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not been observed, are e and |' in the third band and p
in the fourth. The periods expected from these cross
sections are of the order of magnitude of P6, the 6
cross section. A weak beating in P6 has been observed
and therefore may have been indicative of the presence
of such periods. However, positive identification could
not be made because of the distortion caused by Ps,
which occurs with an amplitude much larger than that
of P6. With higher fields and higher specimen purity
these cross sections should be determinable.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor T. G. Eck and
R. Genberg for their advice and assistance in taking
data and A. Hrushka and his staff for constructing
much of the equipment used in this investigation. We
wish to acknowledge helpful discussions with Professor
J.R. Reitz and Dr. W. A. Harrison and the cooperation
of the Engineering Division of Case Institute of Tech-
nology in making available their Philbric analog com-
puter for data analysis.

P H YSI GAL REVI EW VOLUME 126, NUMBER 2 A P R IL 15, 1962

Band Structure and Ferxrii Surface of Zinc

WALTER A. HARRIsoN
General Electric Research I.aboratory, Schenectady, Pew Fork

(11eceived November 27, 1961)

The band structure of zinc is calculated using a modified orthogonalized-plane-wave method and the
Hartree-Pock calculations of neutral zinc by Piper. The band structure is obtained in a form which allows
it to be extended readily to slight distortions of the lattice. The calculated structure is compared to an
experimental band structure obtained by adjusting the matrix elements to fit de Haas-van Alphen observa-
tions of the zinc Fermi surface. The band energies do not differ by more than 0.04 ry for the two treatments.
The Fermi surface from the experimental band structure is drawn in some detail ~ One matrix element is
found to be only 0.004 ry, requiring an analysis of magnetic breakdown in the interpretation of experiments.
The probability of band-to-band transitions, calculated explicitly in the high-field limit, is continued into
the low-Geld range with a result equivalent to Blount's low-field result. The formulas for the intermediate
range are applied to zinc.

I. INTRODUCTION

'HE motivation for undertaking a detailed band-
structure determination is based on several major

changes in the nature of our understanding of the elec-
tronic structure of metals:

(a) Extensive experimental work' has established
in some detail and with some precision the size and
shape of the Fermi surfaces in several metals.

(b) Band-structure calculations' ' have in several
cases given a very good account of the Fermi surfaces
determined experimentally.

(c) New techniques'r ' make it possible to obtain
the essentials of the band structure without recourse
to the large amounts of effort and expense previously
necessary.

(d) The discovery' that many of the polyvalent metals

' The Fermi SNrface, edited by W. A. Harrison and M. B.Webb
Qohn Wiley gr Sons, Inc. , ¹w York, 1960).' V. Heine, Proc. Roy. Soc. (London) A240, 340, 361 (195'I),
aluminum.

e W. A. Harrison, Phys. Rev. 118, 1182 (1960), aluminum.'B. Segall, Phys. Rev. Letters 7, 154 (1961), copper; Phys.
Rev. 125, 1797 (1961), aluminum; (to be published), silver and
gold.' G. A. Burdick, Phys. Rev. Letters 7, 156 (1961),copper.' L. Falicov (to be published), magnesium.

7 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287, 880
(&959).' M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).

have band structures which do not deviate greatly from
a free-electron or one-OPW (orthogonalized-plane-
wave) approximation. gives hope that simplified ap-
proaches may allow one to treat the modifications in
band structure which occur due to lattice distortions
and alloying.

In this framework, it appeared appropriate to explore
the inhuence of the band structure on various metallic
properties. It was first desirable to establish with some
certainty the band structure of an individual polyvalent
metal; both from a full band calculation and from ex-
perimental studies of the Fermi surface. If reasonable
agreement between the two were obtained, one might
have some confidence in the structure, and proceed to
study the inhuence of this structure on various proper-
ties of the metal.

In selecting a metal, it was decided that the extra
richness in properties for a hexagonal metal favored it
over a cubic metal. Of the hexagonal metals, zinc has
been most thoroughly studied experimentally and its
c/a ratio deviates appreciably from that for close pack-
ing, a fact which would be interesting to explore. Fur-
thermore, it was necessary to start from scratch in order
to obtain the flexibility which would make it possible to
examine changes in band structure under modifications
of the lattice. Since a band structure calculation has
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some interest of itself, it was preferable to select a metal
for which no band-structure calculation had been done;
this again favored zinc over magnesium. Finally, the
existence of band-structure determinations in both
zinc and magnesium would allow a study of the differ-
ences in their properties.

