of the method, due to Saffren
and Slater, ' was used by Howarth in a calculation on
copper. ' At the time of Howarth's work it appeared that
the earlier version was one which could not be accomo-
dated on a computer of the size then available. Later
work by Saffren' proved this assumption false and he
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then set up this 1937-APW method on the MIT
Whirlwind computer. The author subsequently adapted
the method to the IBM 704 and 709 computers, where,
of course, size is no longer a problem. Calculations per-
formed by Surdick' on copper with the restrictions
Chodorow assumed in his calculation give results
identical to Chodorow's. Moreover, excellent agreement
(to 5 figures) exists among the Whirlwind and 704-709
results.

The work on iron was initiated on Whirlwind, using
Saffren's programs. The particular choice of iron was
made because of general interest in the transition metals
and also in order to determine the usefulness of the
APW method in a problem involving 3d electrons where
we might expect convergence difficulties.

THE At'W METHOD

The theory of the 1937 agumented plane wave
method has been developed by Slater. 4 The motivating
assumption of the method is that the crystal potential
for a valence electron in a metal can be chosen to have
the "muffin-tin" form. That is, around each nucleus of
the lattice one takes an appropriate spherically sym-
metric potential, delimited by a sphere of radius E,. In
the region between such spheres, one chooses the po-
tential to be constant. This potential is now the one
used in the one-electron Schrodinger equation and this
together with the imposition of the usual periodic
boundary conditions determines, in principle, the solu-
tions of the problem. In view of the choice of potential,
one now expands the unknown one-electron wave func-
tions in terms of a particular set of trial functions lb;
consisting of plane waves in the constant potential
region and a general spherical solution inside the
spheres. If we choose a single plane wave e'"' in the
region of constant potential, then the other portion of.
this trial function (around the sphere at location r„)

G. A. Burdick, Ph.D. thesis, Department of Physics, Massa-
chusetts Institute of Technology, 1961 (unpublished}; Phys. Rev.
Letters 7, 156 (1961).
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where V(r) is the spherically symmetric potential.
Such a function consisting of the plane wave plus the
spherical solution is referred to as an augmented plane
wave (APW); the solution of the energy band problem
can then be regarded as one of determining the co-
eKcients for the expansion of the true one-electron
wave function 4's(r) in terms of a set of APW's, f,,

The index i on P; is a multiple index; each APW is k

dependent through its plane-wave portion and carries
an implicit energy dependence through the 44&(r; E)
appearing in the spherical sum. The solution of the
energy band problem

in terms of APW's is then resolved into the solution of
a secular equation. This is, we must find the zeroes of
det{(H E);;}, where (H—E) is the matrix wh—ose
elements are

(H —E)v = 4'*(H E)44dr. —(3)

e' and @' refer to the direction of k where we take the
origin of the coordinate system at r„.The j& are spheri-
cal Bessel functions. Here, the coefficients in the spheri-
cal expansion are so chosen that the plane-wave portion
matches on continuously in value to this expansion. The
Ni(r; E) are solutions of the radial wave equation

where
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Here 0 is the volume of the unit cell, R, is the radius
of the sphere, the j~'s are spherical Bessel functions, the
P&'s are Legendre polynomials, and the I&'s are the
solutions of Kq. (1) for the energy E.

METHOD OF COMPUTATION

Having selected a point k in the first Brillouin zone
at which we wish to solve Kq. (2), we must now select
the APW's f; from which the matrix of (H E) is to-
be constructed.

First we take account of Bloch's theorem which tells
us that the wave vector k; to be associated with lt; is
drawn from the set {k+K;},the I, being the infinite
set of the reciprocal lattice vectors. Furthermore, for
reasons which will be discussed, it was desirable to
initially restrict this set such that no member could be
obtained from some other member by an operation of
the group of the wave vector" k. Computer programs
were written to generate this reduced set of {k+I,}
for the bcc and fcc lattices; the Whirlwind programs
being written by Saffren8 and IBM programs by the
author.

Next, in order to conserve computation time, it is
useful to take account of the general result that%'I, and
the P, APW's out of which it is composed, must trans-
form according to one of the irreducible representations
of the group of the wave vector. "This can be accom-
plished by the use of group projection operators"; em-

ploying these operators permits one to obtain all the
functions (derived from the various f,) which transform
according to a chosen irreducible representation. From
the 0.th irreducible representation of dimension e one
can form m ' projection operators p,, These have the
general form" (for a unitary representation)

Thus, the energy appears in the nondiagonal terms both
explicitly, and implicitly by way of the radial solutions.
The entire determinant is a complicated function of
the energy; numerical evaluation of this determinant
as a function of the energy allows one to determine the
zeroes in energy and thus the approximate eigenvalues
of the problem.

The form of (H—E);, is given by Slater4 for one
atom per unit cell as

(H—E),;= (k,"k;—E)8;,+ (1/Q)F...

