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Exchange Interaction and Heisenberg's Spin HaIniltonian*
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By the use of representation matrices U (P) of the permutation group, the energy matrix of many-electron
systems has been expanded such that Z=Zp Jr U(P), and it has been proved that all the coefficients Jo
are bounded and determined uniquely. This means that the expansion is mathematically valid even though
nonorthogonal orbitals are used and no matter how large the overlaps between the orbitals are. Furthermore,
it has been shown that the nonorthogonality catastrophe which was pointed out by Inglis and Slater does not
appear and values of the coefficients can be evaluated correctly even if higher permutations are omitted.
Then we find the Heisenberg spin operator as the first-order approximation of the expansion.

C*Cdr

can be quite different from one calculated by neglecting
the higher permutations. This implies that the usual
derivation of the effective spin Hamiltonian,

3C= —2 Q J;,S;S;, (2)

is by no means justified. ' Here S; is the spin angular
momentum vector of electrons in atom i, and J;; is the
exchange integral connecting atoms i and j. Secondly,
use of orthogonal orbitals gives always positive exchange
integrals J;, and therefore cannot explain the existence
of antiferromagnetic substances, although, because of
the orthogonality of orbitals, it is possible to obtain
the spin Hamiltonian (2) correctly.

Recently, Mizuno and Izuyama' have given a rigorous
mathematical proof that the nonorthogonality catas-

I. INTRODUCTION .

~~ESPITE the success of qualitative features of the
Heitler-London and Heisenberg methods in un-

derstanding important concepts in the theory of ferro-
and antiferromagnetism, the mathematical basis of the
methods has not been established rigorously. Instead,
they are rather regarded as a model which is not ob-
tainable from the first principles of quantum mechanics.
According to Slater, ' the methods are, by their nature,
incapable of being rigorously applied to many-electron
systems for the following two reasons: First, use of
nonorthogonal orbitals gives divergence in both the
energy matrix J'C*KC'dr and the overlap J'4*@dr
when the number iV of electrons increases infinitely, so
that the energy value E obtained correctly by

trophe does not appear in the manner Inglis4 pointed
out; actually, the numerator and denominator of the
energy expression (1) can be factored exactly but in
somewhat complicated fashion. By the use of Schwarz's
inequality relation, they have shown that these factors
can be left out, but instead each term in the energy ex-
pression (1) should be bounded. After evaluating the
boundary conditions, they found that the exact values
cannot be so different from values obtained by neglect-
ing overlap integrals as long as overlaps between nearest
neighbor atoms are not so large.

This result may give some justification to recent
calculations' on the superexchange interaction, where a
small number of electrons, say 4 electrons, is taken out
of a crystal and the interaction between them is calcu-
lated correctly, while a part of the energy, which is
proportional to S;S,, is defined as the exchange inter-
action J,, There it was not assumed a prt', on that 't, he
exchange interaction could be described by the Heisen-
berg spin operator, but the energy expression (1) was
reduced to the form (2).

It is still not possible to see, however, that the energy
expression can be described in the form (2). In the 4-
electron system, two of them are coupled to each other
and therefore the system is essentially a two-spin sys-
tem and the energy could be written as the quadratic
form S;S; with respect to spin angular momentum
vectors. In many-electron systems, we should expect
higher terms as long as nonorthogonal orbitals are used
as basis. Then the question arises whether such an ex-
pansion really exists in many-electron systems and also
whether the series converges quickly so that the form
(2) can be a good approximation.

By the use of representation matrices U(P) of the
permutation group, ' in Sec. II, we shall expand the

*This work. was supported in part by the U. S. Air Force D. R. Inglis, Phys. Rev. 46, 135 {1934).The same di%culty
through its European Office under contract with Uppsala Uni- had been pointed out earlier by J. C. Slater, Phys. Rev. 35, 509
versity, and in part by the U. S. Atomic Energy Commission. (1930).' J. C. Slater, Revs. Modern Phys. 25, 199 (1953). 'For instance, J. Yamashita and J. Kondo, Phys. Rev. 109,

For the standard derivation of the operator, see P. A. M. 730 (1959); F. Keffer and T'. Oguchi, cbid 115, 1428 (1959);.
Dirac, The Pre'nccptes of Qnantnrn+Mechanecs (Clarendon Press, J. Kondo, Progr. Theoret. Phys. (Kyoto) 22, 41, 819 (1959).
Oxford, 1947), 3rd ed. , Chap. IX; for the application to ferro- Use of representation matrices of the permutation group in
magnetism, see J. H. Van Vleck, Theory of Electric and 3fagnetic the energy calculation has been introduced by R. Serber, Phys.
Susceptibilities (Oxford University Press, New York, 1932), Chap. Rev. 45, 461 (1934); T. Yamanouchi, Proc. Phys. Math. Soc.
XII, and also J.H. Van Vleck, Revs. Modern Phys. 17, 27 (1945). Japan 18, 623 (1936);20, 547 (1938).The method is also reviewed' Y. Mizuno and T. Izuyama, Progr. Theoret. Phys. (Kyoto) by M. Kotani et a/. , Table of Motecnlar Integrats (Maruzen Com-
22, 344 (1959). pany, Ltd. , Tokyo, 1955), Chap. I.
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energy expression (1) of X electrons such that

E=gp Jg U(P), (3)

Hermitian and therefore the expansion is physically
sound.

where P is a permutation operator of electronic co-
ordinates and the summation Pi includes all g! dif-
ferent permutations P. Then we shall show that the
effective spin Hamiltonian X,« is given by

X,pi=+i (—1)PJp ~P',

where P' permute the spin coordinates. The expression
(4) is rigorous under the following assumption: Since
we are interested in spin-degenerate states only, all the
states have a common electronic con6guration and the
spatial parts of the wave functions are all common and
there will not be any difference from state to state. Only
differences in the wave functions occur in the spin parts.
The main task in Sec. II is to show that all the coeS.-
cients J~ exist and are determined uniquely even if the
number E of electrons becomes infinite. This means
that the expansion (4) is mathematically valid.

Furthermore, in Sec. III, we shall show that the
Nonorthogotiality catastrophe does not appear and that
values of the coefFicients Jp are bounded and can be
evaluated even if we omit the higher permutations.
Then we will 6nd that the Heitler-London and Heisen-
berg methods are reliable even though truncation is
inevitable and that the Heisenberg spin Hamiltonian
will be suitable as the first-order approximation of the
effective Hamiltonian.

II. EFFECTIVE HAMILTONIAN FOR
MANY-SPIN SYSTEM

In the first paragraph of this section, we shall
explain the representation of wave functions as used
here. From the orthogonality relation of representation
matrices, we further derive and prove Lemma 1, which
is essential for the expansion of the energy matrix. In
the second paragraph, the energy expression will be
expanded in terms of representation matrices as it will
appear in Eq. (28). Then it will be proved that the ex-
pansion is really valid, since the coeKcients J& exist
and are determined uniquely. This eliminates the non-
orthogonality catastrophe in its most literal interpreta-
tion. It is claimed that, in the Heitler-London and
Heisenberg methods, there is no other expansion than
the obvious one which is expressed schematically as
Ep—~+ ~—~. In the new expansion (28), however,
all terms involved are bounded.

In the last paragraph, it will be shown that the energy
expansion can be written in the form of an effective
Hamiltonian which will appear in Eq. (33). This means
that the problem of many-electron systems is converted
to that of many spins. Since the 6rst two terms of the
effective Hamiltonian are equivalent to the Heisenberg
spin Hamiltonian, the Heisenberg model will not be in
conQict with the first principles. Furthermore, we shall
show that each term in the effective Hamiltonian is

1. Reyresentation of Wave Functions

We shaH consider a crystal which consists of Ã'
atoms and E electrons. For the moment, we assume
only Coulomb interaction between electrons and nuclei.
The Hamiltonian is therefore given by

¹ N
~=+ (P '/2m) e'—g P (Z„/rg;)

A=1 i=1

i=2 j=l

where P' = —O'V', m is the mass of an electron, rg; is
the distance between electron i and nucleus A with
nuclear charge Z~, and r;, is the distance between the
electrons i and j.

Since K does not involve spin operators, the spin
angular momentum operator 5' and its component Sz of
Ã electrons commute with 3'., so that eigenfunctions of
K are simultaneously eigenfunctions of 5' and Sz and
are classified by the spin angular quantum numbers S
and M. This implies that eigenfunctions of X which
pertain to particular values of 5 and M are written as'

where 0+ is the row matrix (Q&i, Q~2, ,Q~~), which con-
sists of fs linearly independent and orthonormal eigen-
functions of 5' and Sz with the specified values of S
and 3f, and

U(P) is the fXf irreducible representation matrix for
the permutation P of electronic coordinates, while P is a
function of space coordinates of X electrons. The sum-
mation Pp covers all iV! different permutations P.
Therefore, it is evident that% is a f&&f matrix, and 4 a
row matrix with f elements. A set of the X!different
permutations forms a group. We denote the group by

The representation matrix U(P) is defined by

PsQ~ —( ])PQ~U(P)4

where P is the operator, which transforms spin co-
ordinates 1, 2, , S of into 1', 2', , g', while P
changes space coordinates 1, 2, , 1V of P into
1', 2', , X'. As long as f functions Q~; are normalized,
U(P) is unitary and given by

U(P)*= (—1)~ OtP Qdo.

'The detailed description of the method will be found in
Kotani's book (see reference 6).
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If Pea~ and Qeoiv, then we find that

R= PQeos1.