It is not possible to obtain the band structure of zinc
from experimental studies of the Fermi surface alone.
The band gaps associated with three lattice wave
numbers' must be determined, and the areas of more
than three segments of Fermi surface which depend on
them have been measured. Unfortunately, these meas-
urements do not uniquely determine the band gaps since
the sign of the gaps (the ordering of odd and even states)
is not known, and eight choices of signs are possible.
Thus, eight distinct band structures could explain the
same data. Furthermore, there remain some ambiguities
in the interpretation, as will be seen. It is therefore
necessary to perform a band calculation with at least
sufficient accuracy to assign the ordering of states;
then an experimental band structure can be selected
which has this same ordering.

It was found that a band-structure calculation based
on recent approximational techniques could be done in
such a way as to allow the determination of the varia-
tion of the band gaps under distortion without appreci-
able extra calculation.

where
&q k+ (V.p+ Va) q k= &kyk, (2)

V~~k= —2 (& —&k)(4' V k)4' (3)

U~ is an operator which would correspond to the re-
pulsive term in a pseudopotential approach. We could

' By a lattice wave number we mean 2m times a reciprocal lattice
vector; that is, it is the change in wave number which an electron
makes in a Bragg reQection.

II. THEORY OF THE METHOD

We wish to find the band. gaps associated with each

Bragg reAection plane which intersects the Fermi sur-
face. It will then be possible, using established methods, '
to find that portion of the band structure which is of
interest. To find these gaps we use a modification of
the scheme proposed by Cohen and Heine, ' which we
will describe.

The Hamiltonian for the electrons in the crystal
contains the kinetic energy operator T and a potential
V,~ which must also be written as an operator since it
is to contain exchange. The exact energy eigenstates
of this Hamiltonia, n, pk, are written, following Phillips
and Kleinman, ~ in two terms.

2 ~ (0'n~ 0'k)f a

It is hoped that y~ can be made smooth. The final
term guarantees the orthogonality of the conduction
band states pk to the core states f . Inserting this form
for fk in the Schrodinger equation, we obtain

at this point treat V,p+Vlq as small; the zero-order

q k become simply plane waves and the correction terms
can be treated to any desired order. This would be the
orthogonalized-plane-wave method.

Cohen and Heine, ' however, have shown that we can
further reduce the effective size of V,p+ Va. They note
that the addition of any linear combination of core
states to yk does not change the wave function pk
since such a modi6cation is automatically subtracted
out by the orthogonalization terms in Eq. (1).Therefore,
one may add whatever linear combination optimizes
the smoothness of p&. They therefore minimize the
volume integral J'~ V'qk~'dr/(yk, pk) by variation of
p& in this manner and substitute the result in Eq. (2).
This new pk now satisfies Eq. (2) with

(V.p+Va) Pk= U,peak
—Q.(P., V.peak)f

(Pk) (VGp+ UR) Pk)
+ Z.(4-,~k)4- (4)

(Pk) Pk)

At this point we depart from the Cohen-Heine scheme.
We take the inner product of pk and Eq. (4) and solve
for (yk, (V»+Va) pk). Substituting this back in Eq.
(4), we obtain

(U.p+Vz) q k= &.

peak

(&Pk ~ Uop 'Pk) Pa (Pay Pk)Pa+ , (5)
(V k, ok) —Z-(VkA-) (4., V k)

with

Uop Pk = Vopgk Po. (4'a~ Vop &Pk)4'a

The formal manipulations, to this point, have not
involved approximations. We will now regard this final
V,p+Va as small. Then according to Eq. (2), the zero-
order p~ are plane waves and the matrix elements will

be given by

(Pk+Ky (Upp+ VB) (Pk) ((Pk+K&Uop Pk)

We may note that the band gaps are independent of
the zero of energy as they should be; this was not true
of the perturbation treatment of the final term in Eq.
(4) suggested by Cohen and Heine.

It should also be remarked that the diff erence between
this approach and an unmodified OPW approach is
significant. The few-OPW approach using Eqs. (2)
and (3) and the Hartree-Fock term values for zinc leads
to significantly different results from those we will
obtain.