I' (R),, is the complex conjugate of the ij matrix ele-
ment in the matrix representing the operation R in the
nth irreducible representation and the sum is over all
the operations R in the group. One may apply such a
projection operator to any function f and obtain a new

"L.P. Bouckaert, R. Smoluchowski, and E.Wigner, Phys. Rev.
50, 58 (1936).

"G. F. Koster, Technical Report No. 8, Solid State and
Molecular Theory Group, Massachusetts Institute of Technology,
1956 (unpublished); V. Heine, Group Theory in QNar4444m Me'
chandi|, s (Pergamon Press, New York, 1960).
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function f, :

f;, now will have definite transformation properties
under the group and in particular if R is any operation
in the group. "

&f;,'=ps r.(&)s;fs, (7)

Thus all such symmetrized functions, derived from f,
which bear the same second index transform among
themselves and are, in fact, partners in a basis for this
eth irreducible representation. The transformation co-
efficients for any one of these partners f,,~ are taken
from the ith column of the matrix I' (R).

Now if f and g are any two functions and 0 is an
operator which transforms according to the identity
representation of the group, then the following holds
true (G is the order of the group and n is the dimen-
sionality of the nth irreducible representation):

( "fl0
I psA&= (Gl~-)Lst''. (fl oI p i g&, (8)

so that there are no matrix elements between partners
in the same irreducible representation and no elements
between different irreducible representations. Further-
more, the value of the matrix element (8) is the same
for all rows so that one need solve only the secular
equation among basis functions transforming according
to the same column in the irreducible representation.
The e identical solutions of the secular equation merely
reQect the degeneracy of the problem —as the first index
of the projection operators is changed, we obtain the
e partners defined by our eigenvectors.

If f and g are taken to be APW's P; and P; and 0 is
the operator (H Z), then w—e have the relation (to
within a constant):

G
(&—~)"=En—D' (i&)1* O('I &—~l&A),
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Computer programs for automatically forming the

matrix elements (10) have been written for Whirlwind

by Saffern and for the IBM machines by the author.
The k; and k; occuring here are members of the pre-
viously mentioned reduced set (k+K;} appropriate to

"J.H. Wood, Quarterly Progress Report No. 36, Solid State
and Molecular Theory Group, Massachusetts Institute of Tech-
nology, 1960 (unpubhshed).

TABLE I. Listing of one-electron potential in rydberg units used
in calculations reported here. Values of r are in atomic units. In
the bcc case this potential is cut o6 at radius 2.341 and the con-
stant potential between spheres is taken at 0.816 ry. In the fcc
case, cutoff is taken at radius 2.437 and the constant is taken as
0.776 ry. These constants are spherical averages of the tabulated
potential between the inscribed spheres of the above radii and
the Wigner-Seitz spheres, the latter having the radii 2.662 for the
bcc case and 2.693 for the fcc case.

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100

0.110
0.120
0.130
0.140
0.150
0.160
0.170
0.180
0.190
0.200

0.220
0.240
0.260
0.280
0.300
0.320

0.360
0.400
0.440
0.480
0.520
0.560
0.600
0.640
0.680
0.720
0.760
0.800

10173.0
4977.5
3247.3
2384.6
1870.0
1528.1
1285.3
1104.4
964.53
853.28
762.80
687.83
624.78
571.06
524.72
484.40
448.96
417.66
389.78
364.82

322.02
286.74
257.24
232.24
210.87
192.46
176.44
162.37
150.01
139.12

121.29
106.02
93.642
83.582
75.023
67.741

55.986
46.915
39.716
33.890
29.112
25.146
21.835
19.048
16.697
14.701
13.00
11.54

0.840
0,880
0.920
0.960
1.000
1.040
1.080
1.120
1.160
1.200
1.240
1.280
1.320
1.360
1.400
1.440
1.480
1.520
1.560
1.600
1.640
1.680
1.720
1.760
1.800
1.840
1.880
1.920
1.960
2.000
2.040
2.080
2.120
2.160
2.200
2.240
2.280
2.320
2.360
2.400
2.440
2.480
2.520
2.560
2.600
2.640
2.680
2.720
2.760
2.800
2.840

V(r)

10.30
9.240
8.322
7.523
6.824
6.211
5.669
5.193
4.773
4.400
4.068
3.770
3.501
3.258
3.039
2.839
2.657
2.492
2.341
2.202
2.075
1.958
1.850
1.750
1.658
1.573
1.494
1.421
1.354
1,292
1.234
1.181
1.132
1.086
1.045
1.006
0.9715
0.9392
0.9093
0.8812
0.8545
0.8277
0.8032
0.7783
0.7558
0.7347
0.7135
0.6932
0.6736
0.6546
0.6362

the particular k. We see here the reason for using the
reduced set—all other members are now automatically
generated by the operations R forming the group of k.
The input to the programs consists of specification of the
irreducible representation n, a list of wave vectors
(k+K,} for a particular point k, and along with each
wave vector the appropriate (second) projection opera-
tor index. In addition, one includes a list of energies E
for which the determinant of the matrix (H E)q is—
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TABLE II. Summary of lattice parameter values used

in various calculations.