By Eq. (7), therefore, we obtain that

U (P) U (Q) = U (PQ) = U (R). (10)

If, for example, the one-particle approximation is
applied, the spatial function P may be written as a
product of X atomic orbitals which are not orthogonal
to each other:

p(1,2, . N) =$11(i/is(2) QA, (xA)fA, (gA+1)
~ . .)Ay, (xA+hA —1) . Qsls(N)) (11)

where it At, /As, ., /As are atomic orbitals localized at
the atom A. %e shall denote by h& the number of elec-
trons localized at the atom A. Then

1V=Q hA.
A=1

However, we want to make clear that the following
arguments are more general and entirely free from the
choice of the function P. Even an exact eigenfunction of
K can be written in the form (6), and the proof concern-
ing the existence of the expansion (3) is correct. But
in order to make the expansion physically sensible, we
have to make certain assumptions.

(a) We assume that in f, each electron is localized
at a particular atom, since the exchange interaction is
a quantity characteristic to the Heitler-London scheme.
If iit is expanded in terms of atomic orbitals, therefore,
f will be written such that

those 2S+1 states are equivalent. Therefore, assump-
tion (b) is rigorous for those cases. If spin-degenerate
states belong to different spin quantum numbers S,
however, the representations are no longer equivalent,
and the spatial functions P are not usually common. We
shall identify the representations by 'Zs and their
matrices by the superior such that Us(P). Assumption
(b) will be a good approximation if differences in the
correlation energies of spin-degenerate states are small.

As long as N! functions PP are linearly independent,

fs functions obtained by Eq. (6) will be linearly inde-
pendent. Since there are (2S+1) substates for a state
with given 5, the total number of linearly independent
functions obtained. by Eq. (6) is Ps(2S+1)f8. It is
easily proved that

Es(25+1)fs= 2~ (13)

Since, in an S-electron system, we find 2~ linearly
independent spin functions, Eq. (13) shows that all
linearly independent functions for spin-degenerate
states are obtained by Eq. (6).

In general, the representations 'Zs (S=O or —',,
—,'N) do not exhaust all irreducible representations of
os'. We shall denote '2, when we want to include all
the irreducible representations of 0.~.' The total number
of X), is equal to the number of classes in o.si and we
have the relation

Z. f'=N!
Since the representations are irreducible, we have the
following orthogonality relations:

(f,/N!) +1 Us '(P) U„s'(P-') =5„5&„8„„. (15)

These relations show that the )It!)&F~ matrix 1',

I'ps~, i = (fs/N!)*'Us '(P), (16)

Xf A, (xA+1). f st„(1V), (12)

where f„A,Q„A, Q„A„are atomic orbitals centered at
the atom A. In it, the probability of identifying the
electrons xA, xA+1, , @A+f1—1 as the atomic orbi-
tals QAgpAs it A@ will be dominant. s

(b) We assume that the essential approximation we
have to make is that the space parts f of the wave func-
tions are the same for all the spin degenerate states we
are interested in.

(c) Furthermore, we assume, for the moment, that
the 1V!functions PP obtained by operating 1V! different
permutations I' are linearly independent. Later in this
section, however, we shall remove this restriction and
show that the following arguments are applicable even
if f has symmetry

It is easily shown that spatial functions f are common
to 2S+1 magnetic substates (M=S, S—1, ,

—S)
for a state with given 5 and that representations for

' Existence of such function in an exact eigenfunction of K
has been discussed by the author in Revs. Modern Phys. 32, 370
(1960).

whose rows are numbered by (pb11) and whose columns
are numbered by I', is unitary.

Now we 6nd the following lemma.
Lemma l. If we have the relation

&1 a~UP(P) =O, (17)

which is valid for all the irreducible representations 2,
of 0&, then all the coefficients a& must be identically
zero.

By the use of the matrix I', defined by Eq. (16),
Eq. (17) is written as

FA =0,
' The rest of the representations p of 0'& which are not included

in 8, cannot find basic functions in spin space. This is because
we have only a limited number 2~ of independent spin functions
at our disposal and in general this number of independent func-
tions is insufhcient to form bases for all the irreducible representa-
tions of 0-1v. If we use a representation 7)p which is diferent from
'Zs, the wave functions defined by Eq. (6) vanish, because the
spin functions which satisfy Eq. (7) vanish. Formally, however,
we can apply the following way of writing to all the representa-
tions X)p of o.N and we can omit the part which is obtained from the
representations '7)

p not included in Sg.
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where A is a column matrix: are orthonormal, and the energy matrix is given by

A= E= (C.D l) t—'JC(4 Dl)d-r

By multiplying Eq. (18) by I' t, we find A =0 because
F is unitary.

2. Expansion of Energy Matrix

where
=Eo+D lHD—

H= Ct(BC—Eo)Cdr,

(21)

Ke can assume that the wave functions C given by
Eq. (6) are orthogonal and the fXf overlap matrix
C= J'C. tCdr is diagonal. If this is not true, then there
exists a unitary matrix V, with which C can be brought
into diagonal form by the similarity transformation
such that

D= VtCV= (4 V) t(4'V)dr,

V'+V= P p V'U(P)*VPP.
v'9' )

This implies that, instead of 0", we should use O~'

= OV as the basis. Therefore, we can write the overlap
matrix as D=fC. t4dr, where D is diagonal.

Now we prove that all the diagonal elements are
nonvanishing; namely, there exists an e such that

D,,&o&0, for i=1, 2, , f.
If, for any small number e, we find that

(19)

D,,= C,*C,dr= iC, i'dr(o,

then C; must vanish. This means that +k;= 0, for
k = 1, 2, , f since all the spin functions 0, in Eq. (6)
are linearly independent. Since N! P%"s are linearly
independent and Eq. (6) is written as

since C~=C. This means that, instead of 4, we can use
the orthogonal functions 4 V, which are given by

4 V= (OV)(V'+V),

and

Eo= Q*XPdr.

The nonorthogonality catastrophe tells us that,
since overlap integrals J'Pg*gdr are generally not zero,
both H and D diverge and the evaluation of E in Eq.
(21) can be illustrated by the calculation of OX ~XO,
when the number N becomes infinite. On the other hand,
if we neglect higher permutations, H and D behave as
if they are 6nite numbers Hp and Dp. It is entirely un-
justihed to evaluate E by Dp:HpDp:, since the main
contribution H —Hp ——~ is neglected there.

I'rom Eqs. (6), (9), and (10), it is easily shown that

H Q p HPU(P), Hp= PP*(& Eo)/dr, (2—2)

D=gp SpU(P), Sp= Pg*gdr,

where the summation Pp is taken over all X!permu-
tations I'. Because of the properties of a group and its
representation shown by Eqs. (9) and (10), it is possible
to expand D ' formally in the following fashion.

D '=LZpSpU(P) j '=Zp TpU(P) (24)

We shall show that the expansion exists and the co-
eKcients TI are uniquely determined.

From Eqs. (23) and (24), it is found that

1=D 'D=gp Qq
—TqSq ~pU(P).

By applying Lemma 1,"we find

Zp Ua'(P)*PI,v'P'. )
(20) Pq Tq Sq ~p 5~p, for P=——1, 2, ~, S!,

we find that Ui, ;(P)"=0 for all k and P. This would
imply that the representation is neither unitary nor
irreducible, which is contradictory to the original
method described in Eq. (6).

Since Eq. (19) is valid, D exists and its elements are
bounded such that

0(D" '(o '( ~, for i=1, 2, , f.
Here we can define D: as the diagonal matrix whose
elements (D '*),, are given by D,, '. Then the functions
defined by

e»=eD--:-

since the representation matrix U(E) of the identity
element E is unit. The expression is written as

(25)

where 5 is a lV!gN! matrix

S= PtPdr,

Since the equation written above is valid for all the irreducible
representations 7), of crz, we are able to apply Lemma j.. See the
note in reference 9. The matrices T, S, etc., whose elements are
given by TI, S@-1+,etc. , pertain to an EI-dimensional space, be-
cause the number of independent permutations I' or Q is¹!.
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and T, 8 and P are the following row matrices:

T= (Tp„Tp„Tr„,),
5= (1,0, 0),
4 = (Pi(,Ps4', P~4).

Since S~=S, it is possible to diagonalize 5 by a simi-
larity transformation such that

6= UtSU= (&U)t(rtiv)dr.

Furthermore, we find that

P;~ l;('= T&&1/e& ~;
consequently, all the coefficients tI exist and are
obtainable.

By the use of the expansions (22) and (26), the energy
expression (21) can be expanded formally as follows:

&—&a=E~ Ji U(P),
where

Jr = Pq Pir tqHo-~ii4-~i. (29)
Since (&f&U), is a linear combination of Ã! Pf and is
simila, r to 0'I, ; given by Eq. (20), there exists an e such
that

Now we shall prove that, as long as the values of all
the integrals H~ are bounded, all the coefficients Jp
also exist and are determined uniquely. In Appendix A,
we shall show that all H~ are indeed bounded.

By adopting the matrix notation similar to the one
used in Eq. (27), Eq. (29) is written as

6;;)~)0, for i=1, 2, , Ã~.

Equation (25) is therefore written as

T'=TV=SVA '

and P ~
T; ~' is calculated as follows

J= tHt,

where the QP elements of the X!&&X! matrices J and
H are given by Jg &p and H@-1&, respectively. By the
similarity transformation, which brings t into the
diagonal form t'= U t t V, we find thatThat is, the coefficients TI exist and are always uniquely

determined by Eq. (25) because ~$~ WO.
Since the expansion (24) of D ' exists, D '* is

written as

J'= V ~JV= t'H't',

D i=Pi lr U(P),

also
where all the elements H; of H'= V~HV are bounded
after the unitary transformation by V. As the ij ele-
ment J; is written as

where the coefficients tI are determined uniquely.
This is proved as follows. By using a technique similar

to Eq. (25), it is found that l& should satisfy the relation

(27)

where l and T are the X!&(E!matrices whose QP
elements are given by t@-1p and T@-1I, respectively.
Since D ' is real and diagonal, we find that t t= t. Then
t can be brought into a diagonal form t' by a similarity
transformation such that

t'= V ttV.

