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By the use of representation matrices U (P) of the permutation group, the energy matrix of many-electron
systems has been expanded such that E=2p Jp{ (P), and it has been proved that all the coefficients Jp
are bounded and determined uniquely. This means that the expansion is mathematically valid even though
nonorthogonal orbitals are used and no matter how large the overlaps between the orbitals are. F urthermore,
it has been shown that the nonorthogonality catastrophe which was pointed out by Inglis and Slater does not
appear and values of the coefficients can be evaluated correctly even if higher permutations are omitted.
Then we find the Heisenberg spin operator as the first-order approximation of the expansion.

L. INTRODUCTION

ESPITE the success of qualitative features of the
Heitler-London and Heisenberg methods in un-
derstanding important concepts in the theory of ferro-
and antiferromagnetism, the mathematical basis of the
methods has not been established rigorously. Instead,
they are rather regarded as a model which is not ob-
tainable from the first principles of quantum mechanics.
According to Slater,! the methods are, by their nature,
incapable of being rigorously applied to many-electron
systems for the following two reasons: First, use of
nonorthogonal orbitals gives divergence in both the
energy matrix /' ®*30®dr and the overlap S ®*®dr
when the number V of electrons increases infinitely, so
that the energy value E obtained correctly by

o / B*5ebdr / / ®bdr 1)

can be quite different from one calculated by neglecting
the higher permutations. This implies that the usual
derivation of the effective spin Hamiltonian,

o=—23 JiuS:S;, (2)

i>7

is by no means justified.? Here .S; is the spin angular
momentum vector of electrons in atom %, and J;; is the
exchange integral connecting atoms 7 and 7. Secondly,
use of orthogonal orbitals gives always positive exchange
integrals J;; and therefore cannot explain the existence
of antiferromagnetic substances, although, because of
the orthogonality of orbitals, it is possible to obtain
the spin Hamiltonian (2) correctly.

Recently, Mizuno and Izuyama? have given a rigorous
mathematical proof that the nonorthogonality catas-
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trophe does not appear in the manner Inglist pointed
out; actually, the numerator and denominator of the
energy expression (1) can be factored exactly but in
somewhat complicated fashion. By the use of Schwarz’s
inequality relation, they have shown that these factors
can be left out, but instead each term in the energy ex-
pression (1) should be bounded. After evaluating the
boundary conditions, they found that the exact values
cannot be so different from values obtained by neglect-
ing overlap integrals as long as overlaps between nearest
neighbor atoms are not so large.

This result may give some justification to recent
calculations® on the superexchange interaction, where a
small number of electrons, say 4 electrons, is taken out
of a crystal and the interaction between them is calcu-
lated correctly, while a part of the energy, which is
proportional to S;S;, is defined as the exchange inter-
action Jy;. There it was not assumed a priori that the
exchange interaction could be described by the Heisen-
berg spin operator, but the energy expression (1) was
reduced to the form (2).

It is still not possible to see, however, that the energy
expression can be described in the form (2). In the 4-
electron system, two of them are coupled to each other
and therefore the system is essentially a two-spin sys-
tem and the energy could be written as the quadratic
form S;S; with respect to spin angular momentum
vectors. In many-electron systems, we should expect
higher terms as long as nonorthogonal orbitals are used
as basis. Then the question arises whether such an ex-
pansion really exists in many-electron systems and also
whether the series converges quickly so that the form
(2) can be a good approximation.

By the use of representation matrices U(P) of the
permutation group,® in Sec. II, we shall expand the

4D. R. Inglis, Phys. Rev. 46, 135 (1934). The same difficulty
l(lia,d (})))een pointed out earlier by J. C. Slater, Phys. Rev. 35, 509
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730 (1959); F. Keffer and T\ Oguchi, dbid. 115, 1428 (1959);
J. Kondo, Progr. Theoret. Phys. (Kyoto) 22, 41, 819 (1959).

6 Use of representation matrices of the permutation group in
the energy calculation has been introduced by R. Serber, Phys.
Rev. 45, 461 (1934); T. Yamanouchi, Proc. Phys. Math. Soc.
Japan 18, 623 (1936); 20, 547 (1938). The method is also reviewed
by M. Kotani et al., Table of Molecular Integrals (Maruzen Com-
pany, Ltd., Tokyo, 1955), Chap. I.
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energy expression (1) of IV electrons such that
E=3p JpU(P), Q)

where P is a permutation operator of electronic co-
ordinates and the summation 3} p includes all N! dif-
ferent permutations P. Then we shall show that the
effective spin Hamiltonian 3Ce: is given by

Fess=2_p(—1)PT p-1P, 4)

where P° permute the spin coordinates. The expression
(4) is rigorous under the following assumption: Since
we are interested in spin-degenerate states only, all the
states have a common electronic configuration and the
spatial parts of the wave functions are all common and
there will not be any difference from state to state. Only
differences in the wave functions occur in the spin parts.
The main task in Sec. II is to show that all the coeffi-
cients Jp exist and are determined uniquely even if the
number N of electrons becomes infinite. This means
that the expansion (4) is mathematically valid.

Furthermore, in Sec. III, we shall show that the
nonorthogonality catastrophe does not appear and that
values of the coefficients Jp are bounded and can be
evaluated even if we omit the higher permutations.
Then we will find that the Heitler-London and Heisen-
berg methods are reliable even though truncation is
inevitable and that the Heisenberg spin Hamiltonian
will be suitable as the first-order approximation of the
effective Hamiltonian.

II. EFFECTIVE HAMILTONIAN FOR
MANY-SPIN SYSTEM

In the first paragraph of this section, we shall
explain the representation of wave functions as used
here. From the orthogonality relation of representation
matrices, we further derive and prove Lemma 1, which
is essential for the expansion of the energy matrix. In
the second paragraph, the energy expression will be
expanded in terms of representation matrices as it will
appear in Eq. (28). Then it will be proved that the ex-
pansion is really valid, since the coefficients Jp exist
and are determined uniquely. This eliminates the non-
orthogonality catastrophe in its most literal interpreta-
tion. It is claimed that, in the Heitler-London and
Heisenberg methods, there is no other expansion than
the obvious one which is expressed schematically as
Ey— o+ o— o, In the new expansion (28), however,
all terms involved are bounded.

In thelast paragraph, it will be shown that the energy
expansion can be written in the form of an effective
Hamiltonian which will appear in Eq. (33). This means
that the problem of many-electron systems is converted
to that of many spins. Since the first two terms of the
effective Hamiltonian are equivalent to the Heisenberg
spin Hamiltonian, the Heisenberg model will not be in
conflict with the first principles. Furthermore, we shall
show that each term in the effective Hamiltonian is
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Hermitian and therefore the expansion is physically
sound.

1. Representation of Wave Functions

We shall consider a crystal which consists of N’
atoms and N electrons. For the moment, we assume
only Coulomb interaction between electrons and nuclei.
The Hamiltonian is therefore given by

N N’ N
=2 (P2m)—e* Y. 3 (Za/ras)

i=1 A=1 i=1

N -1

+et 2 2 1ry, (5)

=2 j=1

where P2=—7#?V 2, m is the mass of an electron, 74; is
the distance between electron ¢ and nucleus A with
nuclear charge Z4, and 7;; is the distance between the
electrons ¢ and j.

Since 3C does not involve spin operators, the spin
angular momentum operator .S? and its component .Sz of
N electrons commute with 3C, so that eigenfunctions of
3¢ are simultaneously eigenfunctions of S? and Sz and
are classified by the spin angular quantum numbers .S
and M. This implies that eigenfunctions of 3¢ which
pertain to particular values of S and M are written as’

P=0¥, ¥= 2 U(P)*PY, (6)

vV (V)
where O is the row matrix (04,0,,---,0;), which con-
sists of fg linearly independent and orthonormal eigen-
functions of S? and Sz with the specified values of S
and M, and

fs= (%NA:S) B (%N—Z\;— 1)'

U(P) is the fXf irreducible representation matrix for
the permutation P of electronic coordinates, whiley is a
function of space coordinates of V electrons. The sum-
mation ) p covers all V! different permutations P.
Therefore, it is evident that ¥ is a X f matrix, and ® a
row matrix with f elements. A set of the V! different
permutations forms a group. We denote the group by
oN.
The representation matrix U (P) is defined by

PO=(—1)POU(P)*, O
where P’ is the operator, which transforms spin co-
ordinates 1,2, ---, N of ® into 1,2/, ---, N’, while P
changes space coordinates 1,2, ---;N of ¥ into

1,2/, -+, N'. As long as f functions ©; are normalized,
U (P) is unitary and given by

U(P)*= (~1)P/®TP”®do-. (8)

7 The detailed description of the method will be found in
Kotani’s book (see reference 6).
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If Peon and Qeoy, then we find that
R=PQeoy. 9)
By Eq. (7), therefore, we obtain that
UP)YU(Q)=U(PQ)=U(R). (10)

If, for example, the one-particle approximation is
applied, the spatial function ¢ may be written as a
product of NV atomic orbitals which are not orthogonal
to each other:

v(1,2, - N)=¢1u(1)Y12(2) - - Yar(wa)Pas(xat1)
s Yan(@atha—1)- - Yun(V), (11)

where Y41, Y4, - -+, Y45 are atomic orbitals localized at
the atom 4. We shall denote by %4 the number of elec-
trons localized at the atom 4. Then

N
N=3 ha.

A=1

However, we want to make clear that the following
arguments are more general and entirely free from the
choice of the function . Even an exact eigenfunction of
3JC can be written in the form (6), and the proof concern-
ing the existence of the expansion (3) is correct. But
in order to make the expansion physically sensible, we
have to make certain assumptions.