I.O—

40

ED

I'i2

W
25'

M x".
X2

Fxo. 1. Energy
bands in fcc iron
from 1'(0,0,0) to
X(0,2,0) along L010)
direction.

Manning bcc 5.40 a.u.
Stern bcc 5.404 a.u.
Suffczynski bcc 5.405 a.u.
Callaway bcc not given
Wood bcc 5.406 a.u.
Manning and Greene fcc 6,86 a.u.
Wood fcc 6,892 a.u.
In the APW calculations reported here, the

sphere radius R, (see text) values were:
bcc 2.341 a.u.
fcc 2.437 a.u.

05—
x~
xi

(0s 0) (0I0) (0s0) (0I0)
k {in units of w/a)

RESUI TS OF COMPUTATIONS

to be evaluated. Determination of the group of the
wave vector Lwhich determines the set R to be used in
Eq. (10)j, formation of the quantities mI'(R, )/NI(R, )
from the spherical portion of the potential for each
energy and generation of the ]3essel and Legendre
functions then proceeds automatically, and finally the
determinant of the matrix for each energy is evaluated.
Once the list of energies has been exhausted, an inverse
interpolation procedure is performed to determine the
energy zeroes of the determinant. The programs have
been constructed for fcc and bcc lattices of one atom
per unit cell; A. C. Switendick of these laboratories has
written IBM programs for the more complex NaCl
structure. "

Goldberg" ) plus one 4s-type and six 3d-type valence
electrons. The 3d charge was composed of a sum of 6
different radial distributions, each weighted to refiect
the concentration of levels described by density-of-
states curves for transition metals then available.
Manning's criterion for self-consistency was that the
width of the d band at the end of the cellular calculation
check the width given by the previous approximation.
This potential was derived from Manning's bcc calcu-
lation and was taken over directly for the Greene and
Manning fcc cellular calculations, no modifications
being made for the different structure and interatomic
distance.

Comparison of the results reported here with those
of Manning and Manning and Greene shows that the
agreement is not good. Consequently, one might well
argue that the self-consistency procedure of Manning
(or some more elaborate method) should be carried to
conclusion for the APW calculations. This has not been
done although it does not appear that such a job is

A) i
L 1

The calculations reported here were performed using
the potential listed in Table I; this potential is that
which Manning" and Greene and Manning" used in
their cellular calculations on iron. The valence elec-
trons in metallic iron are the 3d and 4s electrons, the
ground configuration of atomic iron being 3d'4s'. The
choice of this potential was made partly to compare the
APW and cellular calculations and partly because the
potential was one which had been subjected,"to a form
of self-consistency check. For details of the construction
of this potential the reader is referred to Manning's
paper. Essentially, the potential is derived from an
argon core (from the calculation of Manning and

I.O—

A

A~
Pss

A)0.5—

L FIG. 2. Energy bands
in fcc iron from P(0,0,0)

Ls' to L(1,1,1) along I-111$
Lq direction.

L1

'3A. C. Switendick, Quarterly Progress Report, No. 40, Solid
State and Molecular Theory Group, Massachusetts Institute of
Technology, 1961 (unpublished).

"M. F. Manning, Phys. Rev. 63, 190 (1943)."J.B. Greene and M. F. Manning, Phys. Rev. 63, 203 (1943).

0 I i I

(.-''-'l)(le l)(-:—:l)(I.I I)

k {in units of ~/a)

' M. F. Manning and L. Goldberg, Phys. Rev. SB, 662 (1938).



EN ERG Y BAN DS I N Fe VIA AP W M ETHOD

TABLE III. Energies of states in fcc structure. All values are in rydberg units and are with reference to a sero constant potential
between spheres. To convert energy levels so that they are with reference to the tabulated potential, subtract 0.776 ry from each. The
symbols preceding the coordinates of the points refer to fcc Brillouin zone lables. The symbols preceding the energies are irreducible
representation labels as defined by Bouckaert, Smoluchowski, and Wigner. The latter portion of the table lists some higher states which
fall outside the first 6 bands.

r o,o,o
z 0,2,0
a 0,4,0
z 0,6,0
X 0,8,0
A 1,1,1
A. 2)2,2
h. 3,3)3
I. 4,4,4
z —,', —',,0
Z 3,3,0
Z —',,—',,0E 6,6,0
8" 4,8,0

r
W
X
E

Sand 1

1 0.069
1 0125
1 0.267
1 0 356
1 0.355
1 0.112
1 0225

0.342
1 0.371
1 0.132
1 0 295
1 0.451
1 0.421
2' 0.435

15 2.491
1 1228
1 1.527
1 1.445
1 1.260

Band 2

25' 0.606
2' 0 583
2' 0.516
2' 0.456
3 0.430
1 0.594
1 0.563

0.590
3 0.595
3 0583
3 0.543
1 0.520
1 0.468
3 0.532

2' 1.447

1 1.470

Band 3

25' 0.606
5 0.630
1 0.639
1 0 722
2 0 786
3 0 622
3 0624
3 0.609
3 0 595
2 0626
1 0.603
3 0.546
3 0.618
3 0532