Under the same transformation, T is also diagonalized
and Eq. (27) is written as

where T'=VtTV and t,,'=gT, (or —QT; ). The
matrix l obtained by t=vt'V" satisfies Eq. (27)."

"The uniqueness of t can be proved as follows. We consider a
different similarity transformation. Then we obtain a diR'erent
diagonal matrix T"=W~TW. Since T= VT'Vt =WT"W~, we
find that

UT'= T"U, (a)
where U=WtV is unitary. Let us consider the ij element of the
above Eq. (a). Then U,;T; =T;;"U,;, since T' and T" are di-
agonal. This indicates that T; = T;;" or U;;=0. In either case,
we have the relation

U;;t; =t;;"U;;, (b)
where t; =gT; andt;;"= v'T;;". Therefore Vi'V t =Wf'Wt,
and regardless of the unitary matrix used, we obtain the same t.

lf we put t; = —QT; for all s, then the sign of D & will change.
Although D ' is positive definite, we do not know the sign of

J,,'=t, H;;t, ,

all the coefficients J'j and also J;; must exist. Since,
apart from the factor 1 or —1, the Ã~ coefficients tI
are uniquely determined, N t JI are also determined
uniquely by Eq. (29). As J& is quadratic with respect to
tI, the undetermined signs of tI does not aAect the
signs of J~.

So far, we have assumed that the E! functions PP
are linearly independent. In Appendix B, we shall
show that even if 7!l ! PP are not linearly independent,
the arguments remain correct. Therefore, the expansion
(28) is always valid regardless of the symmetry of P.
This proves the existence of an energy expansion in
which all terms are bounded and determined uniquely.
Consequently, the nonorthogonality catastrophe does
not appear in its most strict sense, and the Heitler-
London and Heisenberg approaches can have possi-
bilities of being rigorously applied to many-electron
systems, as we will shown in detail in Sec. III.

3. Effective Spin Hamiltonian

Now we shall convert the energy expansion into an
effective spin Hamiltonian. First let us consider the

of ZP tI U(P) without calculating its value, since it is not possible
to see simply from Eq. (27) which sign should be assigned. Since,
in physical quantities, t appears always in the quadratic form, it is
not necessary to determine the signs. From Eq. (b), it is easily
seen that the signs of t must be all plus or all minus.
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energy expansion (28). Here the representation matrices
U(P) are given by Eq. (8):namely,

U(P ')=(—1)P OtP Odo. . (8')

Since we assumed that the spin funct:ions 0; used as
the basis are simultaneous eigenfunctions of S' and S„
the representation is irreducible. Furthermore, the co-
eKcients Jp are independent of 0~ and are common for
all possible spin states classified by spin quantum num-
bers S and M, as long as a common P is used as the space
part of the wave functions. Therefore, the energy ex-
pressions (28) for all the spin states are written in one
expression as follows:

P.=gp JpW(P), (30)

where W(P) is a supermatrix in which all the irreducible
representations UsM(P) for all possible values of S and
M appear in the form

U ',N, -', tv (P)-

U ,'iv, *,tr 1 (p-)—

Uy'N —1, -', tv—1 (p)

Because of the relation (13), W(P) is a 2~X2~ matrix
and given by

is equivalent to X,tt+X', although eigenfunctions of
Ã&,&,& are usually not simultaneous eigenfunctions of S'
and S,.

The Xr permutations I" can be expressed by prod-
ucts of permutations of pairs such that

PM'= (irjt) (isjs). (i~j sr), (32)

where iV indicates the number of electrons involved in
the permutation. According to Dirac, "each of the pair
permutations (ij) is equivalent to the spin operator

(ij)= ,'(1—+4s,s;)

Therefore, Psr' is described by a product of s (1+4s;s,).
The expression (32) is not uniquely given, because of
the relations

(ij)'=» (ii)(i&)= (ih)(ij).

By the use of the commutation relations of the spin
operator, however, it is easily shown that all different
representations (32) of a permutation Ptrr' are equiva-
lent in terms of spin operators. Thus each of S~
permutation operators I'~ is written as a function 6~
of operators s 1$ 2 S

Psr Osr(st)distr) ' ' ' )ster i Ptrl).

The expression is unique up to the commutation rela-
tions of spin operators.

The effective Hamiltonian (4) is therefore written as

X,. tt ——Js——,
' Q J;;(1+4s;s;)

W(P ')= (—1)P Q~tP Q'do.(31)

where 0 is the row matrix (0,,0,, Op) consisting
of Ii =—2~ linearly independent spin functions. Since the
2~ functions form a complete set in S-spin systems, "
the evaluation of the energy of the Hamiltonian is
equivalent to the eigenvalue problem of the operator

X,tt=pp( —1)PJp ~P'. -

By a unitary transformation, Eq. (30) is written as

P.'=V)EV=+p JpW'(P),
where

W'(P)=VOW(P)V= (—1) J'(OU)'P (OU)d .

This shows that the effective Hamiltonian (4) is valid
not only to the eigenstates of S' and S„but also to any
spin function, since r, 0's, O~p are complete and V
is arbitrary. Even if we consider a spin-dependent
interaction K', therefore, we can use the effective
Hamiltonian, and the eigenvalue problem of the total
Hamiltonian,

Xtota& X+X q

'2 As we shall show in Appendix B, a part of the energy matrix
L~' given by Eq. (28) will vanish if the E!Prj's are not linearly
independent, and therefore the"corresponding part of spin func-
tions in 0 will disappear in Kq. (30). Consequently, we may not
obtain 2~ independent solutions from the Hamiltonian (4).

+ Q Q (—1) Jp OM(s;„s;„.,s, ; Ptr). (33)
M)3 P~

If we can prove that, in ordinary crystals, coefficients

J;; for permutations of single pairs are dominant as
compared with J& for M&3, the energy levels are
described by

X ff "&=Js—-', P J;;(1+4s,s;),

and the higher terms may be neglected. The approxi-
mate Hamiltonian is equivalent to the Heisenberg spin
Hamiltonian (2).

Here, s; is the spin operator of electron i. If each atom
carries more than one electron and the coeKcients JA,.B,
for the permutations between electrons A ~, A2, ~ ~ Aq in
atom A and 8~, 82, 81, in atom 8 are equal to each
other, then the approximate Hamiltonian is

Xeff &'& = —2 Q J@$3S+Stt.
A)B

provided the intra-atomic exchanges are negligible.
Here JAB is the exchange interaction connecting atoms

"P.A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929).
Also, The Prirtcip/es of Qgarttlm Mechanics (Clarendon Press,
Oxford, 1947), 3rd 'ed. , Chap. IX, p. 222.
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A and 8 and Sg is the spin angular momentum vector
of atom A.

Finally, we shall show that the exchange interaction
energy J;,- thus defined is real and a physically sensible
quantity to discuss. By taking the Hermitian conjugate
of Eq. (28), we obtain that

Since (E—Zo) t= (E—Eo), use of Lemma 1 will give us
that Ji-~*——Ji. For permutations P= (ij) of single
pairs, P '=P and therefore J;; is always real. Further-
more, JJ U(P)+ Jr ~U(P ') is Hermitian and the di-
agonal elements are real, since the ii element is written
as

for all E ~ permutations P. This means that, even if we
take the summation Pir in Eq. (33) up to a limited
number, say Mo, the truncated Hamiltonian is still
Hermitian and the energy levels obtained are always
real, and, therefore, the expansion is physically sensible.

III. CALCULATION OF EXCHANGE INTERACTION
ENERGY

In Sec. II, we have shown that the effective Hamil-
tonian for spin-degenerate states is written as Eq. (4)
or Eq. (33) where the coefficients Ji represent values
of the exchange interaction and can be obtained in
principle by solving the X. linear equations (25). In
practice, however, this is not possible, since the number
E of electrons in a crystal is effectively infinite. Here we
shall demonstrate a possibility of evaluation J~ without
solving Eq. (25) and show that all the coefficients Jp
are bounded and exchange interactions between nearest-
neighbor atoms are indeed dominant.

This again eliminates the nonorthogonality catas-
trophe in its orthodox interpretation. The argument used
is the following. Even if an energy expansion is used
which leads to convergency such as the one given by
Eq. (28) and even if overlap integrals between atoms
are relatively small, the convergency will be extremely
slow. Third, fourth, and even higher terms will be
dominant as compared with the second term (the
Heisenberg exchange term). Therefore, the Heisenberg
model can never be a useful one. Although many calcu-
lations indicate that the Heisenberg term is dominant,
such calculations have no meaning according to ex-
ponents of the orthodox view, since effects of overlaps
from distant electrons are neglected. An exact treat-
ment supposedly might change the whole situation.

In contrast to this criticism, the results given in
this section and written clearly in Eqs. (77) and (86)
and the subsequent text, show that each term JJ on
the energy expansion cannot be far from the values ob-
tained by omitting the higher permutations. As long
as overlap integrals between atoms are small, therefore,
the Heisenberg model will be a good approximation.