(a) We assume that in ¢, each electron is localized
at a particular atom, since the exchange interaction is
a quantity characteristic to the Heitler-London scheme.
If ¢ is expanded in terms of atomic orbitals, therefore,
¢ will be written such that
Y=

Z 4 (nnﬂlz' ©NAR A" TR)
niini2---

Kny (Va2 (2) -+ - Yngy (w4)
XKnas(@at1) - Ay, (V), (12)

where Yn Way,' * *¥ay, are atomic orbitals centered at
the atom A. In ¢, the probability of identifying the
electrons x4, x4+1, - -+, x4+4—1 as the atomic orbi-
tals Y4 as: + - a5 will be dominant.?

(b) We assume that the essential approximation we
have to make is that the space parts y of the wave func-
tions are the same for all the spin degenerate states we
are interested in.

(c) Furthermore, we assume, for the moment, that
the V! functions Py obtained by operating NV ! different
permutations P are linearly independent. Later in this
section, however, we shall remove this restriction and
show that the following arguments are applicable even
if ¢ has symmetry.

It is easily shown that spatial functions y are common
to 2541 magnetic substates (M=S,S—1, ---, —S)
for a state with given S and that representations for

8 Existence of such function in an exact eigenfunction of 3C

%?Sé?)e)en discussed by the author in Revs. Modern Phys. 32, 370
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those 251 states are equivalent. Therefore, assump-
tion (b) is rigorous for those cases. If spin-degenerate
states belong to different spin quantum numbers .S,
however, the representations are no longer equivalent,
and the spatial functions ¢ are not usually common. We
shall identify the representations by Dg and their
matrices by the superior such that US(P). Assumption
(b) will be a good approximation if differences in the
correlation energies of spin-degenerate states are small.

As long as N! functions Py are linearly independent,
fs functions obtained by Eq. (6) will be linearly inde-
pendent. Since there are (25+41) substates for a state
with given S, the total number of linearly independent
functions obtained by Eq. (6) is > s(2S+1)fs. It is
easily proved that

T s(2541)fs=2V.

Since, in an N-electron system, we find 2¥ linearly
independent spin functions, Eq. (13) shows that all
linearly independent functions for spin-degenerate
states are obtained by Eq. (6).

In general, the representations Og (S=0 or 1, - -,
£N) do not exhaust all irreducible representations of
on. We shall denote ©, when we want to include all
the irreducible representations of ox.? The total number
of D, is equal to the number of classes in oy and we
have the relation

2o fP=NL

Since the representations are irreducible, we have the
following orthogonality relations:

(13)

(14)

(fo/NY) Zp U (P)U i (P71) =85 :8110mn.  (15)
These relations show that the NV IXN ! matrix T,
Totm,p= (fp/N I)%Ukmp(P)y (16)

whose rows are numbered by (pkm) and whose columns
are numbered by P, is unitary.

Now we find the following lemma.

Lemma 1. If we have the relation

2 papUr(P)=0, @7

which is valid for all the irreducible representations D,
of ow, then all the coefficients ¢p must be identically
Z€ero.

By the use of the matrix T, defined by Eq. (16),
Eq. (17) is written as

T'A=0, (18)

9 The rest of the representations D, of e, which are not included
in D, cannot find basic functions in spin space. This is because
we have only a limited number 2% of independent spin functions
at our disposal and in general this number of independent func-
tions is insufficient to form bases for all the irreducible representa-
tions of on. If we use a representation ®, which is different from
Ds, the wave functions defined by Eq. (6) vanish, because the
spin functions which satisfy Eq. (7) vanish. Formally, however,
we can apply the following way of writing to all the representa-
tions D, of oy and we can omit the part which is obtained from the
representations D, not included in Dsg.
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where 4 is a column matrix:

A{Zg}.

By multiplying Eq. (18) by I'f, we find 4=0 because
I' is unitary.

2. Expansion of Energy Matrix

We can assume that the wave functions & given by
Eq. (6) are orthogonal and the fXf overlap matrix
C= S ®'®dr is diagonal. If this is not true, then there
exists a unitary matrix V, with which C can be brought
into diagonal form by the similarity transformation
such that

D=ViCV= / @V)(@V)dr,

since Ct=C. This means that, instead of ®, we can use
the orthogonal functions ®V, which are given by

V= (OV)(VI¥V),
1
VIV =—ou 3 p VIU(P)*V PY.
V(N

This implies that, instead of ©, we should use ©’
=@V as the basis. Therefore, we can write the overlap
matrix as D= f'®®dr, where D is diagonal.

Now we prove that all the diagonal elements are
nonvanishing ; namely, there exists an e such that

D> e>0, fdr i=1,2, - f.

If, for any small number ¢, we find that

(19)

D= /q’i*@id‘r=/l¢'i|2d7<e,

then ®; must vanish. This means that ¥;,=0, for
k=1,2, -+ fsince all the spin functions ©; in Eq. (6)
are linearly independent. Since N! P¥’s are linearly
independent and Eq. (6) is written as

1
0=V;=——> p Uri(P)*Py, (20)
V(N ®)

we find that U;(P)*=0 for all £ and P. This would
imply that the representation is neither unitary nor
irreducible, which is contradictory to the original
method described in Eq. (6).

Since Eq. (19) is valid, D! exists and its elements are
bounded such that

0<Dii1<el< 0, for ¢=1,2,---,f.

Here we can define D—% as the diagonal matrix whose
elements (D~%);; are given by D;; % Then the functions
defined by

PVN=dD,

TADASHI
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are orthonormal, and the energy matrix is given by
E= / (@DHt5e(®DH)dr

= Ey+DHD, (21)

where
H= [@T(R—Eo)@dﬁ

and

Ly= / YrICdr.

The nonorthogonality catastrophe tells us that,
since overlap integrals /" Py*¥dr are generally not zero,
both H and D diverge and the evaluation of E in Eq.
(21) can be illustrated by the calculation of 0X ©X0,
when the number NV becomes infinite. On the other hand,
if we neglect higher permutations, H and D behave as
if they are finite numbers Ho and D,. It is entirely un-
justified to evaluate E by D¢ 3H D¢ %, since the main
contribution H—Hy=  is neglected there.

From Egs. (6), (9), and (10), it is easily shown that

H=Yp HpU(P), Hp= / Py*(3c— Eo)dr, (22)
and

D=Y%pSpU(P), Sp= / Pyydr, (23)

where the summation 2_p is taken over all N! permu-
tations P. Because of the properties of a group and its
representation shown by Egs. (9) and (10), it is possible
to expand D! formally in the following fashion.

D=[3pSpUP)'=2p TpU(P).

We shall show that the expansion exists and the co-
efficients 7'p are uniquely determined.
From Egs. (23) and (24), it is found that

1=D"'D=3p > ¢ TSq»U(P).
By applying Lemma 1,'° we find
ZQ TQ SQ‘1p=5EP, for P= 1, 2, ey N!,

since the representation matrix U(E) of the identity
element I is unit. The expression is written as

TS=3,

where S is a NI XNV ! matrix

(24)

(25)

S= /¢T¢d77

10 Since the equation written above is valid for all the irreducible
representations D, of on, we are able to apply Lemma 1. See the
note in reference 9. The matrices T, S, etc., whose elements are
given by T'p, Sq¢71p, etc., pertain to an N!-dimensional space, be-
cause the number_of independent permutations P or Q is N1
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and 7, 6 and ¢ are the following row matrices:
T= (TPUTsz' o TPN!);
o= (1:0:' : 0))
o= (P, Pap,- - - Pri).

Since St=., it is possible to diagonalize S by a simi-
larity transformation such that

A:VfSV:/(qbV)f(qu)dT.

Since (¢V); is a linear combination of N! Py and is
similar to ¥y, given by Eq. (20), there exists an e such
that

A;i>ex>0, for 1=1,2, .-+ NI

Equation (25) is therefore written as
T'=TV=38VA",
and X | 7;|? is calculated as follows

S| T2 =TTt=T"T"t =6V A2V 5t
=2 V| A2<1/e< .

That is, the coefficients 7 p exist and are always uniquely
determined by Eq. (25) because |S| 0.

Since the expansion (24) of D! exists, D~ is also
written as

—i=3Yp 1pU(P), (26)

where the coefficients /p are determined uniquely.
This is proved as follows. By using a technique similar
to Eq. (25), it is found that {p should satisfy the relation

#="T, (27

where / and 7" are the N!XN! matrices whose QP
elements are given by fg-1p and Tg-1p, respectively.
Since D~# is real and diagonal, we find that ¢t=¢. Then
¢ can be brought into a diagonal form ¢ by a similarity
transformation such that

=Vuv.

Under the same transformation, 7 is also diagonalized
and Eq. (27) is written as

t,t, — T’,

where T'=V1iTV and t;/=+/T:i (or —+/T:). The
matrix ¢ obtained by ¢=V#V1 satisies Eq. (27).1

1 The uniqueness of ¢ can be proved as follows. We consider a
different similarity transformation. Then we obtain a different
diagonal matrix T”=WITW. Since T=VIT'VI=WT"W1, we

find that
UT'=1"0U, (a)

where U=W1V is unitary. Let us consider the 7/ element of the
above Eq. (a). Then U;;T;;’=Ts" Usj, since 77 and T are di-
agonal. This indicates that Tj;/=7T;" or U;=0. In either case,
we have the relation

Uiitii' =t:"'Usj, (b)

where t;;'=+/Tj; andt ;" =+/T:". Therefore V¢Vi=Wi'WH,

and regardless of the unitary matrix used, we obtain the same ¢.
If we put #;'= —+/T; for all 2, then the sign of D~ will change.