Band 4

25' 0.606
5 0.630
5 0.692
5 0.769
5 0.807
3 0.622
3 0.624
3 0.609
2' O65S
1 0.627
4 0.667
4 0.670
4 0721
1 0.695

Band 5

12 0 712
1 0.686
5 0.692
5 0.769
5 0.807
3 0.709
3 0.722
3 0.769
3 0.787
4 0.694
2 0.673
2 0.733
2 0.780
1' O.S08

Band 6

12 0.712
2 0.723
2 0.748
2 0.775
4' 0.871
3 0.709
3 0722
3 0.769
3 0.787
1 0.719
1 0 795
1 0.958
3 1.168
3 1.299

l, 5
X, -K

K,

Kp

insuperable with the digital computers now available.
In addition to the potential, the specification of the
problem requires a value of the lattice constant and a
value of the sphere radius E,. This information is given
in Table II along with the values used by Stern, "
Callaway, " Suffczynski, " and Manning"" in their
calculations.

The results of the calculations are listed in Tables III
and IV and in Figs. 1 through 9. The It points for which

bcc calculations were made were determined by a cubic
grid in k space of dimensions (s XsX—', ). The fcc cal-
culations were carried out for a lesser number of points.
Our units for measurement of k are indicated in the
tables.

The curves are drawn using the information given in
the tables and the compatibility relations as outlined
by Bouckaert, Smoluchowski, and signer. " The
labeling of the irreducible representations of the wave
functions associated with the various E(k) is that of
these authors. It is, of course, possible to draw many
more such curves, using the information in the tables;
we have presented the curves along the directions of
high symmetry plus one hcc case (Fig. 9) in which we
show the band structure along a line lying in the plane

!.0— l.5
His

Fxo. 3. Energy
bands in fcc iron
from P (0,0,0) to
1t (-*„-'„0)along L110)
direction.

0.5

Kp

K4

Ki
K,

l.O—

en
I r„
o

w r~s

0.5

Has'

——H l2

p Bye p 4 4yp Sy SsO gt p&O

k (in units of w/a)

"F.Stern, Phys. Rev. 116, 1399 (1959)."J.Callaway, Phys. Rev. 99, 500 (1955).
'9 M. SuGczynski, Acta. Phys. Polon. 16, 161 (1957).

l l l l I I

o (o, , o) (o,—,',o) (o,-„',o} (o, i,o} {o,,-',o) (o,—,,o) (o, r,o) (o,a,o}

k (in units of v/o)

FIG. 4. Energy bands in bcc iron from P (0,0,0) to H(0, 2,0)
along $010$ direction.
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TA&LE IV. Energies of states in bcc structure. All values are in rydberg units and are with reference to a sero constant potential
between spheres. To convert energy levels so that they are with reference to the tabulated potential, sgbtruct 0.816 ry from each. The
symbols preceding the coordinates of the points refer to bcc Brillouin zone labels. The symbols preceding the energies are irreducible
representation labels as de6ned by Bouckaert, Smo1uchowski, and Wigner. (A plus or minus sign indicates the behavior of the asso-
ciated wave function upon reRection in the symmetry plane in which k lies. ) The latter portion of the table lists some higher states,
which fall outside the 6rst 6 bands.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6

r 0,0,0
a 0,1,0
Z 0,2,0
a 0,3,0
a 0,4,0
a 0,5,0
z 0,6,0
z 0,7,0
H 0,8,0
Z 1,1,0

1,2,0
1,3,0
1,4,0
1,5,0
1,6,0

G 1,7,0
Z 2,2,0

2,3,0
2,4,0
2,5,0

G 2,6,0
Z 3,3,0

3,4,0
G 3,5,0
E 4,4,0
A 1,1,1

1 2 1
1 3 1
1,4, 1
1,5,1
1,6,1

F 1',7,'1
221
23,1
2,4, 1
2,5,1
2,6,1
3 3 1
3,4, 1
3,5,1

D 4,4,1
A 2,2,2

2 3 2
2,4,2
2 5 2

F 2,6,2
3 3 2
3,4,2
3)5,2

D 4,4,2
h. 3,3,3

3,4,3
F 3,5,3
D 4,4,3
P 4,4,4

1

1
1
1
1
1
1

12
1

+
+
+
+
+

1
1

+
+
+

1
1

+
1
1
1

+
+
+
+
+
3

+

+
+
+
1

+
+
+
3

+
+
1
1

+

4

15
12

1
1

0.108
0.132
0.199
0.297
0.396
0.450
0.449
0.424
0.413
0.154
0.208
0.303
0.398
0.454
0.455
0.442
0.275
0.341
0.407
0.448
0.467
0.383
0.403
0.429
0.399
0.177
0.229
0.320
0.410
0.466
0.469
0.450
0.286
0.361
0.426
0.467
0.477
0.395
0.418
0.441
0.418
0.350
0.409
0.458
0.500
0.520
0.451
0.467
0.482
0.465
0.518
0.506
0.508
0.517
0.541