The matrix elements associated with a Brillouin-zone
face (a Bragg reflection plane) vary somewhat over
that face since the potential is an operator. We may
hope that variation will be small since to the extent
that we could represent the crystal potential as the sum
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of spherically symmetric pseudopotentials there would
be no variation. Ham" has noted variations of a few
hundredths of a rydberg in the alkali metals, and similar
variations are seen in aluminum and magnesium. We
will wish to use a single matrix element for each plane
in determining the Fermi surface and subsequently
in analyzing other properties of the crystal. In view
of the uncertainty about this variation, it is desirable
to evaluate the matrix elements where they are most
important; that is, at the intersection of the Brillouin-
zone face in question and the Fermi surface. This in-
troduces a complication in that the matrix elements are
between states of wave number k and k+K which
are not collinear. This minor algebraic complication,
however, leads to a major reduction in the numerical
work required and allows us to obtain a simple analytic
expression for the matrix element as a function of lat-
tice wave number as we shall see.

We consider the gap across the Brillouin-zone plane
associated with a single lattice wave number, K. The
matrix element of V»+Vii between the state k and
k+K shown in Fig. 1 is equal to half the bandgap at
a. The magnitude of both k and k+K is equal to the
free-electron Fermi wave number k~.

We take the core states f, in Eq. (7) to be simply
the atomic core functions centered about each atom in
the crystal; that is, we assume that the core bands are
infinitely narrow. This is probably a good approximation
even for the 3d band since the overlap between adjacent
atomic orbitals is not large. Furthermore, the 3d
band is found to lie quite low, near the minimum in
the conduction band. Furthermore, we assume that
V»+Vii may be written as a sum over all atoms of
localized operators and that their overlap in adjacent
cells may be neglected. This will require some care when
we select the potential. It is appropriate in the evalua-
tion of the various inner products indicated in Eq. (7)
to expand the plane waves in spherical Bessel functions
and spherical harmonics. Here we see the difficulty which
arises since k and k+K are not collinear; there is no
single set of axes for which all the expansions are simple
in form. It turns out to be convenient to make all of
the expansions in spherical harmonics using the s axis
of Fig. 1 as the axis of the spherical harmonics. We
write the core states in the customary fashion,

The index n is used to designate the quantum numbers,
n, 1, and m and the position R of the core in question,
which also serves as the center for the spherical-
harmonic expansion. The plane waves are normalized
to the volume of the crystal 0, and we proceed to evalu-
ate the inner products appearing in Eq. (7).The angular
integrations may all be performed, and after some labor

'0 F. S. Ham, reference 1, p. 23.
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of states by the in-
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of the crystal poten-
tial corresponding to
wave-vector K.
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we find the first term in Eq. (7),

-4
(ys+rr, U»ys) = —P e 'x' P(21+1)Pi(cos20)

0

X r'j &(kr) V»j i(kr)dr

rP»(r) V„ji(kr)dr xj &(kx)P»(x)dx . (9)
n=1

"W. W. Piper, Phys. Rev. 123, 1281 (1961).This paper does
not include neutral zinc, but the calculations have subsequently
been extended to that case.

The P&(cos20) are Legendre polynomials.

0~=sin '(E/2k').

The (y ,sU»&p )sappearing in the final term of Eq. (7)
may be evaluated from Eq. (9) by taking K=O. The
sums appearing in the final term of Eq. (7) are of the
same form as the final sum of Eq. (9) and are obtained
simply by replacing V,p by unity in that expression.

We see here the mathematical simplification which
has been effected. All integrals over the core functions
and over V,~ involve only the single wave number, the
free-electron Fermi wave number. Thus, the expression
within the curly brackets becomes simply a set of /-

dependent coefficients which we evaluate by a single
set of integrations. This, then, leaves us with an analytic
expression for all lattice wave numbers with magnitude
less than 2k+. Thus, we may calculate the changes
in the gaps arising from the motion of the Bragg planes
under a distortion of the crystal. In detail it will be
convenient to treat the first integral in Eq. (9) on slightly
different footing as we will see when we discuss the
potential.

III. THE POTENTIAL

The potential which we will use is based on the Har-
tree-Fock field for neutral zinc, as determined by
Piper. " The Hartree-Fock radial equation may be
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written in our notation:

d' l.(l +1)
r2

V p now contains several terms whi ch we must
distinguish:

(a) The self-consistent field due to the nucleus and to
each of the electrons present. We include only the core
electrons in this term, leaving an unscreened core
potential. The screening is to be dealt with separately.

(b) Terms involving exchange between the conduc-
tion and core electrons, which are to be included in the
calculation.

(c) Exchange between conduction electrons. This
term has been dropped in the calculation. The author
is indebted to J. C. Phillips for suggesting that it is
better not to include unscreened exchange than to in-
clude it and that the errors involved in this term are
probably small in polyvalent metals.

(d) Screening of the core by the conduction electrons.
Two schemes were used for treating this contribution;
the results will be given for each. One is expected to
overestimate screening; the other to underestimate it.