Although D% is positive definite, we do not know the sign of
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Furthermore, we find that
Zilti|2= TE<1/6< 3§

consequently, all the coefficients ¢p exist and are
obtainable.

By the use of the expansions (22) and (26), the energy
expression (21) can be expanded formally as follows:

E—Ey=3Yp JpU(P), (28)
where
Jp=2 02 rteHo rlr 1p. (29)

Now we shall prove that, as long as the values of all
the integrals Hp are bounded, all the coefficients Jp
also exist and are determined uniquely. In Appendix A,
we shall show that all Hp are indeed bounded.

By adopting the matrix notation similar to the one
used in Eq. (27), Eq. (29) is written as

J=1H1,

where the QP elements of the V!X NN! matrices J and
H are given by Jq-1p and Hg-1p, respectively. By the
similarity transformation, which brings ¢ into the
diagonal form ¢'=V1V, we find that

J=VV=¢a",

where all the elements H;; of H'=V1HV are bounded
after the unitary transformation by V. As the ¢ ele-
ment J;; is written as

! ’ 7
Jif' =l Higly,

all the coefficients J,; and also J;; must exist. Since,
apart from the factor 1 or —1, the V! coefficients ¢p
are uniquely determined, N!Jp are also determined
uniquely by Eq. (29). As Jp is quadratic with respect to
tp, the undetermined signs of ¢p does not affect the
signs of Jp.

So far, we have assumed that the N! functions Py
are linearly independent. In Appendix B, we shall
show that even if N! Py are not linearly independent,
the arguments remain correct. Therefore, the expansion
(28) is always valid regardless of the symmetry of .
This proves the existence of an energy expansion in
which all terms are bounded and determined uniquely.
Consequently, the nonorthogonality catastrophe does
not appear in its most strict sense, and the Heitler-
London and Heisenberg -approaches can have possi-
bilities of being rigorously applied to many-electron
systems, as we will shown in detail in Sec. III.

3. Effective Spin Hamiltonian

Now we shall convert the energy expansion into an
effective spin Hamiltonian. First let us consider the

of 2 p tpU (P) without calculating its value, since it is not possible
to see simply from Eq. (27) which sign should be assigned. Since,
in physical quantities, ¢ appears always in the quadratic form, it is
not necessary to determine the signs. From Eq. (b), it is easily
seen that the signs of # must be all plus or all minus.
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energy expansion (28). Here the representation matrices
U(P) are given by Eq. (8): namely,
UpPY)=(—-1)r f Ot POdo. (8"
Since we assumed that the spin functions ©; used as
the basis are simultaneous eigenfunctions of S? and .S,
the representation is irreducible. Furthermore, the co-
efficients Jp are independent of ® and are common for
all possible spin states classified by spin quantum num-
bers S and M, as long as a common ¢ is used as the space
part of the wave functions. Therefore, the energy ex-

pressions (28) for all the spin states are written in one
expression as follows:

where W(P) is a supermatrix in which all the irreducible
representations USM(P) for all possible values of S and
M appear in the form

i (p)
[N 3N—1 ( P)

) ﬁ%N—l,;N—l ( P)

Because of the relation (13), W(P) is a 2¥ X2V matrix
and given by

W(PYH=(—1)P / 01P Qdo, (31)

where O is the row matrix (01,0, --0Op) consisting
of F=2V linearly independent spin functions. Since the
2% functions form a complete set in N-spin systems,!?
the evaluation of the energy of the Hamiltonian is
equivalent to the eigenvalue problem of the operator

Bott=2_p(—1)PT pil". 4)
By a unitary transformation, Eq. (30) is written as

E'=ViEV=Yp JsW'(P),
where

W'(P)=ViW(P)V=(—1)P S (OV)tP(OV)do.

This shows that the effective Hamiltonian (4) is valid
not only to the eigenstates of S? and S,, but also to any
spin function, since @y, O, - - - O are complete and V
is arbitrary. Even if we consider a spin-dependent
interaction 3¢, therefore, we can use the effective
Hamiltonian, and the eigenvalue problem of the total
Hamiltonian,
3Ciotar=IC+3C’,

12 As we shall show in Appendix B, a part of the energy matrix
E given by Eq. (28) will vanish if the N! Py’s are not linearly
independent, and therefore the*corresponding part of spin func-

tions in © will disappear in Eq. (30). Consequently, we may not
obtain 2¥ independentsolutions from the Hamiltonian (4).
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is equivalent to 3Cese+3C’, although eigenfunctions of
JCiota1 are usually not simultaneous eigenfunctions of S?
and S..

The N! permutations P can be expressed by prod-
ucts of permutations of pairs such that

(32)

where M indicates the number of electrons involved in
the permutation. According to Dirac,"® each of the pair
permutations (if) is equivalent to the spin operator

(i) =3 (1+4s:5).

Therefore, Py is described by a product of £ (1+4s:s;).
The expression (32) is not uniquely given, because of
the relations

Py°= (ilﬁ) (12]2) o ('iMjM)7

(@5=1, (f)(jk)= (ik)(ij).
By the use of the commutation relations of the spin
operator, however, it is easily shown that all different
representations (32) of a permutation Py are equiva-
lent in terms of spin operators. Thus each of N!
permutation operators P is written as a function Oy

of operators ;54" * * Siy-

Pyt= @M(Sinsiv' * S I)M)'
The expression is unique up to the commutation rela-

tions of spin operators.
The effective Hamiltonian (4) is therefore written as

Het=J 5—3% 2 Jij(14+4s;55)

>3

+ Z Z (“ 1)PJP_‘®M(Si1ySi2;' : ‘,SiM;PM)-

M>3 Py

(33)

If we can prove that, in ordinary crystals, coefficients
J:; for permutations of single pairs are dominant as
compared with Jp for M >3, the energy levels are
described by

Hott V=T g—5 2 Jij(1+4s:s5),

i>7

and the higher terms may be neglected. The approxi-
mate Hamiltonian is equivalent to the Heisenberg spin
Hamiltonian (2).

Here, s, is the spin operator of electron 4. If each atom
carries more than one electron and the coefficients J 4,3,
for the permutations between electrons 4, A3, -+ - Anin
atom 4 and Bj, Bz, - - - Bj in atom B are equal to each
other, then the approximate Hamiltonian is

3Copt W =—23" J 4S4S5.
A>B

provided the intra-atomic exchanges are negligible.
Here J 45 is the exchange interaction connecting atoms

13 P, A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929).
Also, The Principles of Quantum Mechanics (Clarendon Press,
Oxford, 1947), 3rd ed., Chap. IX, p. 222.
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4 and B and S, is the spin angular momentum vector
of atom A.

Finally, we shall show that the exchange interaction
energy J;; thus defined is real and a physically sensible
quantity to discuss. By taking the Hermitian conjugate
of Eq. (28), we obtain that

(E—E)t=>p Jp‘l*ﬁ(P).

Since (E— Eqg)t= (E— E,), use of Lemma 1 will give us
that Jp-*=Jp. For permutations P=(if) of single
pairs, P~*=P and therefore J; is always real. Further-
more, JpU(P)+Jp-U(P) is Hermitian and the di-
agonal elements are real, since the 7 element is written
as

JpUs(P)+J p*Us(P)*,

for all V! permutations P. This means that, even if we
take the summation >z in Eq. (33) up to a limited
number, say M, the truncated Hamiltonian is still
Hermitian and the energy levels obtained are always
real, and, therefore, the expansion is physically sensible.

III. CALCULATION OF EXCHANGE INTERACTION
ENERGY

In Sec. II, we have shown that the effective Hamil-
tonian for spin-degenerate states is written as Eq. (4)
or Eq. (33) where the coefficients Jp represent values
of the exchange interaction and can be obtained in
principle by solving the N! linear equations (25). In
practice, however, this is not possible, since the number
N of electrons in a crystal is effectively infinite. Here we
shall demonstrate a possibility of evaluation Jp without
solving Eq. (25) and show that all the coefficients Jp
are bounded and exchange interactions between nearest-
neighbor atoms are indeed dominant.

This again eliminates the nonorthogonality catas-
trophein itsorthodox interpretation. The argument used
is the following. Even if an energy expansion is used
which leads to convergency such as the one given by
Eq. (28) and even if overlap integrals between atoms
are relatively small, the convergency will be extremely
slow. Third, fourth, and even higher terms will be
dominant as compared with the second term (the
Heisenberg exchange term). Therefore, the Heisenberg
model can never be a useful one. Although many calcu-
lations indicate that the Heisenberg term is dominant,
such calculations have no meaning according to ex-
ponents of the orthodox view, since effects of overlaps
from distant electrons are neglected. An exact treat-
ment supposedly might change the whole situation.

In contrast to this criticism, the results given in
this section and written clearly in Eqgs. (77) and (86)
and the subsequent text, show that each term Jp on
the energy expansion cannot be far from the values ob-
tained by omitting the higher permutations. As long
as overlap integrals between atoms are small, therefore,
the Heisenberg model will be a good approximation.
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In order to prove the results, we first have to separate
a few electrons in the energy matrix and treat that part
explicitly. Then the energy matrix will be expressed as
a sum of products of Coulomb or exchange integrals
and overlap matrices. This result is expressed in Egs.
(37) and (38) and our problem of expanding the energy
matrix is reduced to the expansion of overlap matrices.
The aim of the latter half of the first paragraph is to
prove Lemma 4. We have derived an inequality relation
between the length of expansion coefficients d, of various
overlap matrices having the same number of electrons.
This will be presented in Lemma 4 or 4’. The Lemma is
actually a generalized form of Schwarz’s inequality and
the essential means for comparing and bounding ex-
pansion coefficients of the overlap and energy matrices.
To prove the lemma, however, we have to pass through
Lemmas 2 and 3.