3.09
1.91
1.53
1.34

25' 0.640
5 0.644
5 0.643
2 0650
2 0581
2 0.517
2 0.464
2 0.425

12 0.413
2 0.631

0.614
+ 0.612
+ 0570
+ 0.515
+ 0.468
4 0.439
2 0.594

0.581
0.586

+ 0551
4 0.507
2 0.560

0.553
3 0579
2 0.545
3 0 626
+ 0.605

0.590
0.557
0.513
0.473

3 0.450
0.582
0.571
0.559
0.544
0.507
0.550
0.549

+ 0.563
4 0.544
3 0.570

0.551
0.537
0.527

3 0.520
0.539
0.538

+ 0.542
4 0537
3 0.538

0.535
3 0556
4 0.535
4 0.541

1 225

4' 1.97

3
3

+
+
+

1
+

25'
5
5
5
5
5
5
5

25'
1

+

3

+
+
3
1

+
4
1'
3

+
+
+
+

1
+

+
+

3
3

+
3
3
4

0.640
0.644
0.643
0.651
0.674
0.715
0.771
0.824
0.850
0.642
0.627
0.616
0.634
0.672
0.725
0.788
0.618
0.608
0.592
0.616
0.669
0.656
0.667
0.618
0.748
0.626
0.608
0.607
0.623
0.639
0.676
0.737
0.594
0.593
0.600
0.599
0.620
0.620
0.645
0.605
0.694
0.570
0.564
0.583
0.573
0.567
0.568
0.597
0.581
0.625
0.538
0.562
0.556
0.574
0.541

25' 0.640
2' 0.654
2' 0.676
5 0 651
5 0 674
5 0,715
5 0 771
5 0824

25' 0.850
3 0676

0.700
+ 0.694
+ 0.696
+ 0.709
+ 0.747
1 0.804
3 0.751

+ 0738
+ 0.733
+ 0 713

1 0.722
1 0767

+ 0761
1 0 737
1 0 765
1 0.694

+ 0727
0.708
0.703
0.727
0.775

3 0 834
+ 0.748

0.744
0.737
0.738

+ 0 754
+ 0.761

0.761
+ 0.744

1 0.774
3 0 767

0.756
0.751
0.760

3 0.794
+ 0.767

0.'?71

+ 0.765
0.780

3 0785
0.780

3 0.787
1 0 788
3 0 791

12 0.762
2 0.756
2 0.716
2' 0.702
2' 0 741
2' 0.782
2' 0.817
2' 0.841

25' 0.850
1 0.757

+ 0.723
0.737
0.777
0.815
0.843

2 0.861
1 0753

0.787
0.826
0.853

2 0.867
4 0 784
+ 0833

2 0874
4 0 787
3 0.763

0.731
+ 0.767
+ 0790
+ 0.813
+ 0 832
3 0 834

0.767
0.786
0.806
0.830
0.835
0.780
0.801
0.605

2 0.788
3 0 767

+ 0781
+ 0.792
+ 0.800
3 0.794

0.780
0.792
0.794

2 0.790
3 0.785

+ 0.'?85
3 0787
2 0.793
3 0 791

12
1
1
1
1
1
1
1

15

+
+
+
+
+
4
+
+
+
4
3

4
3
3

+
+
+
+
+
3

+

+

3
1

+
+
+
3

+

3
1

+
3
3

0.762
0.771
0.786
0.808
0.849
0.948
1.118
1.318
1.435
0.773
0.777
0.800
0.847
0.961
1.142
1.332
0.773
0.789
0.850
0.988
1.143
0.835
0.861
0.947
0.877
0.763
0.'?73
0.800
0.862
0 989
1.174
1.378
0.775
0.830
0.906
1.036
1.187
0.876
0.936
1.018
0.951
0.834
0.893
0.979
1.118
1.294
0.963
1.047
1.139
1.083
1.057
1.154
1.282
1.232
1.393

I'I'H, which line has only the symmetry of the
plane.

The hatches along the abscissa indicate the points
at which calculations were performed. . The 6gures of

the respective Brillouin zones may be found in many
places; in particular, see reference 3, p. 117.

It can be seen from the figures that the interaction
of what are commonly referred to as s and d bands is
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Fro. S. Energy bands in bcc iron from 1"(0,0,0) to H(2, 2,2) along ( 111jdirection.