(i) A Wigner-Seitz treatment of electron interactions
in which the core potential is left unscreened but cut off
in the region of the cell boundary.

(ii) A free-electron self-consistent screening of the
net core charge, with the remainder of V,p unscreened.

The motivation for the erst approach is, of course,
that a correlation hole surrounds the electron under
consideration, leaving the core potential unscreened.
In a divalent metal the correlation hole is presumably
of the size of the volume per conduction electron, which
is only half the volume of the atomic cell, so we would

appear to omit more screening than we should. How-
ever, we propose to cut this Coulomb potential off at
the inscribed sphere in muon-tin fashion so this error
may not be so serious. Furthermore, the conduction
electrons are to quite an extent excluded from the core
region by their orthogonalization to the core states
which will also reduce the true screening. We conclude

that this approximation may well be preferable to free-
electron screening.

In suggesting the second approach, we recognize
that the screening is probably most important in con-
nection with the Coulomb field of the net core charge
since this is a long-range field. Screening would be less
effective for the more localized terms in the core poten-
tial. Thus, we include only the screening where it is
most important. A screened Coulomb potential was
obtained by making a Fourier transform of the poten-
tial, dividing by the wave-number-dependent Hartree
dielectric constant for free electrons and transforming
back to obtain the screened potential. This is hoped
to result in a reasonably good approximation to a full
self-consistent calculation.

In both cases it was necessary to make some sort of
cutoff in the neighborhood of the cell boundary since
in both cases the net core potential seriously overlapped
neighboring cells. In case (i), it is the 1/r potential
which overlaps; in case (ii) it is the oscillatory 1/r'
term" in the potential. The potential was in both cases
cut off at the sphere inscribed in the atomic cell and
taken constant in the remainder of the cell."The con-
stant value was taken equal to the average of the
potential (before cutting off) in the region between the
inscribed sphere and a sphere of volume equal to the cell
volume. The results were found not to be very sensitive
to the exact choice of this average value.

IV. CALCULATIONS AND RESULTS

The major calculation required was the evaluation
of the integrals appearing in Eq. (9). The plane waves
were expanded in terms of the form of Eq. (8), writing
m=4. The radial 4/ functions have the form

P4i ——r ji(ksr).

V p is as described above. In integrals involving core
functions it was unnessary to truncate the potential
since the core functions became quite small by the time
the inscribed sphere was reached. In integrals involving
the potential and Bessel functions only, the Coulomb
6eld of the net core charge was subtracted off and
treated separately. The matrix elements for the residual

TABLE I. Matrix elements for the unscreened potential.

Lattice
wave number'

50023
L100$
$101$
[000j

E
(a.u. )

1,3740
1.4475
1.6022
0.0000

(0k+x, Uv'k)/S
(ry)

—0.3074
—0.2849
—0.2406
—2.0869

(mx~x, (Vop+ Va) ys)/S'
(n)

—0.0227
—0.0042
+0.0372
—1.6907

1/2
v3/2

00
—60'
+30'

00

S=L1+exp(iK. b)g/2
Mag. Phase

See reference 19 for notation.
b V is the net ionic potential, —2e'/r.
o (yl +K, (Vpp+VR) q») is the final matrix element.

"For a discussion of this term see, for example, W. Kohn and S. H. Vosko, Phys. Rev. 119, 912 (1960).
"Such truncating schemes are discussed in detail by F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).
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short-range potential were calculated using l values
through 2.

The integrals over the potential and the orthogonality
coeKcients (47rJ'P4&P &dr) were obtained by tabulating
the P4~ and reading them into an IBM 650 computer;
Piper's Hartree-Fock program" then calculated the
orthogonality coe6.cients and tables of V,~P«." Inte-
grations of the form J'P„iV,„P4idrwere then calculated
by hand.

The terms in fP4iV,nP4idr arising from the Coulomb
field of the net core charge )in case (i)) and the screened
field Lin case (ii)$ were obtained by summing over all 1

to obtain again the form of a simple Fourier transform.
The integral of the truncated potential over the atomic
cell was then obtained by hand for the lattice wave
number of interest.