After Lemma 4 is verified, it is no longer difficult to
evaluate upper and lower bounds of X_|d,|?, as is car-
ried out in the second paragraph. When the overlap in-
tegrals are not exceedingly large (A <1), the results will
be explicitly given in Egs. (54)-(57) and (60)-(63).
Even if A>1, the bounds can, of course, be given by
considering overlap between nearest neighbor atoms
explicitly. Since such extension is trivial, we shall omit
the mathematics in this paper. In any case, the results
together with the energy expansions (64) and (65) show
that the effects of overlap from distant atoms and
higher permutations are not essential. On the other
hand, if one is not satisfied with the accuracy of nu-
merical results for some particular problem, one can
easily improve the accuracy by taking more permuta-
tions and it is always possible to evaluate the upper limit
of the error due to the truncation of the energy
expansion

Finally, in the last paragraph, we derive a complete
expansion of the exchange interactions J, in terms of
d,; this will appear in Eq. (76). By using the results in
the second paragraph, we can at last obtain the promised
relations (77) and (86), which will show that Heisen-
berg term is indeed dominant. Since the complete en-
ergy expansion (33) is available and each of the co-
efficients J, can be evaluated exactly the same way as
the Heisenberg exchange interaction J,, we are able to
increase the accuracy whenever necessary. In this point,
there is a sharp difference from and great advantage
over the existing Heisenberg theory.

1. Separation of Permutations

First in this paragraph, we shall separate interacting
electrons from others. For simplicity, we shall assume
that each atom carries a valence electron and the spatial
function ¢ is written as

t//(172 * 'N):¢1(1)¢2(2)' . ‘l/N(N)r

where the inferior ¢ of ¢, indicates that the orbital ¢;
is centered at atom 7. Here the one-particle approxima-
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tion is applied because it simplifies notations, but the
more general case (12) can be treated in exactly the
same manner.

The Hamiltonian (5) is written as

=2 3¢, +2 3y
7 >7
where

3(31':3(3{0—' <1, | 5Ci° [ ’L>, 3&;0: (P,2/2m) —ez/rn,
and
3Cij=3C; 0 — (37| 3Cs°| i), 3Ciff= —€&/ryi— &/ rri+€/rj.

Then the energy matrix H, given by Eq. (22), is divided
as follows:

H=3% ,H+} ;Hy,

H:=3 p(H)pU(P),
Hy=3p(Hi)pU(P),

where

and

(Hij)p= / PYr3Cipdr.

Consequently, the energy expression is written as

E= Z E.,,‘}‘Z E,‘j,

7 >7

(34)

where E;=D*H;D* and E;;=DH;;D*,
We shall denote (N—1)! permutations of electrons
1,2, -, h—1;h+1,---, N by Q[k]. All the N! per-

mutations are given by
P=Q[h]-P(k<—"h), k=1,2,---,N,
where P(k < k)= (hk). The wave function ®, the over-
lap matrix D, and E; are written as
1

=—\/_N2k Vi (h)-2[k(h) ] 35)

D=Xkl Q%] SompUQLA] Pk — h))
=§<k|h>5[k(h)lh(h)], (36)

and

Hh=§ %} (H1)uaprUQLE]-P(k —h))
=§<k|i‘chlh>5[k(h)[h(h)],

where
Yi(h)-@Lk(h) J=[(N—1) 1] Q%] 0
nd XUQLh]-P(k < h))*-QLh]-P(k < )y,

SCER) | h()T= / Sk (1) T () Y.
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In Eq. (35), all the possible permutations (k%) of elec-
tron % are considered separately and therefore ®[ k(%) ]
is a function of the space coordinates of electrons
1,2, -+, k—1;k+1, - -+, N made up of orbitals ¥, ¥s,

<o W1, Yret, o0, Yt The energy matrix Ej is then
given by
En=31(k|5C4| h)D—S[k(h) | h(k)]D~E  (37)
Similarly, Ej; is written as
Fhl:Zk Zm, (km lC‘Chzl hl)D_%
XS[k(mym@) | h(WI) 1D, (38)

where

NEQEOIIOUON / B[k (mym (D) T @[h(R)I(1) Jdr.

Vi ()Ym (DPLE(R)m (1) ]
=[(N=2)IT* ¥ ©-U(Q[h]-P(km — hl))*
Q[rl]
XO[HIP (km — hi)y,

and Q[ Al] are (N—2)! permutations of electrons 1, 2,
o1 B, oo 1= 13041, - -+, N, while P(kmei)
is a permutation taking % to & and / to m. The functions
®[k(h)m(l)] are related to ®[k(%)] as follows:

[k (k)= (N—1)74 X Y (D[R (B)m (1) ].

More generally, we define ®[ki(h)ks(hs)- - - kn(ha)]
by

Vi (r)ny (2) - - Yk, () L Rr () Ry (fr2) - < < B () ]
=[(NV—n)!T*2 0 ©-UQLhh2: -]
P(kka- - By haha- - 1)) Q[ hiha- - I ]

P(klkz . 'kn(_—hlh2' ° 'hn)¢) (39)
where, by Q[ Aihs- - - ks ] we denote all possible permuta-
tions in which # electrons Z%if,- - -k, are not involved,
while P(kiks: « - kyn<— hihs- - - h,) interchanges space co-
ordinates k- - - by with kiks- - - k. Similarly, we define
S by

SCh(hr)ka(l2) - - - kn(Bn) | B (B Yo' () - - - B’ () ]

- / O ks (i) la () - (n) !

XPLky (b Yoo (hy') - - - k' (B)Jdr.  (40)

Now we like to prove the most important relation:
Schwarz’s inequality applied to the lengths > |d,|?
of expansion coefficients d, of overlap matrices. We
shall derive and prove the relation in Lemma 4, but
before proving it, we need to verify the following two
lemmas.

14 The spin functions ® in ®[k(%)] include the spin coordinate
of electron 4.
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Lemma 2. The overlap matrix
S[k1(h1)k2(k2) . kn(hn) I kl(hl)kz(h2) . 'kn(hn)]
is independent of %1k - - &, and therefore

S[kl(kl)kQ(hZ) . 'kn(kn) | kl(hl)kz(hz)' . 'kn(hn):l
=S[k1(k1)ks(k2) - - 'kn(kn)l

Xkl(k1)k2(k2) vt 'kn(kn)]- (41)
From the definition (39) of &, it is found that
/@[kl(hl)h(h?)' : 'kn(hn)]T
X®[k1(h1)ks(hs) - - - kn(hn) Jdr
=Y SperU(PTQP), (42)

where the summation Y is taken over all the (N—#) !
permutations Q[ %1ks- - - o ]. To simplify the notations,
we will abbreviate Q[ ke - -hnl, Q[kik2 - -kal, and
P(kiky: - - By < ihs- - - h,) by Q, Q', and P, respectively.
Then it is easily recognized that P7XQP are permuta-
tions of electrons not including k& - - k., and equiva-
lent to (’. There are one-to-one correspondences
between Q and (', and if all the (N—#)! different
permutations Q are taken into account, the (N—u)!
different permutations Q' are generated by Q'=P'QP.
Therefore, the summation (42) is equivalent to

§ SeUQ)= / B[k (k) ka(ks) - - ku(kn)]T
XLk (k1)kz(k2) - - - kn(ky) Jdr.

This proves the lemma.
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Lemma 3. If the following expansion of a matrix L,
Le=3pdpU*(P), (44)

is valid for all representations of oy, then > p|dp|2 is
invariant under a unitary transformation of L and equal
to Zp Zk Zm(fP/N!) lLkaIZ-

By the use of the unitary matrix I' defined by Eq.
(16), the expansion (44) is written as

rd=I,

where d and [ are the column matrices, in which the
Pth and the (pkm)th elements are given by dp and
(fo/ N 1)3L;m*, respectively. Then

Yrldp|t=dld=11=3, T Xn(fo/ N )| Lin? |2

By a unitary transformation L'*=L*V, Y % > | Lin®|2
is invariant, since

Zlc ZmlLkmlp | 2=Zlc Zm Zl Zn Lklkanp*VlmVnm*
=> % 21| Lu*|2

This means that /'] and }_p|dp|? are also invariant
under the unitary transformation.

By the use of the expansion (26), D~3S[k(k) | k(k)]D*
and D3S[k(B)m(l) | h(B)I(1) 1D~ can be written as

D38 ky (ks (e) - - - kn () | R (o' (') - - - ! () 1D

Then it is found that

Lemma 4. The following inequality relation holds between the coefficients dp:

2op|d[ki(h)ke(he) - - ke (ha) | Ry (1 Vks' (B - - -k (') ] |2
L pldlkr(kr)ko(ls) - ko (kn) | Ry (1) ka (k) -« - n (k) 1p|?

D[k (W) | k() 1D~ =3 p d[k (W) | (W) 1pU(P), (45)
DAS[k(B)ym (D) | k(R)I(1) D} _
=X p dlk(W)m@) | R(WIDpU(P), (46)
or, more generally,
=3 p dlks(h)ke(ho) - ka(hn) |t (Vs (') - ko (') 12U (P). (47)
XX pldlky (B ko' (k') - - kn’ (Ba) | ki (R1)Ro' (Be') - - ko' (Ba') 1P |2} (48)

Since the expression DSk (h1)k2(hs) - « - kn(hn) | R1(B)ko(hs) - - - ku(hy) 1D~F is Hermitian, it can be brought into
a diagonal form L# by a similarity transformation. From the definition (40) of S, it is found that

Le= VTD_%S[kl(hl)kg(hg) s kn(hn) Ikl (h1)k2(h2) .o kn(hn)]D“%V

= / {@Lk1(h1)ko(hs) - - - k() IDAV Y@L R () ko () - - - k() JD~V Y.