In order to prove the results, we first have to separate
a few electrons in the energy matrix and treat that part
explicitly. Then the energy matrix will be expressed as
a sum of products of Coulomb or exchange integrals
and overlap matrices. This result is expressed in Eqs.
(37) and (38) and our problem of expanding the energy
matrix is reduced to the expansion of overlap matrices.
The aim of the latter half of the first paragraph is to
prove Lemma 4. We have derived an inequality relation
between the length of expansion coeKcients d„of various
overlap matrices having the same number of electrons.
This will be presented in Lemma 4 or O'. The Lemma is
actually a generalized form of Schwarz's inequality and
the essential means for comparing and bounding ex-
pansion coeScients of the overlap and energy matrices.
To prove the lemma, however, we have to pass through
Lemmas 2 and 3.

After Lemma 4 is verified, it is no longer dificult to
evaluate upper and lower bounds of P ~

d„~', as is car-
ried out in the second paragraph. When the overlap in-
tegrals are not exceedingly large (6(1), the results will
be explicitly given in Eqs. (54)—(57) and (60)—(63).
Even if A&~1, the bounds can, of course, be given by
considering overlap between nearest neighbor atoms
explicitly. Since such extension is trivial, we shall omit
the mathematics in this paper. In any case, the results
together with the energy expansions (64) and (65) show
that the effects of overlap from distant atoms and
higher permutations are not essential. On the other
hand, if one is not satisfied with the accuracy of nu-
merical results for some particular problem, one can
easily improve the accuracy by taking more permuta-
tions and it is always possible to evaluate the upper limit
of the error due to the truncation of the energy
expansion

Finally, in the last paragraph, we derive a complete
expansion of the exchange interactions J„in terms of
d~; this will appear in Eq. (76). By using the results in
the second paragraph, we can at last obtain the promised
relations (77) and (86), which will show that Heisen-
berg term is indeed dominant. Since the complete en-
ergy expansion (33) is available and each of the co-
efhcients J„can be evaluated exactly the same way as
the Heisenberg exchange interaction J~, we are able to
increase the accuracy whenever necessary. In this point,
there is a sharp difference from and great advantage
over the existing Heisenberg theory.

1. Separation of Permutations

First in this paragraph, we shall separate interacting
electrons from others. For simplicity, we shall assume
that each atom carries a valence electron and the spatial
function f is written as

p(1,2 .Ã)=p, (1)p2(2) . 6(1V),
where the inferior i of P; indicates that the orbital P;
is centered at atom I.Here the one-particle approxima-
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tion is applied because it simplifies notations, but the
more general case (12) can be treated in exactly the
same manner.

The Hamiltonian (5) is written as

ac= g se;+g se;, ,

where

K =BC'—(i IX/I i)1 BC,'= (P,'/2m) —8'/rz$y

and

x;;=~~z'—(ig I
Bc,P I

ij ), K&/ = e'/rz—, e'/rz—;+e'/r;;

Then the energy matrix H, given by Eq. (22), is divided
as follows:

H=P;H,+Q,), H...
where

H, =gz (H, )z U(P),
H'z= Z~(H'i)~U(P),

and

(H")~= P4*~'A«

Consequently, the energy expression is written as

(34)

where E;=D 'II;D ' and E;;=D 'II; D '.
We shall denote (N —1)!permutations of electrons

1, 2, , h —1; k+1, , N by Q[h]. All the N! per-
mutations are given by

P=Q[h7 P(k~h), k=1, 2, , N,

where P(k ~ h) = (hk). The wave function 4, the over-

lap matrix D, and Eh are written as

1
gkgk(h) 4[k(h)7

D=Q Q SQ[k]&U(Q[h] P(k ~h))

In Eq. (35), all the possible permutations (kh) of elec-
tron h are considered separa, tely and therefore 4 [k(h)]
is a function of the space coordinates of electrons
1, 2, , h —1;h+1, , N made up of orbitals ft, Ps,

, Pzz."The energy matrix Ek is then
given by

Ek ——Q (klKklh)D 'S[k(h) lh(h)]D ' (»)

Similarly, Bh& is written as

Pkg pg, p ——' (kmlsekglhl)D
—i

XS[k(h)m(l) Ih(h)l(l)]D ', (38)
where

S[k(h)m(l) Ih(h)l(l)]= e[k(h)m(l)]tC[h(h)l(l)7«.

A(h)4' (i)C'[k(h) (i)]

=[(N—2)!7—'* Q 0 U(Q[hl] P(km~hi))*
Q I;hl]

XQ[hi]P(km

and Q[h/] are (N —2)! permutations of electrons 1, 2,
h —1;k+1, , i—1;/+1, , N, while P (km'/)

is a permutation taking h to k and l to ns. The functions
4[k(h)m(i)] are related to 4[k(h)] as follows:

C [k(h)]= (N —1)—:g„g„(l)C[k(h)m(l)].

More generally, we define C[kr(hr)ks(hs) k (h )7
by

4k (hl)l!'k (hs) ' ' 'fk (h )C [kl(hl)k2(h2) ' ' ' k (h )]
= [(N—g) l]—i Qo Q~. U(Q[hrhs ~ ~ .h„]

'P(klks' ' ke ~ hlhs ' 'hw, )) Q[hlh2 '4]
P(krks k„&—hths h )P, (39)

where, by Q[hths h„] we denote all possible permuta-
tions in which e electrons h~h2 h„are not involved,
while P(krks k +—hrhs h ) interchanges space co-
ordinates h~h~ . h„with k~k~. - k„. Similarly, we define

Sby

=2&k lh)SLk(h) Ih(h)], (36) S[k,(h, )k, (h,)" k.(h.) Iki'(hi')ks'(hs') k '(h ')]

Hk=Z E (Hk)oik»U(Q[h]'P(k ~h))
Q [h]

=2&k I
~k lh)S[k(h)

I
h(h)],

C[k, (h,)k, (h,) k„(h„)]t

XC [k,'(h, ')k, '(h, ') k.'(h„')7a . (40)

where Now we like to prove the most important relation:
Schwarz's inequality applied to the lengths +Id~I'
of expansion coefficients d„of overlap matrices. We
shall derive and prove the relation in Lemma 4, but

X U(Q[h] P(k ~ h))* Q[h] P(k c—h)P, before proving it, we need to verify the following two
lemma s.

S[k(h)l h(h)]= C [k(h)]tC[h(h)]dr. '4 The spin functions 0 in 4 Lk(h)j include the spin coordinate
of electron h.
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Lewttna Z. The overlap matrix

$[ki(hi)k2(h2) . k (h )ski(hi)k2(h2) k (h„))

is independent of h~h2 h„and therefore

S[ki(hi)k2(h2) .k„(h„)
~

k, (hi)k2(h2) k„(h„))
=S[ki(ki)k2(k2) .k.(k ) i

Xki(ki)k2(k2) kn(k )). (41)

Lemma 3. If the following expansion of a matrix I.,
Lp=g& dr U~(P),

is valid for all representations of 0.~, then P~~d~~2 is
invariant under a unitary transformation of I and equal
to 2, Z. E-(f,/N!) IL.- I'.

By the use of the unitary matrix 1 defined by Kq.
(16), the expansion (44) is written as

From the definition (39) of C, it is found that

4[ki(hi)k2(h2) . .k„(h„))t

Xc [ki(hi) k2(h2) . k.(h.))dr
=Z.S. "U(P-QP), -(42)

where the summation P.o is taken over all the (N —I)!
permutations Q[hih2 .h ). To simplify the notations,
we will abbreviate Q[hih~ . h„), Q[kik2. k ), and
P(k,k, k„~h,h, . h„) by Q, Q', and P, respectively.
Then it is easily recognized that P 'QP are permuta-
tions of electrons not including k~42 k, and equiva-
lent to Q'. There are one-to-one correspondences
between Q and Q', and if all the (N —e)! different
permutations Q are taken into account, the (N —I)!
diiferent permutations Q' are generated by Q'= P 'QP.
Therefore, the summation (42) is equivalent to

P S, U(Q') = C[k, (k,)k, (k,) k„(k.))&
Q/

XC'[ki(ki)k2(k2) k~(k~))dr.

This proves the lemma.

F8= l,

where d and l are the column matrices, in which the
Pth and the (phd)th elements are given by dp and

(f,/N!)*'Lt, &, respectively. Then

Z~ld~l'=d'd=l'~=K, Z~ Z-(f./N ) IL~-'i'

By a unitary transformation L,"=L'V, Pz +~~La~'~'
is invariant, since

Ql, Q ~
La " '= p~ Z pi Q. L~i'L~. '*«V

=Pa gi~L. i'~'.

This means that it/ and Pi ~di ~' are also invariant
under the unitary transformation.

Bytheuse of the expansion (26), D ~S[k(h)
~
h(h))D |

and D lS[k (h)ns(l)
~
h(h)l(l))D l can be written as

D 'S[k(h)
~
h(h))D '= P d[k=(h)

~
h(h)) U(P), (45)

D '*S[k(h)m(l) ih(h)l(l))D '

=Pi d[k(h)nz(l) ih(h)l(l))i U(P), (46)

or, more generally,

D ~S[ki(hi)k2(h2) k„(h„)ski'(hi')k2'(h2') k„'(h„'))D='
=Q p d[ki(hi) k2(h2) k.(h.) i

ki'(hi')k2'(h2') k.'(h. '))~ U(P). (47)
Then it is found that

Lt,noma 4. The following inequality relation holds between the coefficients dp.

pi ~d[ki(hi)kg(h, ) . k„(h„)~ki'(hi')k2'(h2'). k„'(h„'))i ~'

&~{Qp~d[ki(ki)k2(k2) k„(k„)~ki(ki)k2(k2) k„(k„))i
~

XQP
~
d[kl (ki )k2 (k2 ) ' '4'(k. ')

~

ki'(ki')k2 (k2 ) k.'(k. '))Q~ ) ~ (48)

Since the expression D *'S[ki(hi)k~(h2) . k„(h„)~ki(hi)k, (h, ) k„(h„))D
*

is Hermitian, it can be brought into
a diagonal form L& by a similarity transformation. From the definition (40) of S, it is found that

II'= VtD ~S[ki(hi)k2(h2). k~(h~) ~ki(hi)k2(h2). . .k~(h~))D V

{C[kl (hl)k2(h2) '
nk( n)h) DV) {c[kl (h1)k2(h2) ' kryo(hS))D V) d&.