The low-temperature lattice parameters of c=9.1453
and u= 5.0120 atomic units (a.u.) were obtained"
from the room temperature values and the measured
thermal expansion coeKcients. The free-electron Fermi
wave number is kg =0.8412. The Bragg-reAection planes
associated with three lattice wave numbers were found
to intersect the free-electron Fermi surface. The matrix
element associated with each of these was calculated;
the results are given in Tables I and II. The structure
factor, S= f1+exp(iK. S)j/2, where 6 is the vector
distance between the two atoms in the cell, was tabu-
lated separately since its inclusion tends to obscure the
variation in matrix elements arising from the details
of the ionic potential. The matrix elements of the un-
screened or screened net ionic Coulomb potential be-
tween plane waves are also included to indicate the
extent of the cancellation which has taken place in the
final results. The differences between the results for the
two methods are small (a few hundredths of a rydberg),
but as we will see they are important.

In the unscreened case a value is also given for the
K=O matrix element which gives a crude estimate of
the energy of the band minimum. The same value should
be applicable for the screened cases since screening does
not change the average value of the potential. It should
be noted that the K=O value is not equal to the limit
of the KNO matrix elements as K —+ 0 since the former
alone is affected by a constant term in the Hamiltonian.

~ A

~ K

I

I
I

I I

l l

I BAND 2 BAND

BAND

l

l

I

I
I

I

I

I

4

'A

'"
BAND

~ K ~]

I l
1

FIG. 2. The one-OP% or nearly-free-electron Fermi surface for
a divalent, hexagonal-close-packed metal of ideal c/o ratio.
Spin-orbit splittings are included with their consequent reduction
of the double zone.

V. FERMI SURFACE AND EXPERIMENTAL
BAND STRUCTURE

The Fermi surface for a divalent, hexagonal-close-
packed metal in the one-OP|A' approximation' ' is
given in Fig. 2. In no case in the preceding calculation
did we find a matrix element which appreciably exceeded
one-tenth of the Fermi energy, so we may expect this
one-OPW approximation to be qualitatively correct
when corrected for the modified c/g ratio. In zinc the

TABLE IIL Band energy at symmetry points. (3d-band:
0.122; Fermi energy: 0.708 ry. )

Point and
symmetry

&theo
(ry)

Finally, the band energy at various points of sym-
metry was calculated for the unscreened treatment,
case (i), and listed in Table III as En,„.The order of
the secular equation used was for each symmetry point
equal to the number of bands included in the table
(with the exception of the point F, where a 2&(2
determinent was solved).

Lattice
wave number'

L002j
L1007
L1013

(v x+x, Vq g)/Sb
(ry)

—0.1950
—0.1855
—0.1675

(mt+Kg (&op+ &n) &c't)/&'
(ry)

+0.047
+0.057
+0.081

a See reference 19, for notation.
b V is the net ionic potential.
o (g1 +K, (Vop+VB}p1 ) is the final matrix element

TABLE II. Matrix elements for a screened potential.

p +
F4
p~+

AI
3f2
Mz+

L'I
I.I
E'5
E]
H2
HI
HB

0
0.449
0.495
0.118
0.522
0.526
0.610
0.674
0.696
0.703
0.759
0.821
0.870

0
0.411
0.533
0.118
0.520
0.528
0.612
0.671
0.695
0.706
0.762
0.824
0.863

1
2
3
12
1
2

12
3p4

12
3

12
3,4
5)6

'4The author is indebted to D. S. Story for performing this
portion of the calculation.

"W. A. Harrison, Phys. Rev. 118, 1190 (1960).
"M. H. Cohen and L. Falicov, Phys. Rev. Letters 5, 544

(1960);7, 231 (1961).
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c/a ratio exceeds that of close packing by about 10%,
which causes a shrinking of the Brillouin zone parallel
to the c axis by 10% from that shown.

There are several sets of de Haas-van Alphen periods
which have been established experimentally. We will
use the periods found by Joseph, Gordon, and Eck""
in our analysis. The maximum periods (corresponding
to minimum area. s) of these and the corresponding
segment of Fermi surface to which they belong according
to current interpretation are:

(a) Vertical needles in the third band. The period"
is 6.30)&10 ' gauss ', corresponding to an area of
0.426)& 10 ' a.u. (units of wave number squared).

(b) Diagonal arms in the second band. The period'r is

for these is 2.24&&10 gauss ', corresponding to an
area of 0.0120 a.u. There are difhculties in the interper-
tation of these which will be discussed in Sec. VI of
this paper.

(c) Horizontal arms in the second band. The period"
is 2.23)&10 gauss ', corresponding to an area of
0.00120 a.u.