Since L~ is diagonal, the fg functions,

¢i={P[k1(h)ks(hs) - - -k (n) D4V},

i=172’ ”';fs7

are orthogonal to each other and therefore we obtain that

Zk:Z |Lkm9|2=/{z $:i(1,2- - -N)p*(172/ - -

N/)}*{Z ¢i(1;2;' . ‘N)¢i*(1/2" ‘ 'N/)}d‘rdr’.
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Similarly,
I Lkm"’lz=/{z ¢ (1,2: - N)p* (12 - - N )P i/ (1,2 - - N)p/*(1'2"- - - N') }drd',
where o l l
e [
and

& = {(Bky (1 Vb () - -Een! (Ba)ID3V"}s, =1, 2+ -, fs

are orthogonal to each other.
Now we define L'’? by

L= / o1/ dr= / (s (i) a(ha) - - () IOV HG T (VB! () R/ () JD4V" Y.

Application of the Schwarz inequality relation to the above expressions for L#, L', and L"# leads to
2k 2om| Lion"? 1> {8 o | L |2 2 Zowe | L |2} . (49)
The relations is valid for all the representations of ¢. Here we expand L* such that

Lr=YpdpU(P).
By Lemma 3, we obtain the relation
ZpidPIZZZP 20 2m(fo/N1) lLkmp12’

and furthermore we find that the sum > »|dp|? is equal to

>opldlki()ko(ho) - - -k (hn) | ko (B ko (B2) - - - o (Bn) 1P |2

since D=3S[k1(h)ks(hs) - - - ku(ha) | B1(Bi)ke(hs) - - - ky(h,) ]JD—# are obtained from L# by unitary transformations. By
Lemma 2, it is also evident that

Alky (ks (ho) - e (ha) | ki (hi)ks (o) - - - T () 1p= k1 (R1)ks (ko) - - - k() | Tor (Ra) oo (R) - - - Fen (Bem) ] e

This means that we have the relation

> pldlky(k)ka(ks) - - ken(kn) | Ba(BD)k2 (ko) - - - kn(ku) 1P |2=20 20 Zom(fo/ N D | Lim? |2
The similar relations will be found for L’# and L”’». Therefore, Eq. (49) can be written as Eq. (48).
From the discussion given in Sec. II, it is clear that
(X pldlki(k)ko(ka) - - - kn(kn) | Ry(Rr)la (ko) - - ~ku(kn) 1p|2}?

is bounded. We shall denote the maximum and minimum values for arbitrary kiks: - -%n by "lmax and ™. Then
Lemma 4 is written as
Lemma 4.

ZP[d[kl(hl)k2(h2) o kn(hn) l kll(hll)kZ,(hZ’l) v 'knl<hn,):|1’ 2< (nlmax)2' (50)

Henceforth, we will deal mostly with the case where hi=hi'=Fki/, ho=hy'=Fk,/, --- and h,=h,’=k,’. In such a
case, we shall not repeat the indices %1, /s, - -+, &, in S and d and will use the following abbreviations:

S[k1k2' * 'kni hth' N hn]ES[kl(hl)kZ(hZ) o 'kn(hn) I hl(hl)h2(h2) o 'hﬂ<hﬂ)]‘
dlkiks- « -kn|hiho- - - ko= dlki(h)ko () - - - kn(Bn) | By (Ba) o (Bo) -+ Ba(B) .

2. Expansion of Overlap Matrices expansion (45), Eq. (36) is written as

Now we shall evaluate the upper and lower bounds ;_ Bl ND-ASTE| 1D~ = IR 1T (P).
"max and "hyin of Y. ,|dp|? defined above. This will be LklB) Ckln] 2ron (k| dlk|k]rU(P)

carried out easily if we expand the overlap matrices
S[:hl . 'hn_1|h1' . 'hn_lj in terms of

SThy++  hnsbn| b1+ sl 1=3"r (k| h)d[k| ]z, (51)
First, we consider Yn.x and Ymi,. By the use of the 0=3_x (k| h)yd[k| % ]p. (52)

Applying Lemma 1 to the equation, we find that
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Therefore, we obtain that

> p|d[h|R]p]?
=132k | mydlk| h]a+k| hy*d[k| k] *}
+228 20" k| R)E | ¥ p dLk| B]pd[E | H]P*}. )

where the summation ;’ includes k=1,2, ---, h—1;
h+1, -+ N.

From the definition of "/, and Lemma 4/, it is
evident that

dl:k I h] E S llmaX;
and

2 pdlk|h]p-d[k' | K]p*
S{Xpldlk|R]p|® ZpldlE [ H]p|?} < (huax)?.

By the use of the above two relations in Eq. (53), it is
easily seen that the relation

2op|d[R|h]p |2 K 1424 Upaxt A2 (Uinax)?

is valid for any %, where A is the maximum value of
A(B)=2"4"|<k|h)|, h=1, 2- -, N. This means that

(e S 1424 Unpgxt A% (Unax)2.
If A<1, the relation is written as
Unax < (1—4)7
Similarly, we find that

(llmin>2 2 1 - ZA 1lmax"" A2 (llmax)z-

Therefore,
(1—4A+2A7) (1—A)
SZrldlh|k]p[2< (1—-A)2  (54)
From Egs. (51) and (52), it is also found that
(1-28) (1~ A)* <A )< (1—2)7,  (59)
d[h|n]p<A(1—A), (56)
and also
> r|dlk|n]p|2< (1—A), (87)

provided A<1.
Now we consider #m.x and %min. By the definition
(39) of &, it is immediately found that

D-iS[k| k1D =3, {m|l)D-1S[km| kI D,
or, in terms of the representation matrices,
Y pdlk|k1pU(P)=%p 3. (m|Dydlkm | kI]pU(P),

where 3" excludes m=*k. By Lemma, 1, therefore, we
obtain that

ALkl |k ]p=dlk| ke~ 5" (m|(dLkm|k]e, (58)
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and also

2p|dk| ke ?
=2 r|dlk|k]p P =" {(m|D) X p dlk|k]P*
-dCkm| B p+-(m|0y* X p dLk| K]p dTkm| R p*)
+2n" o (o | Do’ [ 2 p dlkem | kL]

d[kn! | K155, (59)

where the summation .’ excludes m=F% and .
By the use of Lemma 4" and the Schwarz inequality
relation in Egs. (58) and (59), it is found that

{(1—4A+2402) — 24, (1— AR — A2 (1— Ap)2) (1—A)~2

SXrp|dlk| kP[P < (1—-AK)2(1=4)7%  (60)
(1—=2A—2A4F2AA;) (1—Ap) 1 (1—A)T

LALR R < (1—AR)T(1—A)1,  (61)

dlkH k] p<{A+A(1=A) T (1=A),  (62)

e 2pldlkm|h]p|*< (1—A)2(1—4)2  (63)

where A, is the maximum value of

A()=>n"{m|D)|, 1=1,2--- k—1;k+1,---, N.
These relations are valid as long as A<1 since Ap<A.
Furthermore, similar relations will be found for the
coefficients d[ kiks- - - by | hiho- - - s ]p.

From the results given by Eqgs. (54)-(57) and (60)-
(63), it is evident that the expansions

=3 p Xi (k|5Cs| hyd[k|k]pU(P), (64)

and
obtained from Eqs. (37), (38), (45), and (46), converge
rapidly and provide a practical way to evaluate the
energy since the higher permutations are indeed negli-
gible. On the other hand, if A is close to or larger than
1, we have to take the interaction between the nearest
neighbor atoms explicitly. Then, the summation in A
starts from the next nearest neighbor atoms. Since the
overlap integrals between atoms decrease exponentially,
a satisfactory solution will be obtained by this approach.

3. Heisenberg’s Spin Hamiltonian

Finally, we shall introduce a more explicit expression
for the exchange interactions Jp and show that all Jp
are bounded in a similar fashion as dp. Here the energy
matrix Ejy; given by Eq. (38) will be considered since
E;, can be treated exactly the same as Ey;.

Following the definition of S[kiks: - ky|hiha: * - hn |
and ®[k1(h1)ks(he)- - -kn(ha)] as given by Egs. (39)



482

and (40), the expression (38) is written as

Enne= Enng"+Enng™,

TADASHI ARAI

Eh1h21= (]’lghll Gchxhzl h1h2>D‘%S[k2h1| h]_hz:ID-%'I‘ZN <h1h3| SC;”;,ZI h1h2><h2! hg)D_%S[hlhghgl hthhng_%
h3

“I‘Z” <h3h2l ‘C}Chlh2| h1h2><hll h3>D_%S|:h3h2h1l hlhzhs_JD—“"
h3

B '=3""" """ {hahts| 3Chyng| hsha){hta] his) D35S hahsha| hahohs JD—

h3 ha

(66)

+Z” Z” <h3h1‘ ZChlhzl /11h2><h4| ha)D_%S[hshI}l,;‘ h]_hgh;;]D_%
h3  hg

+Z” Z”, <k3h2| Jchxhzl h1h2><h4l h3>D—%S[h3h2h4l hlhzhg:]D_%

h3 h4

+227 32 {hahs| BChyna| Bahio)(ha| hs)DAS[ hohsha| hikishs JD—
+X T I (hsha| Bnang| Baha) (st | hsha) DAS[hshahishs| hiliahisha 1D,

h3 h4

k3 hs hs  he

where the summations " and 35, exclude fs= Ay,
hy and ha=hy, hs, hs, respectively, D5/  and 35" ex-
clude &s=hs, hq and he=hs, ha, hs, while 3_5,”" excludes
hy and ks (or ke and £s).
_If we expand the energy expression Ej,, in terms of
U(P) and take a summation over %; and 7, we will
obtain the desired expression for Jp as a sum of prod-
ucts of exchange integrals (km|3Cs;|Al) and dp. Before
that, it is convenient to consider the expansion term
by term.