Since L& is diagonal, the fs functions,

y, ={4[hi(hi)k2(h2) k (h ))D *V);, i=1, 2, , fs,

are orthogonal to each other and therefore we obtain that

P P ~LI~~~ = {PP;(1,2 N)p, *(1'2' N'))*{+g, (1,2, N)p;*(1'2' N'))drdr'.
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Similarly,

where

and

Q Q II. "I'= {Qg, '(1,2. Ã)p, '*(1'2' .N')}*{+&,'(12 .1V)y„'*(1'2'.. 1P)}d d ',

I Ip pity/d

1t = {C[kl'(hl')k2'(h2') . . k„'(k„')]D 'V'};, 2=1, 2, fs
are orthogonal to each other.

Now we define L"& by

I"1'= ptp'dr= {g[kl(hl)k2(h2) ~ ~ ~ kn(h„)]D 1V}t{p'[kl'(hl')k2'(h2') ~ ~ ~ kn'(h„')]D 1V'}dr.

Application of the Schwarz inequality relation to the above expressions for L&, L'&, and L"& leads to

The relations is valid for all the representations of cr. Here we expand L& such that

I.~= &p dpU(P).
By Lemma 3, we obtain the relation

(49)

Zpldpl'=2, Z2 Z-(f,/&t) I12-'I',
and furthermore we 6nd that the sum +pl dp I' is equal to

gpld[k, (h, )k2P»)" k„(h.) lk, (h, )k2(h2) "k„(h„)].l,
since D l5[kl(hl)k2(h2) k„(h„) I kl(hl)k2(h2) k„(h )]D l are obtained from 1.' by unitary transformations. By
Lemma 2, it is also evident that

d[kl(hl)k, (h2) k„(h„)
I
kl(hl)k2(h2) k„(h„)]P——d[kl(kl)k2(k2) k„(k„)Ikl(kl)k2(k2) kn(k„)7P.

This means that we have the relation

2p
I
dLkl(kl)k2(k2) "k-(k.) lkl(kl)k2(k2) k-(k-)]P I'= Z. Z~ Z.(f./&') IL.-'I2.

The similar relations will be found for I.'& and 1."'.Therefore, Eq. (49) can be written as Eq. (48).
From the discussion given in Sec. II, it is clear that

{ppld[kl(kl)k2(k2) . k„(k„)Ikl(kl)k2(k2) .k„(k„)]pl }-:

is bounded. We shall denote the maximum and minimum values for arbitrary k~02 k„by "/, and "/; . Then
Lemma 4 is written as

Lemma 4'.

+PI d[kl(hl)k2(h2) ' ' ' k (h ) I
kl (hl )k2 (h2 ) ' kn (hn )]PI ~~'( Lm ) (so)

Henceforth, we will deal mostly with the case where h~ ——h~' ——k~', IE2
——h~' ——k2', ~ . and h„=h„'=k„'. In such a

case, we shall not repeat the indices h~, h~, , h„ in 5 and d and will use the following abbreviations:

5[klk2 ' 'knl hlh2' ' 'hn] —5[kl(hl)k2(h2) k.(h.) I
hl(hl)h2 (h2) h. (h.)].

d[klk2 ' kn
I
hlh2' ' .h.7= d[ki(hi)k2(h ) k.(h.) I hi(hi)h2(h2) ' ' ' hn(hn)].

2. Expansion of Overlap Matrices expansion (45), Eq. (36) is written as

Now we shall evaluate the upper and lower bounds
and nl;„of p„l dpi' defined above. This will be

carried out easily if we expand the overlap matrices Applying Lemma p to the equation, we pnd tha
$[hl' ' 'h —llhl' ' 'h 1] in terms of

S[h, h. ,k„lh, h„,h„].
First, we consider '/, and 'l;„. By the use of the

1=+2 (klh)d[klh]g,

0=pi, (klh)d[klh]p.



EXCHANGE INTERACTION

Therefore, we obtain that

Zpld[hlh]pl-'
=1—Z~'E(k Ih&d[k I h]s+(k[h&*d[k[h]~*}

+PI' Pz, '
(k lh&(k'Ih&*{/ p d[k [h]pd[k'[h]p*}.

(53)

where the summation P~, '

h+1,
From the definition of

evident that

includes k=1, 2, Ig —1;

d Ck I h]~ &~'E... ,

+p dLklh]p d[k'[h]p*
& (&pl dCk[h]p I'Ep I

dCk'I h]p I'}'& ('l-*)'.

and also

P Id[kllkl] I

=Zp[dCk[k]pl' —2-" (&mll& Epd[klk]p*
dCkmlkE]p+(m[l&* 2p d[k

I k7 dCkm[kE]p*}
+P„"P "

((m[E&(m'll&* P p d[kmlkl]p
d [km'

I
kl] p*j, (59)

where the summation Q " excludes m= k and l.
By the use of Lemma 4' and the Schwarz inequality

relation in Eqs. (58) and (59), it is found that

((1—46+26') —26),(1—hp) ' —AP(1 —Ag)
—'}(1—6) '

&&Qpld[kllkl]pl'&~(1—hp) '(1—6)—' (60)

By the use of the above two relations in Eq. (53) it is (1—26—2hz+2&&a)(1 —Dz) '(1—6) '
easily seen that the relation &d[kllkE]~&(1 —6&) '(1—&) ', (61)

and also
d[hl h], &a(1—a)-z

&pl d[k lh]p['& (1—a)—',

(56)

(57)

provided 6(1.
Now we consider '/, and 'l;„. By the definition

(39) of 4, it is immediately found that

D '*S[kl k]D *'=g„' (m[ E&D lS[km[ kE]D-i, —

gpld[hlh]g I'~&1+26'E, +LB('E,„)'

is valid. for any h, where 6 is the maximum value of
6(h) =P~'

I
(k

I h) I, h= 1, 2. , X. This means that

('l .)'&~1+26'E .+6'('E .)'.

If A(1, the relation is written as

'l .„&~(1—6) '.

Similarly, we find that

('l; )'&~1—2A'l .—6'('E .)'.

Therefore,

(1—4a+2~') (1—~)-z

&Qpld[hlh]pl &(1—6)—'. (54)

From Eqs. (51) and (52), it is also found that

(55)

d[kllkE]p~&{h+Ag(1 —dg) '}(1—6) ' (62)

Qp[d[km[hl]p[ & (1—D1) (1 6) (63)

where 61, is the maximum value of

a), (l)=Q "l(mll)l, I=1,2, k —1;k+1,

These relations are valid as long as A(1 since AA, (A.
Furthermore, similar relations will be found for the
coeKcients d[k~kz. k„l h~hz' ' h ]p.

From the results given by Eqs. (54)—(57) and (60)—
(63), it is evident that the expansions

P, =P p gg (k
I
x,g I

h)d Ck
I
h]p U(P), (64)

Egz ——Qp gg P '(kmlaeg(lhE&d[kmlh/]pU(P), (65)

obtained from Eqs. (37), (38), (45), and (46), converge
rapidly and provide a practical way to evaluate the
energy since the higher permutations are indeed negli-
gible. On the other hand, if 6 is close to or larger than
1, we have to take the interaction between the nearest
neighbor atoms explicitly. Then, the summation in 6
starts from the next nearest neighbor atoms. Since the
overlap integrals between atoms decrease exponentially,
a satisfactory solution will be obtained by this approach.

3. Heisenberg's Spin Hamiltonian
or, in terms of the representation matrices,

Finally, we shall introduce a more explicit expression

d[klk] U(P) p p ( IE&d[k lkl] U(P) for the exchange interactions Jp and show that all Jp
are bounded in a similar fashion as d&. Here the energy

where P ' excludes m=k. By Lemma 1, therefore, we matrix EI„& given by Eq. (38) will be considered since
obtain that EI, can be treated exactly the same as E«.