(d) The intersection in the second band with the
hexagonal face of the second zone and the horizontal
section of the bits in the first band. '7 "These two sec-
tions of the surface are split off from each other by
spin-orbit coupling" and the two distinct sections are
seen. The average of the two periods" found is
1.59&(10 gauss ', corresponding to an area of 0.0169
a.u. The two areas observed are 3% above and below

BAND X

this value. The splitting corresponds to a gap of a few
thousandths of a rydberg in agreement with the estimate
of Cohen and Falicov. "We will proceed by neglecting
the spin-orbit coupling except in zero order as it modifies
the connectivity of the surface. Thus, we will compute
the average area only.

(e) The fifth set, which Joseph et al."denote by 8,
they assign to an orbit which loops through the second-
hand rim and encloses the intersection of two diagonal
arms and the rim. They find a period of 4.38)&10 '
gauss ', corresponding to an area of 0.061 a.u. with a
field along the bisector of the lattice wave numbers

t 100] and L001)"

We cannot deduce the appropriate matrix elements
from the known sections of the Fermi surface alone
because of uncertainty of the sign of the Inatrix ele-
ments. However, we can assert values for the matrix
elements and adjust them until the correct surface is
obtained. A comparison of the observed periods to
those of the nearly-free-electron approximation'5 and
examination of which matrix elements affect each
quickly indicates that the magnitude of the matrix
element associated with the lattice wave number $100]
is small in comparison with the other two. This was
the case also with our unscreened calculations, so we
start with these. All we need extract from these calcula-
tions is the assignment of signs to the matrix elements;
we may then determine the matrix elements uniquely.

We start with the segment a, which depends sensi-
tively only upon the matrix element L100].We proceed
to b which depends both on $100] and L101], and then
to c which depends upon L101]and L002]. Finally, we
estimate segments d and e as a check.

The procedure for making these determinations may
be described as follows: We should write down a
Hamiltonian matrix using a free-electron kinetic energy
and matrix elements connecting all states with wave

TABLE IV. Matrix elements from experiment.

Lattice
wave number~

[002j
[100j
[101j

(v x+x, (&.p
+Va)v a)/Ss

(ry)

—0.0612
—0.0078
+0.0337

Mag.

1/2
v3/2

Phase

00
—60'
130'

ATOM IC. UNITS

FiG. 3. Calculated minimum cross section of the diagonal arms
using the experimental band structure. It is assumed that the
orbit observed is ubcdef, which requires magnetic breakdown at
the points b and d but not at c; the orbit lies partly in band I and
partly in band II. The dashed line represents the one-OPW (or
free-electron) orbit.

"A. S. Joseph and W. L. Gordon, Phys. Rev. 126, 489 (1962),
preceding paper.' A. S. Joseph, W. L. Gordon, J.R. Reitz, and T. G. Eck, Phys.
Rev. Letters 2, 334 (1961).

& See reference 19 for notation.
b (q»+K, (Voy+Vz) q, k) is the final matrix element.

"It will be convenient in discussing the band structure to
specify all directions in wave-number space. A direction [apyj
may be written as a linear combination of three lattice wave
numbers, aK1+pK2+yK~, where K1 and K2 are primitive lattice
wave numbers perpendicular to the c axis, which make an angle
of 60 with each other, and K3 is the primitive lat tice wave number
of the hexagonal lattice parallel to the c axis. A direction [ops j
in wave-number space is parallel to a direction [2n+p, 2p+n,—3n —3P, -,'V3 (o/c)'yj in real space (using the four-index crystal-
lographic notation).



number differing by a lattice wave number, and then
solve for the eigenvalues as a function of wave number.
We assume, however, that the main effect of these cor-
rections leaves the Fermi surface nearly spherical except
near the zone faces where particular matrix elements be-
come important (the few-OPW approximation); we will,
then, treat only those few matrix elements which are
most important in a particular region.

A particular matrix element will do two things: First,
it will distort the Fermi surface near the zone faces and
second, it will shift the Fermi energy. We should, in
principle, calculate the shift for each matrix element and
then determine the Fermi surface at the new Fermi
energy. These corrections, however, are small and we
have not made them; the shift in Fermi energy due to
the largest matrix element may readily be estimated
by perturbation theory using the matrix element we
calculate. It is 0.002 ry, which is unimportant for our
purposes.

For the three segments of surface, u, b, and c, the
problem reduces to the solution of a set of 3&(3 matrices.
These are set up and solved by techniques described
earlier. 2' lt was found convenient to use rectilinear co-

' Reference 3, Appendix I.
ordinates rather than polar coordinates and again the
problem reduced to solving quadratic equations. For
these small segments it was found convenient and quite
accurate to take only the term in the kinetic energy
which is linear in the wave number as measured from
the center of the segment. In this approximation, the
free-electron surfaces become triangular for segments
a, b, c, and d.