Let us first consider the matrix D—iS[lk|kI]D 5.
According to the definition, we find that

S[ik| k)= U (k1)S[kL| kL. (67)

Also we shall expand the expression D*U(R)D?Y, as
follows:

DUR)D}={1+Y » a(R)pU(P)}U(R). (68)

By using the above relations together with the expan-
sions (45)~ (47), therefore, our matrix will be written as
D[k | kI]D—

=D-3U(kl)D}- D-iS[kl| kL]D—*

={14+2 0 a(k) U} U (kD) - {X o d[kl| k1o U(Q)}
= ZP {d[kll kl]P(kl)+Z Q a(kl) Qd[kl [ kl]pQ'l(kl)} U(P)
The matrix D-3S[lk|kl]D~* can also be expanded di-

rectly as Y p d[lk|kl]pU(P). Comparison of the two
expansions shows that

+2 @ a(kl) od[kl| Kl ]po 1y (69)
In case of P= (kl), this relation becomes
ALk kL) oy = dLkE| B ]
+2- o a(kl) od[kl| Kl oy ot ey (70)

In Appendix C, we shall examine the expansion (68)
and prove that Y p|a(R)p|? is small as compared with

unity. The results (A11), (A20), (A21), and Egs. (60)~
(63) together with Schwarz’s inequality can be applied
to Eq. (70), and it will be found that

Ay— (3M ) By < [Tk | kL ey < BiA (3Mmg) By, (71)

Similarly, the following relation will be obtained from
Eq. (69) when P (kl):
|dlik|kl]p| S 3(Bi— A1)+ BMumex)'B1,  (72)
where
A1=1—A(1—A)"—A (1= A (1—A),
Bi=(1—-Ax)7(1—A)"

The other matrices can be handled in the same
manner, and it will be found that

A 2 (3Mmax) %B2 < d[hlk l hkl:l (kl)

< By (3Mmax) %BZ, (73)
|dChlk| hkl]p| <3 (Ba—Az)+ (3Mmax) By,
for P (k). (74)

where

Ay=1-A1—A)1—A,(1—A)(1—A)"
—Ap(1=A) (A=A (1—A),

Bgz (1—Akl)41(1—Ak)il(l“A)_l.

Let us now come back to the total energy,

Z Z Ehlh2’

h1>he
and expand it as follows:

¥ Emn=2 JpU(P).

h1>hg P

(75)

By using expansions (46)~ (47), the energy matrix
Ej,n, can also be expanded in terms of U(P). Compari-
son of the resulting expansion with Eq. (75) shows that
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the exchange interaction energy J;; between electrons 7 and 7 is given by

Ji=J it +T M+ T 5,

J it = (ji| 8| i5)d ji| ij](ﬁ)‘l‘zh:" {{h] 3Can | ih)(| 7)+(ih| 3Cin| jh)(7 | 4)} AL il |igh] cisy

Jitt=5 32" 32" (hoha| China| lsho)d[hohs| hahs )iy 420" 30" 35" (hohis| 3Cusns| Hahis)lus| ha)d[ hohihs| hukohs ] iy

h1 ke h1 k2

h3

Jitt=37 32" 30" 30" (hihs| BCnyno| haho)ha| his)d[ hihsha| hahshs] i)

h1 h2 h3 hsg

+20 23S k| BCnang| Baha)(Bea| hs)a[ Bshaha| Bakohs sy
F3 2 (hisha| 8| Baha)shs| hsha)d[ hshahshs | hahahsha] iy,
]

hi he h3 kg

hy h2 h3 hy4 hs ki

where X5,/ 25, in J;* excludes ki, he=1, 7 and 7, 7 as
well as 7= hs.

By applying relations (70)~ (73), we find that
(.71' | 5Cii I i])[A 1= (SMmax) %Blj

+24" [(Gh]5Ca|ih)(E| )+ (k| 5C | jr)(51)]

X I:A 27 (3Mmax) %BZJ
ST < (5335 |47) Ba[ 14 (3M max) ]
+20" [(jh|3Ca | ih)(i| j)4- (iR |3Cs | jR)(5|4)]

X Bo[ 14 (BM pax)?]. (77)

The second term J;;* is a small correction term to
J:if. This will be seen if we consider a perfect crystal.
Here we assume that there are N permutations 7' of
electrons, which are also elements of the translation
group of the crystal. As we shall discuss later in detail
and will give in Egs. (91) and (92), the summation over
lattice points %q in J4!* can be replaced by the summa-
tion over translation 7" such that

Jiitt=5 22" (hot| 3Cin| tha) 35" dLhat|iheJr ijyr1+22" 2 (hohs| 3Cin| ths)(i| ha) 25" d[haihs| ihohs Jr e, (78)
ha T h h3 T

2

where ),/ and 25" exclude k=i and h;=1, o,
while > 7" excludes T'=E, when hy=j, and T, which
shifts ¢ and j to & and 4, when ky=k. By T'(¢5)T1, (47)
is shifted to (¢rjr).

Here the summations Y7 d[/si|ihs]r@pr— and

S’ dLhaihs| ihohs Jr iy

converge rapidly, since d[/s|ik]rjr— decreases pro-
portionally to exp(—R), when the distance R between
th and T'(25) T~ increases. This will be explained as fol-
lows. For simplicity, we shall show that d[%|k]qm) de-
creases proportionally to exp(—R), where R is the dis-
tance between & and m. The extension to d[47]%]cum)
or d[ 72|47 cimy is trivial.
Let us consider the expansion

1=DDD " =D"iS[k|k]D*
+2 4 (k| k)DAS[h| E]D*
=Y p d[k|E]pU(P)+3) (k| ) X p d[h|R]pU(P).

(79)
By taking the term P= (Im), we find that
ALk k]am=—24" (k| kYA B ] tm)
= — (| k)A[L| k] camy— (m | k)d[m | k] (imy
=224 (k| RYA[h| k] my, (80)

where 3~ excludes =4, [ and m. From Eq. (67), we

notice that
dLh| B amy=~d[k| B ) amy-

Furthermore, we are able to show that
dl k| kqeny comy ~ ALk | & eny - ALk | &y,
as long as neither % or % is equal to ! or #. Since both
d[ k| k] wny and d[ k| k]@my are bounded as given by Eq.
(56) and smaller than 1 when A<1, the above two
relations lead to
|dLk| k]amy | > |dLk]| kT amy |-
Therefore, we obtain that
|d[k| k]am+20" (b R)aLR| k] m |
> (1—2)|dlk| kIam |-
Use of this result in Eq. (80) gives us the relation
| 1R A2 B amy | [ (m | )| | dLm | B oy |
> (1=A)|dLk|EJam |,

(81)

or
|dlk|k]am | <AA=2)2{[ R+ [ (m|R)]}.  (82)

This shows that d[%k|%](m) should decrease proportion-
ally to exp(—R), when the distance R between %k and
I, m increases, since the overlap integrals (/|%) and
(m|k) decrease as exp(—R). This will be true if Eq.
(81) is valid.
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The relation (81) will be justified as follows. By using
the expansion (79), D~3S[k|k]D# is written as
DS[k|KID=1—3,, (k| YD4S[h| k1D~

=1=33 (k| kh)D-1S[hk|kh]D*
=30 X (| kRYDISTH| kI D,
Because of the relations (68) and (A20), it is evident
that the main contribution to d[k|k ] comes from
the term
— (ik| ERYD-ASThk | kI ]D~
= — (k| kh)YD=U (kh) D*D—3S[kh| kh]D2.
Since DU (kk) D4~ U(kh) and d[kk|kk]s=~1, we find
that
d[k| k] ceny = — (k| k), (83)
and also

ALk| k] ny amy =~ — (k| ki)dLkh | kh]amy.  (84)
On the other hand, D—3S[ k| k]D—* will be expanded as

DiS[k|k1D—t=DS[kk| kk D~}
+3°0 (| IYDASTRL kIJD,
Here, the main part of the second term is 3_; (1| 2)U (hl)

and this will not give appreciable contribution to
d[ | k] (im). Therefore,

AL k| k] amy = dLkR| kR m-

The relations (83)~ (85) justify Eq. (81).

This proves that the second term J ;! of the exchange
interaction should also be bounded. The first term of
J ;1 is less than

i %:' (hat| 3Ciny| tha) (B1— A1)
+3 ;’ ;' (Pohs| 3Cing | Ths) (3| o) (Ba— As5), (86)

(85)

and the higher terms will decrease proportionally to
exp(—R). From this proof, it is clear that the argu-
ments remain correct even if the crystal is not perfect.

The third term J;*! is a contribution from Ej, 3,
It is possible to bound J;;U! like J;;*, although the
expression will become very complicated. Without carry-
ing out the direct method, however, it is easily seen
that J;'! is small for the following reasons. First,
Ejp,tt is smaller than Ej ;! by a factor A. Secondly,
the main part of Ep,'" belongs to the three electron
exchange interaction terms J¢jgryU((37) (k). The
difference between FEj,'! and the three electron ex-
change interaction terms will be found to be small,
while the main part J ;) gn'* of the three electron ex-
change terms can be calculated in a similar way as J ;.