( 2,2,2)

taken automatically into account by virtue of using all
angular momenta in the spherical expansion and all
wave vectors allowed by Bloch's theorem in the plane-
wave portion of the trial functions. Use of the appro-
priate projection operators ensures that the functions
attached to the various Z(k) transform appropriately
and include all proper combinations of the spherical
harmonics. t I'or some irreducible representations of
some k, it is known" that certain angular momenta l
cannot provide a basis; in these cases, the application
of the projection operators results omission of terms of
these I, from the expressions (10).$

The dashed curves in the diagrams are sketched in by
guesswork. They connect the higher energy levels at
points of high symmetry for which calculations were
performed —calculations at these higher energies have
not yet been carried out for the points of lower sym-
metry so the dashed curves are only approximate.

The density-of-states curve for the bcc phase was
compiled from the results of the calculations, which de-
termine the energy at 1024 points in the complete
Brillouin zone, weighting each point both according to
degeneracy and symmetry. Figure 10 is a histogram
constructed using steps BE=0.05 ry. Figure 11 is a
smooth curve chosen to 6t two histograms constructed
using DE=0.02 ry; only the d band is shown here.
Figure 12 indicates the number of states per atom which
are available at any energy and again we assumed each
state is doubly occupied. No density-of-states curve has
been calculated for the fcc structure because of the

~ D. G. Bell, Revs. Modern Phys. 26, 106 (1954).
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Fro. 6. Energy bands in bcc iron from I'(0,0,0) to g(1,1,0)
along L110) direction.

comparatively small number of points at which cal-
culations were performed. More extensive calculations
for the fcc case were not performed because the po-
tential used was determined by Manning for the bcc
case only; this potential was merely inserted into the
fcc structure with no changes to take account of the
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ferred to as a "nonmagnetic" Fermi level. If we call
the energy location corresponding to II» the bottom of
the d band, then the occupied width of this band is 0.36
ry or 4.9 ev.

This density-of-states curve is qualitatively similar
to the curves previously deduced for the transition
series metals. The general features of the curve agree
with those in BeMing's publication" although the
extent of the curve along the energy axis is roughly
double that of hers. In both curves one observes the
familiar two principal maxima separated by a fairly
deep minimum. However, this minimum does not dip
down to zero and separate the band structure into two
nonoverlapping regions of allowed energies; here, we
are in agreement with the predictions of Callaway's
investigations" of d bands in cubic lattices. While we
do not have a density-of-states curve for the fcc case,

0 I

Q,P,Q 4 s 4s0 asas0 4s4s0

k (inunits of w/p)

( I:.,I,O)

1.5 - F+

Fzo. '/. Energy bands in bcc iron from H(0, 2,0) to $(1,1,0)
along line k +k„=2.

change in lattice constant and number of nearest
neighbors. For these reasons and in view of limited
computer availability, we felt the bulk of effort should

go into elucidating the bcc case.
The location of the Fermi level (Es ——0.770 ry) as

defined here is obtained by filling each available state
with one electron of each spin and thus might be re-
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Fzo. 8. Energy bands in bcc iron from P(1,1,1) to fan) (1,1,0)
along line k =k„=i.
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k (in units of m'/p)

Fzo. 9. Energy bands in bcc iron from A(2, 2, ~) to F(k, &, 2)
along a line in the k =k, plane. This indicates how one may map
out the behavior of E(iz) throughout the zone, using the informa-
tion in Table IV.

it is clear from the E(k) curves for this structure that
again no separation is obtained.

Cheng, Wei, and Beck" have calculated, from their
measurements of electronic specific heats of transition
metal alloys, a density-of-states curve for the transition
series assuming a rigid band model. Our curve is in
qualitative disagreement with theirs; they obtain an
extremely high value of the density of states to the left

Ellinor F. Selding, Phil. Mag. 4, 1145 (1959)."J.Callaway, Phys. Rev. 115, 386 (1959); 120, 731 (1960);
121, 1351 I,'1961).

"C. H. Cheng, C. T. %ei, and P. A, Beck, Phys. Rev. 120,
426 (1960).
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of the iron peak, somewhere between Cr and Mn, which
we do not Gnd at all. This may be due to a breakdown
of the rigid band model and thus it would be useful to
have a series of calculations for the transition metals to
test this hypothesis.

If we take our density-of-states curve and arbitrarily
promote a total charge per atom of one electron of
down spin from below 8=0.77=By and move it up
into the unoccupied region above, thus giving us 2
Bohr magnetons per atom to account for the saturation
magnetization, then we find that the Fermi level for
spin-down electrons is located at E=0.69 ry Lat which

X(E) is 0.77 electron/atom/ev] and that for spin-up
electrons is located at E=0.83 ry Lat which E(E) is
1.68 electrons/atom/ev]. These two Fermi levels must
match, of course, which means we should slide the
density-of-states curve for up spin 0.14 ry to the left.
Recalling that the curve as drawn is for double occu-
pancy of each state, we see that we have at this new
Fermi level 0.77/2+1.68/2=1. 22 electrons per atom

40

32—
~ 28-K

24—
O

20—
CO l6-
y) l2 -'

E(Ry)

I

l.0

FIG. 10. Density-of-states curve for bcc iron. Histogram
constructed using DE=0.OS ry.

per ev. Cheng, Wei, and Beck give a value of about 2.0
electrons/atom ev. The bandwidth, de6ned in the sense
used earlier, is now 0.42 ry or 5.7 ev for the spin-up
electrons and 0.28 ry or 3.8 ev for spin-down electrons.
The bandwidths as measured from the respective
E(I'&) are 9.8 ev and 7.9 ev, respectively. Tomboulian
and Bedo'4 estimate, from the valence band emission
spectra, that the bandwidth is 8.0 ev.