By adjusting the matrix elements, the experimental
areas were fit, and the resulting matrix elements are
listed in Table IV. The agreement with the values from
both band calculations is quite good. In particular,
the largest correction to the values calculated without
screening is less than 0.04 ry. These corrections should
be compared to the terms in the matrix element before
cancellation which were a few tenths of a rydberg.

Three interesting sections of the Fermi surface calcu-
lated from the experimental band structure are shown
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in Figs. 3 through 5. The interpretation of (b) in Sec. V
is questionable, as seen in Fig. 3, and a check of the
valuesobtainedisnecessary. This interpretationof Sec.V
(b) will be discussed in Sec. VI on magnetic breakdown.
Segment d (which depends on the matrix elements

I 100$ and I 101]) and segment e (which depends on
the matrix elements I 101j and L002j) were calculated
from the matrix elements of Table IV. The area of the
segment d obtained was 0.0162, to be compared with
the experimental average of 0.0169 a.u. The tiny
discrepancy is certainly no greater than the errors aris-
ing from approximations in the graphical determination
of the area. The area which Joseph ef al. have associated
with the periods e was found to be 0.057 a.u. , to be com-
pared with the measured area of 0.061 a.u. Again the
agreement is satisfactory and supports both our values
from Table IV and the interpretation of the periods.

Finally, we calculated the energy values at various
symmetry points using matrix elements as found by
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FIG. 5. Sections of the Fermi surface in a plane perpendicular
to a L100) direction and through P, calculated from the experi-
mental band structure. Sections of surface which cross on the
line AH are split to left and right by spin-orbit coupling. Sections
of surface which appear to cross on the line EFI correspond to a
line of contact along EH between the 6rst and second bands.
Above and below the section shown, this crossing is split up and
down.
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F&G. 4. Sections of the Fermi surface in a plane perpendicular
to a L110$ direction and through F, calculated from the experi-
mental band structure. Dashed lines represent one-OPW (or
free-electron) Fermi surface. Sections of surface which cross are
split from left to right by spin-orbit coupling.
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FIG. 6. A model of the Fermi surface in bands I and II, based
on the experimental band structure. Spin-orbit coupling is
omitted.



adjusting the Fermi surface; these are listed in Table
III. Some error is introduced here by utilizing matrix
elements evaluated on portions of the Brillouin zone
face different from those appropriate to the symmetry
point. In addition, there is some error associated with
including only the effects of a few plane waves for each
point. We expect the errors not to exceed a few hun-
dredths of a rydberg.

VI. MAGNETIC BREAKDOWN

Electrons may jump between bands when an applied
magnetic field is sufficiently large. " It was necessary
to assume that such jumping occurs in the interpreta-
tion of the periods which are associated with the diagonal
arms in the second band (segment b). The symmetry of
the variation of the period with orientation, the magni-
tude of the maximum period, and the rate of variation
with rotation all support our interpretation of these
periods and appear to rule out any other possibilities.
On the other hand, detailed consideration of the band
structure indicates that orbits around this section exist
only if the electrons jump between bands at b and d
but not at c in Fig. 3. This might seem a little unlikely
and should be investigated further.

We will do this by 6rst making an intuitive extension
of the theory into the intermediate 6eld range, starting
from the high-field limit. We consider a free electron
executing an orbit in a magnetic field H with frequency
o~,'=eH/mc. We now introduce a Fourier component
of the lattice potential with coefficient V~ and calculate
the probability of an electron being scattered out of the
state k(t) into the state k(t)+K by time-dependent
perturbation theory. This involves a time integration
over each crossing of a Bragg plane which the electron
makes. The result for each crossing is

where

~

Vx~s u,sa

r' 2AE» K. (kXH)

This is presumably the procedure used by Joseph
et ul. '~ The result appears to be equivalent to that of
Blount" for the high-field limit. The calculation is valid
only if the scattering probability per crossing is small.
However, we note that (since there are two crossings
of the plane) 2/7' is the probability per unit time of an
electron leaving the initial orbit. Further, 1/~ is
formally independent of the magnitude of the magnetic
6eld so we regard it as a transition rate and extend it into
the intermediate and low-field ranges. Then the proba-
bility of completing an orbit is still exp( —4ir/oi, 'v'),
or the probability of making an individual jump is
exp( —2ir/co, srs). In the low-field limit this is the proba-
bility of jumping or tunneling between bands at each

"E.I. Blount (to be published), Eq. (III 14).

pass. Furthermore, this is simply the square of the
amplitude factor given by Blount" for the low-field
limit and is therefore essentially equivalent to his result.
The probability of jumping between bands at each ap-
proach, given by

fuu'Zi K (kXH)
(10)

for a case with e passes per orbit, corresponding to a
scattering time which decreases as the 6eld increases.
It is also interesting to note that in the intermediate
range both orbits may be simultaneously observable
by, for example, the de Haas-van Alphen effect, but
both would have reduced amplitude. In the case of

where co,' and EI; are the free-electron values, is correct
in the high- and in the low-field limits, so we may have
some confidence in it in the intermediate range.