Following the definition of S[k~kz k„lh~hz h ]
d[kl[kl]p=d[k[k]p —Q '

(mll&d[kmlkl]p, (58) and 4'[kz(hz)kz(hz) ' k„(h )] as given by Eqs. (39)
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and (40), the expression (38) is written as

EAyhn EAgh2 +Ekghs

E@1/lg (h2hg ( X7ll/bn ) h)h2)D S[h2h)
(
hghg]D +Q (hgh3 ( BC@~/~g[ hgh2&(hg ( h3)D S[hjh3k2 (

hgh2h3]D
h3

+2 (h3h2I &~,a, I
hih2&(4 I h3&D 'S[hah2hl

~
hlh2h3]D

E)„)„"——Q" Q"' (hgh3~ se)„)„~hgh2)(h4~ ha)D-~S[hghah4) hgh2h3]D
—l

+Q" Q" (h3hg(BC)„)„)hgh2)(h4(hg)D '*S[h3hgh4)hgh2h8]D i

+Q Q (h3h2
) KQg@g [ hgh2&(h4 ] h3&D S[h3h2h4

(
h)h2h3]D

h3 h4

+2 2 (h~hal &hy&a)h1h2)(h4~h3)D *S[h2h3h4lhlh2ha]D *

+p" p"' g"g"' (hah4
~
x)„)„)h) h, & (hgh6 ) hah4)D lS[hah—4hshg

~
h) h2h3h4]D

h3 h4 h5 h6

(66)

where the summations P)„"and P)„'"exclude h3 ——h),
h2 and h4

——h), h2, h3, respectively, Q),," and P)„'" ex-

clude h~=h3, h4 and h~
——h3, h4, hs, while P)„"excludes

h) and h3 (or h2 and h~).
H we expand the energy expression Eh, h, in terms of

U(P) and take a summation over h) and h2, we will

obtain the desired expression for Jp as a sum of prod-
ucts of exchange integrals (knz~3C), ~~ht& and d) . Before
that, it is convenient to consider the expansion term

by term.
Let us first consider the matrix D 'S[tk~kt]D —l

According to the definition, we find that

unity. The results (A11), (A20), (A21), and Eqs. (60)
(63) together with Schwarz's inequality can be applied
to Eq. (70), and it will be found that

A) —(3M . ) ~B) &~ d[tk
~
kt](),)) &~ B)+(335~.x) ~By. (71)

Similarly, the following relation will be obtained from

Eq. (69) when PW(kl):

(d[tk(kt]~l ~&4(B1 Al)+(3~-a-)'B) (72)

where

S[tk ikl]=- U(kt)S[kt
~

kl]. (67)

Also we shall expand the expression D lU(R)Dl, as
follows:

D 'U(R)D'= {1+// a(R)/U(P)) U(R). (68)

By using the above relations together with the expan-
sions (45) (47), therefore, our matrix will be written as

D :S[tk]kl]D-
=D—'U(kt) D-: D-~S[kt

~

kt]D-—:

={1+2 (kt) U(Q))U(kt) {& d[ktlkt] U(0')}
=Q) {d[kl~kt]) ()()+Pq a(kt) qd[kl kl]pq ()/)) U(P).

The matrix D lS[tk~ kl]D l can also be expanded di-

rectly as P~ d[lk~kt]) U(P). Comparison of the two
expansions shows that

d[tk
)
kl]Q —d[kt [ kl]+(I);g)

+Q q a(kt) qd[kl
~

kt]) q-i().i). (69)

In case of P= (kl), this relation becomes

d[tk ikt]&„)——d[kt
~

kt]
+Pq a(kt) qd[kl

~
kt]&k~) q '(y~). (70)

In Appendix C, we shall examine the expansion (68)
and prove that Pp~a(R)~~' is small as compared with

Q g E)„)„——Q Jr U(P).
h1) h2 P

(75)

By using expansions (46) (47), the energy matrix
E)„@,can also be expanded in terms of U(P). Compari-
son of the resulting expansion with Eq. (75) shows that

The other matrices can be handled in the same
manner, and it will be found that

A, —(3M .) lB,~&d[htk
i
hkt] &),i)

~&B2+(3M . )~B2, (73)

id[htkihkt]) i
&~-', (B2—A2)+(3M, )~By,

for PW (kt). (74)
where

A 2
——1—' 6 (1—6)—' —6), (1—6),)

—'(1—6)—'
—g„,(1 t),„,)-) (1—g„)—) (1 g)-~

B2=(1—~~)) '(1—~~) '(1—~) '

Let us now come back to the total energy,

Q Q E~,a.,
h1)hg

and expand it as follows:
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the exchange interaction energy J;; between electrons i and j is given by

J' .. J ..I+J ..II+J . .III

I' =(jil 3('-3lij&dl jilij)(')+2 ((jhl 3('-'3lih&(il j&+(ihl 3(-'1'I jh&(jli&) dLjihlijh)('I)

J,,"=-,'P' P" (hihil3C3433lhih3&dLh3hilhih3)(;;)+Q' P"g"' (hih3I X)4)4lhih3)(hilh2)dl h3hih3I hlh2h3)(ij)
hl h2 A1 A2 A3 (76)

J,,'"=P P P"Q " (hih,
I 3eg„y„l hih3)(h4I h3)dLhih3h4I hih, h37(;;)

A1 A2 A3 A4

+2 2' 2"2"' (h3hil 3('~ i. I hih3)(h4l h3&dLh3»h4l hihih37('))
A1 A2 A3 A4

+-', Q Q' Q" Q'" Q"Q"' (h3h4I 3C33, I hih3)(h3h() I
h3h4)d(h3h4h3h() I hih3h3h47(, ;),

h1 h2 h3 A4 hg hg

where P)„'P)„"in J;,"excludes hi, h3= i,j and j, i as
well as h~= h2.

By applying relations (70) (73), we find that

(jil3(.„l'j)l ~,—(m, )-:B,)
+&." I:(jh 13(".Iih)(il j&+(ih I3("I jh&(jl i&)