Up to this moment, we have shown that the energy
matrix E can be expanded as 3 p JpU(P) and that the
terms J,; for permutations of single pairs (ij) are
equivalent to the Heisenberg exchange terms. Further-
more, J;; can be given by Eq. (76) and the values
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should be bounded as shown by Egs. (77) and (86) and
the subsequent text, when A <1. Those arguments show
that exact values of J;; should not be so different from
values obtained by omitting higher permutations as
long as A is small as compared with unity. In addition,
it has been shown that Jp for higher permutations P
is smaller than J;; by a factor A. The foregoing argu-
ments disprove the nonorthogonality catastrophe. Al-
though we have not given explicit calculations in cases
where A>1, it is evident from the discussion in Sec.
II1.2, that dp can be bounded similar to Eqs. (54)~ (57)
and (60)~ (63). The exchange interaction energy Jp
will be calculated similarly, and higher permutations
and exchange interaction energy between distant elec-
trons will vanish. However, effects from second- and
third-nearest neighbor atoms will not be negligible when
A is not small as compared with unity. The exist-
ence of antiferromagnetic substances such as MnO
indicates this possibility. We shall discuss such a case
in a future communication.

Finally, we shall show that the total energy calcu-
lated is proportional to the number N of electrons in
crystals regardless of whether we use the energy ex-
pansion (3), the effective Hamiltonian (4), or the
Heisenberg spin Hamiltonian (2). This assures that the
use of the Heisenberg approximation as well as the
existence of the expansion proposed here is really
justified.

We define the energy E(7) attributed to the ith elec-
tron by

1 1

E@)=% —JrUR) =L Y —JruU(Ru), (87)
E Mp M By Mg
where the summation )z includes all permutations
which shift electron ¢ from orbital ¢; to other orbitals.
Furthermore, we classify the permutations as follows.
By Ry, we consider all possible permutations of Mg
electrons by which orbitals ¥g, iy, iy, -+, iy, are re-
placed by ;, ¥;,, -+, ¥jy, such that ¥#2¢; and ¥, ¢,
for k=2, 3, --., M, while the rest of the electrons are
not permuted. The fact 1/M r must be inserted in Eq.
(87) since the same permutation will be taken into
account Mp times when we consider E(i;) for k=2,
3, -, M.

For simplicity, we shall consider E(4) in a perfect
crystal and show that E(2) is finite and the total energy
of the crystal is given by NE(7). Furthermore, it will
be shown that the main part of E(3) is described by
3 2.7/J5U(i7). This indicates that the exchange inter-
actions between two electrons are indeed dominant as
compared with the effect of simultaneous permutations
of more than two electrons as long as overlap integrals
are small; and the expansion (4) or (33) converges
rapidly in many-electron systems. The perfect crystal
here means that there exist N permutations 7" of elec-
trons, which are at the same time elements of the
translation group of the crystal. By applying T to ¢,
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electrons 1,2, --- N are shifted to orbitals ¥z, ¥,
<o, ¥ry, but Yr,¥r, .-, ¢¥ry are equivalent to
Y1, ¥s, + - -, ¥n in the following sense:

/‘pTi*‘ijdT:/‘pi*'pde)

for any pair of ¢ and j.
Let us consider the summation

F(i)=§' Epy=2 2" 3 (kiks|3Ciny | ihs)

he k1 k2

(88)

XY d[kiks| ik ]pU(P).  (89)

From the results given by Egs. (60)—(63), it is evident
that F(i) converges and is not very different from
27/ J5U(@Eg), if A is small as compared with unity.
Since N! permutations P can be divided as (1/Mg)
XTRT, Eq. (89) is written as

1 -
F@)=> > —JrrrG)U(TRT™), (90)
R T Mg
where
Jrrr=1(0)=20" 22 3/ (kike| 8Ciny| ih2)
he ki1 k2
Xd[kiks|ihs rrr—, (91)

and, in the summation )7, only independent elements
TRT are taken. Since T',T;=T;T';, the representation
matrices U(T) of T are constant, U(T) of on can be
written as U(Q) given by Eq. (AS).!* Because of the
symmetry relation (88), it is also evident that

Jrrr1(D)=Jg(T7Y),

where electron ¢ is shifted to 7, by translation 7.
_Therefore, we find that

SrJrrr(D)=20 0 Jr(Ti ) =Jg,

and the invariant part of I(7) is written as

(92)

1
F@) =Y —JrU(R),
R Mp

which is equivalent to the expression (87). This proves
that E(¢) is finite and not far different from % >/ J;;
X U(ij). From Eq. (88), it is also clear that E(3) is
independent of 7 and the total energy is given by NE(2).
If we apply a similar technique to the second part
Ej 5,1 of the energy matrix (66), it will be easily proved
that the contribution from FEj ™ to E(7) is really a
small fraction, ~AX E(7).

In conclusion, use of the effective spin Hamiltonian
(4) is practical since the series converges rapidly. If A

15 Here we have applied the same argument as the one used in
Appendix B. Since the first gXXg parts and the diagonal elements
of F(¢) and E(2) can have nonvanishing elements and the rest of
them vanish identically.
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is small, the Hamiltonian becomes equivalent to the
Heisenberg spin operator. If not, we may need more
terms and the Heisenberg model will become somewhat
less accurate, but it will still be possible to obtain a
satisfactory solution by the use of the effective Hamil-
tonian (4).
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APPENDIX A

Here we shall show that all the energy integrals Hp
defined by Eq. (22) are bounded. For simplicity, we
assume the one particle approximation where ¢ is
given by Eq. (11) and we write ¢ as

‘p(l;z;' : ;N):Sbl(l)‘pZ(z) o ll/N(N)

The following proof will be easily extended to the more
general case where ¥ is given by Eq. (12) as long as ¢ is
normalized.

By the definition of Ey, it is found that

Hy=0,

Hay=(2]30(1) |1(1]2)+(1]5e(2)[2)(2|1)
+(21|V1:|12), (A1)

where (12) is the permutation of orbitals 1 and 2. The
definition of the other notations will be found in Eq.
(A3). In general, we denote by (1,2, - -,M) the permu-
tation of M electrons, by which orbitals 1,2, -+, M
are replaced by Py, Py, - - -, Py, respectively, such that
P#ifori=1,2, ---, M, while electrons M+41, -+, N
are not permuted. Then we find that

M M
Hazeon=2 (Pi|5@)|d) II (Pelk)
- G
M M o
HE T @RVl IL (P, (A
= dEh o)
where
(Ps|3e(2) [4)=(P:| 3" (2) 1i>+l=%+l<Pu| Valil),
3¢’ (3) = 3Co (2) — (i | 5o (4) | 1),
P2 N Za
560(7:):——622 ]
2m A=174;
\ ) (A3)
¢
Vel iil—if ),
75 ‘ <1/] Y35 1]>

and

<P.'Pj

1
iy= [ b OGO

1
¥ij P
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Here (P;P;| V ;| ij) decreases in proportion to e E when
the distance R between the centers of the electrons 7
and j increases, while the number of electrons j local-
ized between the distances R and R+ AR from the center
electron ¢ will be proportional to R% This means that
both (P;|3¢(z)|4) and

M
> (PP Vilig)
=1 Gri)

should converge to finite values even if N — «. We
shall denote the maximum value by I. The overlap in-
tegrals (k|7) are smaller than 1, since theatomicorbitals
are normalized. We denote the maximum value by .S.
From Eq. (A2), therefore, we find that

H(l,2-~-M) < {H(Lz...M)}max:MI(S—}"%)SM"%
and also

{Ha2 40 max M1

{H(1,2---M)}max

S, S<1.

For M =2, H 13 is clearly finite as shown in Eq. (A1).
Since S~0.1~0.2, the maximum value of H p for M >2
decreases rapidly and vanishes in practice. This proves
that all the energy integrals H p are bounded.

APPENDIX B

In this Appendix, we shall show that, even if N!
functions Py are not linearly independent, D~ and the
expansion (3) or (28) exist and therefore assumption
(c) used in Sec. IT is not necessary. For simplicity, we
consider the case where ¢(1,2- - -N) is symmetric with
respect to exchange of two electrons in 7 pairs (1,2),
(3y4): T (27—17 27’)

We denote by % the subgroup of oy, consisting of 27
elements

Q= (1)2))\1(374))‘2' o (27_1; 27’))\77

where Ay, Ny, - -+, A, can take the value 0 and 1 inde-
pendently of other N’s. Then

W=y
If we select s=N!/27 elements Ry, Ry, ---, R; of the
N! elements of oy in such a way that R, 'R,&h for
any pair of R, and R,, all N! elements of oy can be
obtained in the form RQ where Q&%. We assume that

all the S functions Ry are linearly independent. The
overlap matrix D will then be given by

D:ZR ZQ SRQﬁ(RQ)ZZR ZQ SRZ?(RQ);

because

(A4)

SRQ= /RW*¢dr=/R¢*¢dr=SR.

Since Q.:0;=Q;0Q; and Q?= E, all the irreducible repre-
sentations of % are one-dimensional and the matrices
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are either (1) or (—1). Then it is possible to make the
matrices of the representation Dy of oy in such a way
that the matrices for elements of the subgroup % appear
in diagonal form:

Ukh(Q) = :l:skh fOI‘ QEIZ

Here we shall number the rows and columns of the
matrices such that the first g diagonal elements are +1
for all the 27 matrices U(Q).