We now proceed to the case of interest in segment b.
The matrix element in question is 0.0039 ry, according
to our estimate, which leads to an exponent in Eq. (10)
of 4.0 at 20 000 gauss, where we have taken the angular
factor as unity. The probability of an electron jumping
the two gaps and not the third in order to complete an
orbit, then, is of the order of exp( —8.0), corresponding
to an co,7 of about 2ir/8=0. 8, with o~, being the cyclotron
frequency for the orbit in question and 7- entering the
problem as it would for any scattering process. Taking
the angular factor into account actually reduces ~,r by
a factor of about 2.

It seems unlikely that the strong observed oscilla-
tions are compatible with an co,r as small as this. How-
ever, co,r varies inversely with the square of V&' in
this range, and a smaller bandgap would lead to an
enhanced co,r. A maximum value of co,r =3.3 would be
obtained with a bandgap about half of that which we
determined. Such an error in the bandgap would not
be surprising. It should be noted that, though the ampli-
tude of the de Haas-van Alphen oscillation drops as
exp( —2m./o~, 7), it also contains a factor (d'A/ds')
where dA/ds is the rate of change of sectional area of
the arm with displacement parallel to its axis. This is
larger by a factor of about thirty than the correspond-
ing factor for the orbits d which were also observed by
Joseph et a/. is We conclude that the association of the
periods b with the diagonal arms is tenable. Almost the
same values of the matrix elements would be obtained
if we disregarded these periods and evaluated the matrix
elements from the periods d or e.

In connection with magnetic breakdown, it is inter-
esting to note that in considering the orbit seen at high
fields, the presence of a possible Bragg reAection enters
as a field-independent scattering time and is in this sense
indistinguishable from impurity scattering. For an orbit
seen at low fields, on the other hand, we calculate the
co,~ due to the possibility of tunneling between bands as
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interest here, the low-field orbit does not have an ex-
tremal area and is therefore not observable.

VII. SUMMARY

We have found a band structure for zinc both from a
detailed band calculation and from experimental knowl-
edge of the Fermi surface. These are consistent to within
a few hundredths of a rydberg. There are errors in both
determinations arising from using only a small number
of plane waves in each case. The apparently accidental
change of sign of the matrix elements in the interesting
range of reciprocal lattice vectors seems to be real and
will be important in further studies of the properties
of zinc. The variation of the matrix elements with
magnitude of lattice wave number in this range is similar
for both treatments and is probably reasonably reliable.
Also, the areas of the Fermi surface sections calculated
are probably good to a few percent and the shapes com-
parably reliable.

On the other hand, since the energy values at sym-
metry points are not reliable beyond a few hundredths
of a rydberg, the fact that the unscreened calculation
and the dielectric-constant treatment are closer to ex-
periment than the self-consistent treatment sheds no
light on the relative merits of these treatments.

We may note, in particular, the errors involved in util-
izing only a few plane waves and constant matrix ele-
ments. A fitting of this procedure to the results of
Falicov's band calculations' on magnesium indicates
that an individual matrix element, as determined from
band values at different symmetry points, will differ
by as much as a factor of 2. Furthermore, whereas we
wouM always 6nd the center of gravity of a collection
of levels at a given symmetry point unchanged by the
introduction of splittings, he finds shifts of the order of
a hundredth of a rydberg. Such shifts could lead to
large percentage errors in the experimental determina-
tion of small bandgaps, in particular for the small
matrix element associated with the lattice wave number
pooj.

Finally, our formulas for magnetic breakdown are
probably accurate in the intermediate range, though
the extension into this range is in no sense rigorous.

ACKNOWLEDGMENTS

The author is indebted to Professor W. L. Gordon for
sending the results of the de Haas-van Alphen experi-
ments prior to publication, to W. W. Piper for his as-
sistance in obtaining the appropriate machine calcula-
tions, and to M. H. Cohen for helpful discussions.