XI A3 —(3M .)~837

~~~'4 ~«jil3("ilij»IC1+ (3~--)')
+Z. L(jhl3e'3 lih&(il j&+(ihl3(' 3l jh&(jli)7

Xa, l 1+(m, )-:7. (77)

The second term J;,' is a small correction term to

J; . This will be seen if we consider a perfect crystal.

Here we assume that there are S permutations T of

electrons, which are also elements of the translation

group of the crystal. As we shall discuss later in detail

and will give in Eqs. (91) and (92), the summation over

lattice points h~ in J@ ' can be replaced by the summa-

tion over translation T such that

~' "=l &' (h il3t'3lih &
2" dl h ilih3)r('I)'-+2' 2" (h h3l 3("3lih3&(ilh &

2"dLh»h3lih3h3)r(';»-, (78)
h2 h3

where P)„' and P)3" exclude h3=i and h3 i, h3,
——

while PI" excludes T=E, when h3 ——j, and T, which
shifts i andj to k andi, when h3=k. By T(ij)T, (ij)
iS Shifted tO (iij&).

Here the summations QI" dLh»lih3)r(, ;)I-~ and

notice that
dLh

I k)()m) =dLk
I k) () ) ) ()~)

Furthermore, we are able to show that

dLklk)(k~)(i-) =dLklk)(»). dLklk)(i-), (81)

p,"dth»h3lih3h3)I (;;)r as long as neither k or h is equal to l or m. Since both
dLk

I
k)(),z) and dLk

I k)«) are bounded as given by Eq.
(56) and smaller than 1 when A(1, the above two
relations lead to

converge rapidly, since dLhil ihjr(;;)I-~ decreases pro-
portionally to exp( —R), when the distance R between
ih and T(ij)T increases. This will be explained as fol-
lows. For simplicity, we shall show that dLkl k)(i~) de-
creases proportionally to exp( —R), where R is the dis-
tance between k and m. The extension to dLijlij)() &

or d(ji I ij)()~) is trivial.
Let us consider the expansion

I dl:k I k)(-)I& I dLhl k)(-) I

Therefore, we obtain that

I dLk
I
k)()-)+Z~" (hl k&dChl k)(i-) I

& (1—6) ldLklk)(i„) I.

e of this result in Eq. (80) gives us the relation

il k)
I I dD I k)(i-) I+1(ml k&

I I dLml k)(i-) I

& (1—~) I dCk
I k)(I-) I

1=D :DD-:=D :SPIk)D-:-— Us

+P),' (hlk)D-~SI hlk)D-l I(
ZP dLkl k)PU(+)+Z)4 (hl k) EP dLhl k)PU(+)

(79) or
By taking the term I'= (lm), we find that

dLklk7(i-) = —E3'(hlk&dLhlk)((-)
= —(l I k&dD I k)() )

—(m I k)dl ™
I
k7(I

-P,"'
(hlk&dI hlk)(,„), (80)

where P),"' excludes h=k, l and m. From Eq (67), we.

IdLklk)(i-) I &~(1—~) 3{l(ilk&l+ l(mlk&l).

This shows that dI k
I k)(i ) should decrease proportion-

ally to exp( —R), when the distance R between k and
i, m increases, since the overlap integrals

(tlat)

and

(mls) decrease as exp( —R). This will be true if Eq.
(81) is valid.
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d[k [k](„)= —(hk [kh), (83)
and also

d[k[k]((,»($ ) = —(hk[kh)d[kh[kh](( ). (84)

On the other hand, D lS[k[k7D l will be expanded as

D—:S[k[k]D—:=D-:S[kh[kh]D--:

+Q (l[h)D ~S[kl[kh]D l.

Here, the main pa, rt of the second term is Pi (I [h) U(hl)
and this will not give appreciable contribution to
d[k[k](& ). Therefore,

dD [k](,.) =d[kh [kh7(,„). (85)

The relations (83) (85) justify Eq. (81).
This proves that the second term J,;"of the exchange

interaction should also be bounded. The first term of
J "is less than

The relation (81) will be justified as follows. By using
the expansion (79), D *'S[k [k]D l is written as

D-'S[k[k]D l=1—P& (h[k)D *'SD [k]D '

=1—P, (hk[kh)D —:S[hk[kh]D—:

pi (M[kh)D ~S[h/[kh]. 0:.
Because of the relations (68) and (A20), it is evident
that the main contribution to d[k[k](),i) comes from
the term

-(hk [kh)D-~S[hk [kh]D—:
= —(hk[kh)D 'U(kh)D'D 'S[kh[kh]D '.

Since D 'U(kh)D l= U(kh) and d[kh[kh]g=1, we find
that

should be bounded as shown by Eqs. (77) and (86) and
the subsequent text, when A(1.Those arguments show
that exact values of J;; shouM not be so different from
values obtained by omitting higher permutations as
long as 6 is small as compared with unity. In addition,
it has been shown that Jp for higher perrnutations I'
is smaller than J;; by a factor A. The foregoing argu-
rnents disprove the nonorthogonality catastrophe. Al-
though we have not given explicit calculations in cases
where A~&1, it is evident from the discussion in Sec.
III.2, that d p can be bounded similar to Eqs. (54) (57)
and (60) (63). The exchange interaction energy J)
will be calculated similarly, and higher permutations
and exchange interaction energy between distant elec-
trons will vanish. However, effects from second- and
third-nearest neighbor atoms will not be negligible when
6 is not small as compared with unity. The exist-
ence of antiferromagnetic substances such as MnO
indicates this possibility. We shall discuss such a case
in a future communication,

Finally, we shall show that the total energy calcu-
lated is proportional to the number g of electrons in
crystals regardless of whether we use the energy ex-
pansion (3), the effective Hamiltonian (4), or the
Heisenberg spin Hamiltonian (2). This assures tha, t the
use of the Heisenberg approximation as well as the
existence of the expansion proposed here is really
justified.

We define the energy E(i) attributed to the ith elec-
tron by

E(')=P J U(R)=P P J U(R ), (87)
z ~g ~ ~mMg

—,
' g' (hei [x,7„[ih )(Bi—Ai)

+-,' Q' p' (h2h3[X, ;)„,[ih3)(i [h2)(82—A2), (86)

and the higher terms will decrease proportionally to
exp( —R). From this proof, it is clear that the argu-
ments remain correct even if the crystal is not perfect.

The third term J,,'" is a contribution from EQI$2 '.
It is possible to bound Jzj like J,;", although the
expression will become very complicated. Without carry-
ing out the direct method, however, it is easily seen
that J,,'" is small for the following reasons. First,
E&,&,

" is smaller than E&,&, by a factor A. Secondly,
the main part of EA, y„" belongs to the three electron
exchange interaction terms J(,;)(;» U((ij)(jk)). The
difference between E~,y„" and the three electron ex-
change interaction terms will be found to be small,
while the main part J('j) (jl,) of the three electron ex-
change terms can be calculated in a similar way as J;;r.

Up to this moment, we have shown that the energy
matrix E can be expanded as Pz JzU(P) and that the
terms J;; for permutations of single pairs (ij) are
equivalent to the Heisenberg exchange terms. Further-
more, J;; can be given by Eq. (76) and the values

where the summation P)i includes all permutations
which shift electron i from orbital P; to other orbitals.
Furthermore, we classify the permutations as follows.
By R~, we consider all possible permutations of M&
electrons by which orbitals f;, f,„f;„., P;~ are re-
placed by P;, P;„,P,~ such that f,WP; and P;,AP, ,
for 4=2, 3, , M, while the rest of the electrons are
not permuted. The fact 1/Mz must be inserted in Eq.
(87) since the same permutation will be taken into
account M)i times when we consider E(i),) for k=2,
3, ~ ., M.

For simplicity, we shall consider E(i) in a perfect
crystal and show that E(i) is finite and the total energy
of the crystal is given by NE(i). Furthermore, it will
be shown that the main part of E(i) is described by
-,'P J;,U(ij). This indicates that the exchange inter-
actions between two electrons are indeed dominant as
compared with the effect of simultaneous permutations
of more than two electrons as long as overlap integrals
are small; and the expansion (4) or (33) converges
rapidly in many-electron systems. The perfect crystal
here means that there exist E permutations T of elec-
trons, which are at the same time elements of the
translation group of the crystal. By applying T to P,
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electrons 1, 2, , X are shifted to orbitals Pr„fr„~,Pr„, but fr„Pr„. , Pr~ are equivalent to
, f~ in the following sense:

Pr,*fr,.dr =. P;*f,dr, (88)

for any pair ofi and j.
Let us consider the summation

From the results given by Eqs. (60)—(63), it is evident
that F(i) converges and is not very different from

2 P/ J,,U(ij), if 6 is small as compared with unity.
Since 1V! permuta, tions P can be divided as (1/Mzz)
XTRT ', Eq. (89) is written as

F(z) =P P Jrzzr '(i) U(TRT ),
a r~g

where

J»r '(z) =g' &' &' &&i&zl&'~. lzlz, &

F(z) =Q' E;a,=P' P' P' &kikz
I
X,g, I

zh, )
Ag h2 k] k2

X& dL&i&z
I z&z]~U(P) (8»)

is small, the Hamiltonian becomes equivalent to the
Heisenberg spin operator. If not, we may need more
terms and the Heisenberg model will become somewhat
less accurate, but it will still be possible to obtain a
satisfactory solution by the use of the effective Hamil-
tonian (4).
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APPENDIX A

Here we shall show that all the energy integrals H~
defined by Eq. (22) are bounded. For simplicity, we
assume the one particle approxima, tion where P is
given by Eq. (11) and we write P as

0(1,2, ») =A(1)A(2) . . 4~@').

The following proof will be easily extended to the more
general case where f is given by Eq. (12) as long as f is
normalized.

By the definition of Eo, it is found that
h2 ki

XdPi&z
I zhz]r+r ~ (91) 11~=0,

Jr~r (z) =J~(T, '), -

where electron i is shifted to Ti ' by translation T.
Therefore, we And that

(92)Qr Jrzr (z)=Jr Jz(T;-')=JIz,
and the invariant part of F(i) is written as

F(i)=P JgU(R),
z ~g

and, in the summation Pr, only independent elements
TET ' are taken. Since T;Tj= TjT;, the representation
matrices U(T) of T are constant, U(T) of a~ can be
written as U(Q) given by Eq. (AS)."Because of the
symmetry relation (88), it is also evident that

JJ(1,2 "M) 2 &P, I ~(z)
I z& II &P. I &&

k=1
(k Qi)

+lZ 2 &PP;Il", I j) II &P
I ), (A2)

where

i=1 j=1
(j W1)

k=1
(k &i orj)

IJ(») = &2 I~(1) I1&&1 I 2&+(1I~(2) I 2&(211&

+(21I Vizl 12), (A1)

where (12) is the permutation of orbitals 1 and 2. The
definition of the other notations will be found in Eq.
(A3). In general, we denote by (1,2, ,M) the permu-
tation of 3f electrons, by which orbitals 1, 2, , M
are replaced by I'1, I'2, , I'~, respectively, such that
P;4i for z= 1, 2, , M, while electrons M+1, , X
are not permuted. Then we find that

which is equivalent to the expression (87). This proves
that E(i) is finite and not far different from —,

' P, ' J;,
X U(ij). From Eq. (88), it is also clear that E(i) is
independent of i and the total energy is given by ÃE(i).