Un(Q)=1, 1<k<g, QCSh (AS)

while the other diagonal elements Uz(Q), g<k<[s
take the value —1 for at least one of the elements Q.
Lemma 5. The first g members of ® with given .S are
linearly independent and the rest of them vanish
identically.
To prove this lemma, we shall consider a possible
linear combination among &®,, (m=1,2, ---, g):

9
0=3" Co®p.

m=1

Since the spin functions © are linearly independent,
we find that

OZZm ZP CmUkm(P)*P\[/

=2k {2m 20 CnlUwn(RQ)*}RY.
As the s functions Ry are assumed to be linearly inde-
pendent, the coefficients must vanish;

0=>"n > Q CmUkm(RQ)*,
where U (RQ)*=Uin(R)* because of the structure
of U(Q) given by Eq. (AS5). Therefore the relation
0= Zm CmUkm(R)*

holds for all V! permutations of ¢x. Multiplying this
by Ui.(P) and summing over P, we obtain :

0=3"0u Co 2 Upna(P)Uin(P)*
=% Cal (NY/ f5V)8un} for

This implies that C,=0, for m=1,2, ---, g, and the g
functions ®,, (m=1, 2, -- -, g) are linearly independent.

If m>g, there exists at least one Qo of % for which
Uii(Qo)=—1. Then we find that

n=1,2 -, g

1
Pp=——"—2. 0,2 Un(P)*Py
V(N & 3

1

S 0L MU (PY*PY-Unn(PQo)* PO},

\/(N!)Zk: ZPJ {Usn(P)*PY~+ U (PQo)* PQud}
=O,

since Upn (PQo)*=2"; Utj(P)*Um(Qo)*= — Um(P)*.

From Lemma 5, it is evident that with the exception
of the first gX g part, all the elements of D vanish. It is
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still possible to assume that, since Dt= D, D is diagonal.
As g functions ®; (4=1,2, .-, g) are linearly inde-
pendent, there exists an e such that

D;;2 e>0, for 1=1,2,---,g,
while

Diizo, for i>g
We define D! as the diagonal matrix, in which the first
g elements are given by D, (3=1,2, ---, g), respec-
tively, and the rest of the elements vanish.

If we assume that D! can be expanded as

D‘IZZP Tpﬁ(P)=ZR ZQ TRQ[?(RQ)7

then we find that T're=Tr for all 2" permutations Q,
since the first gX g parts of U(RQ) are invariant with
respect to Q while the rest of the matrices vanish. The
coefficients T'g should satisfy the relation

ZR TRSR—IRr=5ERr fOI‘ R’=1, 2, ct, S, (A6)
instead of Eq. (25). Here s functions Ry are assumed to
be linearly independent and the gX g determinant |S|
does not vanish. Therefore, we find that Tz are all
bounded and determined uniquely, by Eq. (A6).

Likewise, D~} can be expanded in terms of U(P) and
therefore J can be calculated uniquely, as we have
proved in Sec. II.

In case ¢(1,2,---,N) is antisymmetric with respect
to the permutations Q, the diagonal elements of the
invariant parts of the matrices U(Q), from which the
nonvanishing wave functions are made up, have the
value —1. The more general case can also be treated in
a similar way.

APPENDIX C

The expansion of D2/ (R)D? given by Eq. (68) will
be the subject of this Appendix. First, we consider a
commutation relation between D and U(R). Since D is
expanded in terms of U(P) as shown in Eq. (23), we
find that

UR)D=XrSpUPR)=XpSpUR'PR)-U(R).
By introducing the notation
X(R)=XrSpU(R'PR)—D,
the commutation relation is written as
UR)D= (D+X (R)U(R). (AT)

The matrix X(R) for any permutation R can be
calculated similar to Ej. As an example, we shall con-
sider the case where R= (kl). The N! permutations P
are divided as follows.

P=Q[hl]PLkm].
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The matrix X (R) is then written as
XR)=Xp Serr~UP)—3Xp SpU(P)
=2 T (Snorn=—Ser) U(QP)

=27 (m| ySChom | W Ju— 32" {m | )SChom | ki ]
2 Rl DSTR A= 2" (k1) STHL| 1]

DUV AN ZAV AT,
k m
=2 (ke | W)S[km | hL],
13 m
where P’ is an abbreviation of P(km < ki) and both
2+ and 3, exclude % and , while X_,,/ excludes %,
I, and k. In S[km|hi]n, orbitals ¢, and y; are inter-

changed. Since the overlap matrices .S can be expanded
such that

2 (| B)SChm | W Jn=32" 3" {mr | km)S[hmr | kim Jn,

the matrix M =D—*X(R)D~#is given by
M=DX(R)D—#
=" 32" {mr | km)D—AS[hmr | im Jp D~

+ 32" 3" (Rt | Lk) DS kIt | hlE |0 D}
k t

+X X {femir | Thkm)
k m t r
X D‘%S[kmtr | hlk’ﬂ'l]uD""1
=" 32" (e | lmY DS | hlm D%

=" 32" kit | hkYDAS[ kit | hik]D
k t

_Z// ZII Z/l ZIN (kmtr]hlkm)
k m t r

X D3S[kmir| hlkm]D-%.  (AS)

We shall evaluate the maximum values of the di-
agonal elements of matrices such as

D34S hmr | him (D= / {®Lemr D4} T{ D[ hlm D~} d7.

By applying Lemma 2 and the Schwarz inequality rela-
tion, we obtain the following equation:

|{D1S[kiks - k| iRy - - - b/ 1D 1} 5]
SADS[kiks- « -k kike - - ky D1} it
X{D3S[ki'ky - - -k, | Bi'ky - - < b,/ D5}

S ntmax,

(A9)

where by {X}.; we denote the 7 element of matrix X
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and by "max the maximum value of the diagonal ele-
ments of D~iS[kiks- - -ka|kika- - - ka D~ for arbitrary
Eiko- - -k Since Eq. (A9) is similar to Egs. (48) and
(50), the discussion in Sec. II1.2 can be applied to the
present case and we find that "fyax= "lmax. This means
that

Upnax < (1= A)

nlmax < (’Hltmax) (1 - Ahlhg- . ~hn._1)-1

where Apnyeetny=2.¢" V| {¢|#a)| and the summation
>+ D excludes t=hihg- * ~Fn1.

From Egs. (A8)~ (A10), we obtain that

Monae <202(1— Ap)~2(1— A)"4 24 2(1— Aj)2(1— A)
+2A0°%0,4,(1—A)*,  (A11)

(A10)

where M pmax is the maximum value of the diagonal ele-

ments | M|, that is,
| M 45 < Mina. (A12)

Now we shall consider a commutation relation be-
tween D? and U (R). Let us write the relation as

U(R)D}=[D+Y (R)JU(R). (A13)
By using the matrix ¥ (R), D*U(R)D! is written as
DU(R)D=[1+D1V (R)JU(R).
Comparing the relation with Eq. (68), we find that
N=DV(R)=Y pa(R)pU(P).

We shall prove in the following that Y. p|a(R)p|? is
smaller than 3M . and therefore the dominant term
in D*U(R)D? is U(R).
From Egs. (A7) and (13), we obtain that
D+X(R)=[D+Y (R) [[D+Y (R)1],
or, by the use of M and N, it can be written as
1+M=1+N)(1+NT), (A14)

since Y (R)T=Y(R). By taking the 4 element of the
matrix equation (A14), we find that

M=2Nu+2 k| N2, (A15)
where N ;*=N ;. This means that
Mpox>2N 3, for any 4. (A16)

TADASHI ARAI

The lower bound of N; is obtained as follows. From
the definition of M and Eq. (A7),

M=DU(R)DU(R)'D-1—1.
The 4z element is given by
Mi=3 %] [:]iklz(DkkDifl—‘ 1)

=3 1| Ui | 2(DartDii 1 — 1) (DD #1).

Similarly,
N= Zk l fjik l Z(Dkk%Dif%—' 1)-

Let us assume that NVj; is the minimum of the diagonal
elements N;; and Dy the maximum of D;;. We denote
N]‘j and Dlz by Nmin and Dmax- Then

Nuin=N3;2 Y| Ut |2(Dii Drnax ¥ —1),  (A17)
since (Dkk%Dmaxﬂé'— 1)< (Dk‘k%Djj——%—l). We also find
that

—MmaXS Zk [ ﬁlk I Z(Dklc%Dmax_%_ 1) (Dkk%Dmax_%—*— 1)-

From the definition of Mpmax given by Eq. (Al1), it is
evident that the above relation is valid regardless of
the structure of the representation matrix U. This
means that this relation is valid, even if we interchange
the jth and /th rows of U. Then it follows that
—Mmax< Zkl Z~jjkl2(l)kk%Dms.xh%_ 1)
X (Dkk%Dmax_%_i_ 1). (AIS)

Comparing Eq. (A18) with Eq. (A17), we find that

Nmin> _Mmax, (Alg)

since 1 <DpptDmax i+1<2.
From Egs. (A15), (A16), and (A19), the following
relation is found:

oxl Nik|2=Mii_2Nii< 3M rmax.
By applying Lemma 3, therefore, we obtain that
ZPI a(R)PIZZZp Zm Zk(fﬂ/N ) l 1mGp|2
S Zp Zm(fp/N !) '3Mmax.
Since 3, 2.n(f,/N1)=1, we find the relation

Zp‘a(R)PPgstax; (AZO)

and also,

la(R)E| € BMmax)t, (A21)

where Mmax is given by Eq. (A11).