If this description of the magnetic state, in which we
have identical density of states curves for each spin
shifted away from one another (presumably by ex-
change interactions), is taken, then the new composite
density-of-states curve for the d band that is obtained
is sketched in Fig. 1.3. Comparing with the original case,
we see that the major peak has been reduced in height,
the minimum has been "sharpened" though not re-
duced and the left-hand peak has increased somewhat
in height. While this description, in which we have
arbitrarily lowered the energies of all spin-up electrons

"D. H. Tomboulian and D. E. Bedo, Phys. Rev. 121, 146
(1961).
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FIG. Ii. Smoothed density of states for d band of bcc iron.

l2

9
o 8

7
O.

LdI-

v)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
E(Ry)

lO

Fxo. 12. Number of states per atom avai)ab1e ag q,

given energy for bcc iron,

by the same 0.14 ry is oversimplified, it does seem likely
that a band calculation in which the spin-up and spin-
down electrons were handled separately might con-
siderably change the structure of the conventional
density-of-states curve.

A level-by-level comparison of the bcc calculation
with other bcc iron calculations is given in Table V.
One would not expect agreement among the calcula-
tions, since different potentials were used and various
approximations were introduced. However, the agree-
ment among the present results and those of Stern is
much better than one might expect. Stern's value of the
width of the occupied portion of the d band is 0.33 ry
as compared with our value of 0.36 ry for the non-
magnetic state. Stems description of his density-of-
states curve is one that agrees with ours.

It is reassuring that it is possible to use two quite
different methods of solution of the energy band prob-
lem and yet obtain comparable results. It has been only
in the last ten or fifteen years that we have been in a
position to compare different calculations, simply
because we can have confidence that each calculation
represents an accurate solution of the problem pre-



J. H. WOO D

40

~ 28-
I-'

24—

20-

cf
UJ

I2—
8-
4—

per otom per ev

menta and large wave vectors in construction of the
APW determinant with little difficulty is an extremely
useful feature of the APW method. We need calculate
only three l-dependent functions, viz. , the I.egendre
polynomials, the spherical Sessel functions, and the
logarithmic derivatives Ni /Ni in the assumed potential,
all of which are relatively easy to calculate. Xo com-
plicated auxiliary functions are necessary in the method.

CONCLUSIONS

0.4
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l
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Fro. 13. Composite density-of-states curve for d band of bcc
iron in which bands for spin-up electrons have been shifted 0.14
ry downward from those for spin-down electrons.

sented. These accurate solutions have been made pos-
sible through the great improvement of computing
machines; it is no longer necessary to make drastic ap-
proximations in order to 6t the problem to the machine.

We regard the energy levels quoted here as accurate
to 0.003 ry. Table VI indicates the convergence of
the levels in terms of the length of the largest wave
vector entering the APW determinant. The general
conclusion is that it is adequate to go out to fourth-
nearest neighbors in reciprocal space for construction
of the wave vectors k+K;. Of course, for a point of no
symmetry this implies a large (of the order of 40&&40)
secular equation but aside from computer time require-
ments, this imposes no difhculty.

Insofar as the cuto6 on / goes, we have uniformly
used all angular momentum up to 1=12 in these cal-
culations. Increasing this number up to 3=19 a6ects
the eigenvalues in the seventh decimal place. Examina-
tion of a few states at F indicates that cutting off at
l= 8 is perfectly satisfactory. However, in this method,
it is necessary to include angular momenta beyond l=2
even though one normally speaks only of s, p, and d
bands.

The possibility of extending up to high angular mo-

The APW method has proved to be a powerful
method for solving the one-electron Schrodinger equa-
tion for a metal. It is not restricted to points of high
symmetry in the Brillouin zone and thus it is possible
to make a thorough investigation throughout the zone
without the necessity of relying on interpolation pro-
cedures. There is no necessity for solving for the core-
state wave functions" as in the orthogonalized plane-
wave method. The method is one which is peculiarly
adaptable to a digital computer so that the calculational
burden is almost entirely removed.

A quite general question still remains to be answered,
however, and that is the choice of the one-electron po-
tential for a particular problem. In the framework of
the energy-band method, this must be the self-con-
sistent potential generated by the occupied one-electron
Bloch functions. Most energy-band calculations, in-
cluding the present one, assume that this potential is
not greatly diRerent from what one would obtain using
atomic functions (perhaps somewhat modified) for
these occupied one-electron functions. This assumption
has worked moderately well, but now that we are in a
position to obtain the actual Bloch functions from all
k it appears feasible to use these in a self-consistent field
method. This would put us in an excellent position to
assess the limits of the energy-band method.