If we apply a similar technique to the second part
Ez,z,

ii of the energy matrix (66), it will be easily proved
that the contribution from Ez,q,

" to E(i) is really a
small fraction, 6XE(z) .

In conclusion, use of the effective spin Hamiltonian
(4) is practical since the series converges rapidly. If 6

K'(i) =Ko(i) —(zlKO(z) Ii&,

~A
Ko(i) = —e' p —,

2m

and

e 1
Vj=——e' ij —ij

rij rij

&P'I~(z)lz)=&P'I~'(z&lz&+ & &P'~II"~lz~&,

(A3)

"Here we have applied the same argument as the one used in
Appendix B. Since the first gXg parts and the diagonal elements
of P(i) and E(i) can have nonvanishing elements and the rest of
them vanish identically.

j i
1

P;P; —zj = Pp, *(i)P~,*(j) P, (z)P; (j )dr. . . —
rij rij
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Here (P;P, ! V;,
~

ij) decreases in proportion to e ~ when
the distance E. between the centers of the electrons i
and j increases, while the number of electrons j local-
ized between the distances R and R+AR from the center
electron i will be proportional to R'. This means that
both (P, ~K(i)

~
i) and

Z (P,P, II;;IV)
i=i (i&~)

should converge to finite values even if X—+ ~. Ke
shall denote the maximum value by I. The overlap in-
tegrals (k

~
1) are smaller than 1, since the atomicorbitals

are normalized. tA"e denote the maximum value by S.
From Eq. (A2), therefore, we find tha, t

H(],g. ..&&r& ~&{H(i 2...&&r& }~,~= lrII(S+ 2)S

and also

{H(i,2" m+i&}m~~ l!d+1
S, S(1.

{H(1,2" jf& }max

For M=2, H(i2& is clearly finite as shown in Eq. (A1).
Since S=0.1 0.2, the maximum value of H~ for M) 2
decreases rapidly and vanishes in practice. This proves
that all the energy integrals H~ are bounded.

APPENDIX B

In this Appendix, we shall show that, even if T!
functions PP are not linearly independent, D ' and the
expansion (3) or (28) exist and therefore assumption
(c) used in Sec. II is not necessary. For simplicity, we
consider the case where f(1,2 .Ã) is symmetric with
respect to exchange of two electrons in r pairs (1,2),
(3,4), , (2r —1, 2r).

Ke denote by h the subgroup of o-&, consisting of 2"
elements

Q= (1,2)"'(3 4)"' (2r —1, 2r) i",

where A. ~, ) 2, - ., X, can take the value 0 and 1 inde-
pendently of other X's. Then

If we select s=lV!/2" elements Ri, R2, , R, of the
X! elements of 0.» in such a way that R„'R„gh for
any pair of E„and E„all Ã! elements of o-& can be
obtained in the form RQ where Qgh. We assume that
all the S functions R&&! are linearly independent. The
overlap matrix D will then be given by

D=gg Pq SgqU(RQ)=K~ +q SgU(RQ), (A4)

because

Sgq —— R@*gdr= Rf*fdr=Sz.

are either (1) or (—1). Then it is possible to make the
matrices of the representation Z)s of 0.~ in such a way
that the matrices for elements of the subgroup h appear
in diagonal form:

U~&, (Q) = ah~&, for Qgls.

Here we shall number the rows and columns of the
matrices such that the first g diagonal elements are +1
for all the 2" matrices U(Q).

U&.i(Q) =1, 1&~k~&g, QEh (AS)

while the other diagonal elements U&, &, (Q), g&k&~fs
take the value —1 for at least one of the elements Q.

Lemma 5. The 6rst g members of 4 with given S are
linearly independent and the rest of them vanish
identically.

To prove this lemma, we shall consider a possible
linear combination among C (m=1, 2, , g):

O=g C„C„.

Since the spin functions O~ are linearly independent,
we find that

O=Z-Z C-U -(P)*Pa
=Zz {Z-Zq C-U~-(RQ)*}R0.

As the s functions R&&! are assumed to be linearly inde-

pendent, the coe%cients must vanish;

O=Z Eq C-U~-(RQ)*,

where Ui (RQ)"= Ui (R)* because of the structure
of U(Q) given by Eq. (A5). Therefore the relation

O=Q C U&, (R)*

holds for all S!permutations of tT&. Multiplying this
by Uq„(P) and summing over P, we obtain

0=Q C„Qp U& „(P)Uk„(P)*

=Q„C„{()V!/fs")(&„„} for n 1, 2, =, g.

This implies that C =0, for m=1, 2, ~, g, and the g
functions C (m= 1, 2, , g) are linearly independent.

If m)g, there exists at least one Qo of h for which
U&, &, (QO) = —1.Then we find that

C = P 0& P U& (P)*PP
4P' ) ~

Z 8, Z —;{V..(P)*PO+U..(PQ.)*PQ.~},
g(Q!)

=0
)

since U&, (PQO)*=+,. U&„(P)*U, (Qo)*= —Ui (P)*.

Since Q;Q;=Q;Q; and Q'=E, all the irreducible repre- From Lemma 5, it is evident that with the exception
sentations of h are one-dimensional and the matrices of the first g)&g part, all the elements of D vanish. It is
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X(R)=E S 'U-(P) Z—S U(P)

still possible to assume that, since Dt=D, D is diagonal. The matrix X(R) is then written as
As g functions C; (i=1, 2, ~ ~, g) are linearly inde-
pendent, there exists an c such that

D,;~& e&0, for i=1, 2, , g,
(Sii op ri Sq—p )U(QP )

while

D;,=0, fol zW g. =P"&ml h&SP ml h/5 —2"&ml/&SU ml h/5

'We define D 'as th—e diagonal matrix, in which the first

g elements are given by D,; ' (i =1, 2, , g), respec-
tively, and the rest of the elements vanish.

If we assume that D ' can be expanded as

D =Z. T.U(P)=Z. Zo T.oU(RQ),

+g" &k~/&SP/[h/5„-P- &k~ h&SP/~ h/5

+P"P"' (km
~
/h)SLkm

~
hl5„,

—g"P"' (km~ ht&SPm
~
at),

then we find that Tp@=T~ for all 2" permutations Q,
since the first gXg parts of U(RQ) are invariant with
respect to Q while the rest of the matrices vanish. The
coeKcients Tg should satisfy the relation

Pii TpSp ~ii =8zp for R'=1, 2, , s, (A6)

where P' is an abbreviation of P(km+ —hl) and both
Pi," and P " exclude h and /, while P " excludes h,
l, and k. In Sfkm~h/5i, i, orbitals fi, and Pi are inter-
changed. Since the overlap matrices S can be expanded
such that

+P"P" (kt ~/k&D-'*Sgktt
~
hlk5. ,D-'*

XD '*SLkmtr
~
htkm5i, iD—'*

g" (ml h)S(km
I
h/5ai= P"P" &mr

I
km&SLhmr

instead of Eq. (25). Here s functions Rf are assumed to m na r

be linearly independent and the gXg determinant ~S~
does not vanish. Therefore, we find that T~ are all
bounded and determined uniquely, by Eq. (A6). M=D-&X(R)D-&

Likewise, D l can be expanded in terms of U(P) and
therefore J can be calculated uniquely, as we have =P"P"&mr~km&D 'Sthmr~htm5i, iD '*

proved in Sec. II.
In case P(1,2, ,Ã) is antisymmetric with respect

to the permutations Q, the diagonal elements of the
invariant parts of the matrices U(Q), from which the
nonvanishing wave functions are made up, have the

P"P"P"P"' (kmtr
~
/hkm)

value —1. The more general case can also be treated in
a similar way.

APPENDIX C

The expansion of D *'U(R)Dl given by Eq. (68) will
be the subject of this Appendix. I irst, we consider a
commutation relation between D and U(R). Since D is
expanded in terms of U(P) as shown in Eq. (23), we
And that

U(R)D=+p SpU(PR) =Qp SpU(R 'PR) U(R).

Sy introducing the notation

X(R)=ppSpU(R 'PR) D—

—P"Q" (mr
~

tm&D-:SPmr
~

htm5D-&

—g"P" &kt [
hk&D-:SLktt [htk5D-~

—Q"P"g"P"' (kmtr
~
hlkm)

XD &S(kmtr
~

htkm5D-l. (AS)

Ke shall evaluate the maximum values of the di-
agonal elements of matrices such as

D-&Sfhmr
~

htm5D-1= (I /hmr5D tt) t(C Phtm5D-') dr.

the commutation relation is written as

U(R)D= (D+X(R))U(R).

The matrix X(R) for any permutation R can be
calculated similar to EI,. As an example, we shall con-
sider the case where R= (h/). The 1V! permutations P
are divided as follows.

P =Q/h/5Pfkm5. -

By applying Lemma 2 and the Schwarz inequality rela-
tion, we obtain the following equation:

~

(D-~SLkikg .k„~ ki'k2' .k„'5D '),,!—
~&(D lSLkik2 k~~kik2 k„5D t),,*'

X{D--'S[k,'k, ' k„~k, 'k, ' "k„'5D—:),,-'*

(A9)

where by (X);; we denote the ii element of matrix X
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'r„„„&(1—a)--'

~max~& ( 4ax) (1 ~hiha "h„y) (A10)

and by "t the maximum value of the diagonal ele-
rnents of D 'S[kik2 .kalkik2 ka]D l for arbitrary
kik2 k„. Since Eq. (A9) is similar to Eqs. (48) and

(50), the discussion in Sec. III.2 can be applied to the
present case and we find that "t, = "1 „.This means
that

The lower bound of E;; is obtained as follows. From
the definition of M and Eq. (A7),

M=D lU(—R)DU(R) tD a 1—. —
The ii element is given by

M, ,=kohl U,hl'(DhhD, ,: '—1)
=Ph I

U;h I'(D, lD;,-l- —1)(D„lD,,—*'+1).

where Dh, h, ."h„,=Xi~" "l(~lha)l and the summation
'& excludes 3=hih2 .ha i.

Similarly,

N, ,=+hi U,hl'(Dhh'D;, *' —1).

U(R)Dl = [Dl+ Y(R)3U(R). (A13)

By using the matrix Y(R), D '*U(R)Dl is written as

D *'U(R)Da=—[1+D l Y( R)]U( R).

Comparing the relation with Eq. (68), we find that

N=D *Y(R)=+p a(R)pU(P).

We shall prove in the following that Ppla(R)pl' is
smaller than 335,„and therefore the dominant term
in D lU(R)D' is U—(R).

From Eqs. (A7) and (13), we obtain that

From Eqs. (A8) (A10), we obtain that

M, &&2hh'(1 —6h)
—'(1—6) '+25P(1—

ihip')
—'(1—A)

—'
+22Phihh(1 —3,) 4, (A11)

where M, is the maximum value of the diagonal ele-
ments

I
M;; I, that is,

(A12)

Now we shall consider a commutation relation be-
tween D*' and U(R). Let us write the relation as

+m in + ~max. y (A19)

since 1 &DhhiD, :+1& 2.
From Eqs. (A15), (A16), and (A19), the following

relation is found:

Let us assume that X;, is the minimum of the diagonal
elements X;; and D~~ the maximum of D;;. Ke denote
S'&& and D~~ by dmin and Dmax Then

=N;; ~&+hi U, hI2(Dhh **D *' -1), —(—A17)

since (Dhh'D, ' —1)&~(Dhh*'D;, '* 1). We —also find
that

—M-~& &hl Uihl (D»'D-: ' —1)(D»'D-='+ 1).

From the de6nition of M, given by Eq. (A11), it is
evident that the above relation is valid regardless of
the structure of the representation matrix U. This
means that this relation is valid, even if we interchange
the jth and /th rows of V. Then it follows that

—M . &~Zhl U, hl'(Dhh'*D-
*—1)

X (Dhh*'D l+1). (A18)

Comparing Eq. (A18) with Eq. (A17), we find that

Z„IN;hl'=3II;, —2N;, &&3M .„.D+X(R)= [D'+ Y (R)$[D'+ Y (R) tj,
or, by the use of M and X, it can be written as

1+M= (1+N) (1+Nt),

since Y(R)i= Y(R). By taking the ii element of the
matrix equation (A14), we find that

M„=2N, ,+P&IN, I', (A15)
and also,

By applying Lemma 3, therefore, we obtain that

(A14) Zp I ih(R) p I'=&.2- 2h(f./N ') IN-" I'

&2, Z-(f,/N') 3M-.*
Since P, P (f~/N!) = 1, we find the relation

+pl a(R)pl'&3M, , (A20)

where S;;*=X,;. This means that

M ~& 2E;;, for any i.
I ~(R)~l &~(3M--)',

(A16) where M,„is given by Eq. (A11).

(A21)