TABr.z VI. Energies of two sample bcc levels as a function of
the square of the length of the wave vector of the last APW in-
cluded in the secular equation. LIn our units, the erst-nearest
neighbors in k space are of the type (2,2,0).j

[kf' E

Stern Wood Callaway Suffczynskib Manning

I'gs'
F12
Hxa
H~&
P4
Pg
Ng
Na
NI
N4
Ng
Over-all

d band-
width

+0.09
+0.32

0
+0.58
+0.11
+0.37
—0.01
+0.02
+0.13
+0.37
+0.68

0.68

10.23
+0.3S

0
+0.44
+0.13
+0.38
-0.01
+0.04
+0.35
+0.38
+0.47

0.47

+0,03
+0.05

0
+0.07

—0.03
+0.03
+0.06
+0.08
+0.04

0.12

+0.08
+0.16

0
+0.21
+0.10
+0.16
+0.04
+0.03
+0.16
+0.15
+0.21

0.21

-0.10
+0.00

0
+0.52
+0.04
+0.38
—0.12—0.10
+0.37
+0.38
+0.52

0.62

TABLE V. Comparison of bcc Fe energy band calculations.
The energies are taken relative to the respective E(Hqs) and are
in rydberg units. ' 13.9 0.7584

14.9 0.7554
15.9 0.7495
16.9 0.7407
17.9 0.7403
18.9 0.7396

Point k= (2,5, 1)/4
19.9 0.7394
20.9 0.7387
21.9 0.7386
23.9 0.7385
24.9 0.7382
25.9 0.7368

26.9
27.9
28.9
30.9
31.9
32.9

16.8
17.8
19.8
20.8
23.8
25.8

odd representation
0.7895 34.8
0.7889 36.8
0.7883 37.8
0.7881 38.8
0.7880 42.8

Point k= (2,3,0)/4.
0.7994 26.8
0 7954 28 8
0.7913 29.8
0.7912 31.8
0.7907 32.8
0.7898

0.7367
0.7356
0.7352
0.7351
0.7351
0.7351

0.7880
0.7878
0.7878
0.7876
0.7876

I Energies estimated from graphs in case of other authors.
b Calculation in which second-nearest neighbors were used.

"M. M. Saffren, Ph.D. Thesis, Department of Physics, Massa-
chusetts Institute of Technology (1959) (unpublished).
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The potential used in the present calculations has
led to results which seem to be in fair agreement with
experiment; calculation of more k points and a conse-
quent refinement of the density-of-states curves might
be indicated, although we feel this is hardly worthwhile
until we have a better potential. We have compared
bandwidth and electronic specific heat and found rea-
sonable agreement. The experimental controversy with
regard to the number of 3d electrons in iron seems to
have been satisfactorily resolved by recent experiments
of Batterman et al."; it appears that no qlulitative
change of the conventional energy-band picture is
necessary to explain the experimental results.

Perhaps one obvious feature of the calculations should
be mentioned. These calculations, as well as Stern's,
have produced a valence band whose occupied width is
considerable; we cannot very well consider the d bands
to be "narrow bands. " This has come about because
both in our calculations and in Stern's, the form of the
radial d function has not been assumed a priori as
atomic, but has in fact been calculated for the case
under consideration and the changes have been con-
siderable enough to widen the bands beyond what one
might expect on the basis of a simple tight-binding
argument.

In conclusion, we are now in a position to map out
accurately the one-electron wave functions and energy
levels throughout the entire Brillouin zone and thus it
should be possible to answer quantitatively the ques-
tions as to what Fermi surfaces may look like, how the
total electronic charge density behaves as a function of
position, how much hyperfine interaction we might
expect from an energy-band picture, etc. By and large,
most of the past effort has been directed at the behavior
of the one-electron energies but the previous questions
are equally important ones.

Notes added irs proof Recent rep. orts of calculations

"B.W. Batterman, D. R. Chipman, and J. J. DeMarco, Phys.
Rev. 122, 68 (1961).

on energy bands in copper carried out by Segall, '7

using the Chodorow potential, show excellent agreement
with Burdick's calculations. ' Segall has used the Green's
function method of Kohn and Rostocker, as described
by Ham and Segall."We, thus, have good cross checks
among Chodorow's hand calculations, ' the calculations
of Burdick, and the calculations of Segall.

Wohlfarth and CornwelP' have recently presented a
density of states curve for bcc iron which exhibits
sharp peaks which are known to be demanded, "Our
curves do not show these peaks; the peaks have been
smoothed out by the numerical methods used in con-
structing the curves. The presence of the peaks could
be extremely important, as Wohlfarth and Cornwell
point out, and may explain (among other things) the
sharp peak observed by Cheng, Wei, and Beck."
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