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Radiation in a Plasma. III. Metal Boundaries*
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The reflection of a plane wave in a plasma at a metal boundary is discussed by using the linear continuum
theory. A positive sheath is the consequence of requiring the net current Qow into the boundary to be zero.
The dipole antenna in a plasma is considered from the scattering point of view. Integral equations for the
dipole Gelds are derived but not solved. The Gelds and radiation resistances for a short linear current 61ament
are given.

I. INTRODUCTION

N Parts I and II of this series' ' (hereafter referred to. as [I] and LII]) we have discussed the radiation
from sources in a plasma, in terms of a linear continuum
theory. In this paper we wish to extend the discussion
to include metal boundaries.

We start by considering the reQection of a plane wave
at a plane metal boundary. Bohm and Gross' have dis-
cussed this problem. They took the sheath to be the
boundary of the plasma. Particles are reQected from the
sheath with various phases, according to their velocities,
Bnd so energy is lost from the coherent wave motion
upon reQection.

Our point of view is different from that of Bohm and
Gross. Instead of starting with a sheath next to the
metal wall, we assume that the plasma electron Quid
extends smoothly to the wall. The sheath then arises as
a consequence of the wave's hitting the wall, when we

apply the condition that there can be no net current
Qow into the wall. In this way the linear continuum
theory can account for the existence of a sheath. Some
details, however, such as the distribution of potential
within the sheath, are unrealistic.

We then wish to apply these concepts to a dipole
antenna radiating in a plasma. A discussion in terms of
scattering is very fruitful for the dipole in free space, for
it provides simple approximation methods. It appears
that this method may be of use for the dipole in plasma,
also. In Sec. V, therefore, we derive an appropriate
scattering theorem. In Sec. VI we apply the theorem to
a dipole in plasma. The problem is much more compli-
cated than the free-space dipole, principally because the
equivalent sources on the wire must include the Quid
sources Q and F $11)as well as the usual electric current,
J. We derive integral equations for the fields, but make
no attempt to solve them. We do, however, show the
results of a calculation of the far 6elds and radiation
resistance that would be obtained from a short sinus-
oidal filament of electric current in the plasma.

We make extensive use of several concepts developed
in LI] and t II].The first of these is that the total field

*This work was done at the Observatoire de Meudon, Seine-et-
Oise, France, while the author was a Guggenheim Memorial
Foundation Fellow.

~ M. H. Cohen, Phys. Rev. 123, 'tt11 (1961).' M. H. Cohen, preceding paper Lphys. Rev. 125, 389 (1962)j.' D. Bohm and E. P. Gross, Phys. Rev. 79, 992 (1950).

in the plasma can be split into two modes. One, the
plasma (P) mode, has no magnetic field. At great dis-
tances from the source it is a longitudinal (radial)
wave with propagation constant co(1—X)'/ns, where
X=co~'/ce', ns ——rms thermal velocity. The electromag-
netic (EM) mode has no charge accumulation and is the
ordinary electromagnetic wave in a dispersive medium
of relative dielectric constant (1—X).At great distances
from the source it is a transverse wave with propagation
constant co (1—X)&/c.

The second concept is that of sources in the plasma.
We shall use electric current and charge, J, p, magnetic
current and charge, K, p; a fiuid flux source, Q, and a
body force F. The continuity equations are

V' J+Bp/Bt eQ=O, —
V' K+Bp"/Bt=0 (1.2)

Surface distributions of these sources are connected to
discontinuities in the fields in a manner entirely analo-
gous to the surface discontinuities found in electro-
magnetic theory and acoustics.

The symbols and units (mks rationalized) used in this
paper are the same as in LI] and LII]. The time varia-
tion for harmonic sources is e '"'.

II. BOUNDARY CONDITIONS

In Fig. 1 we show a Cartesian coordinate system with
unit vectors x, y, z. A homogeneous plasma occupies the
region s&0, and the plane s=0 is a rigid wall with
infinite electrical conductivity. We seek the boundary
conditions to be imposed on waves in the plasma.

The first condition is

zXE=O,

since the wall is an electric conductor. It would be
sufficient to specify similarly either z v or er LII]. The
comparable acoustic problem would, in fact, use the
condition z v=0, since the Quid could not penetrate the
wall. In our case, however, the Quid consists of electrons
which are able to penetrate the wall. The condition
z v=0 is therefore too restrictive. We shall be more
general and assume a surface admittance; we can
always recover the case z v =0 by letting the admittance
parameters go to zero.

The surface admittance is a useful concept in electro-
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z v= F.z E+Ft,tat. (2.2)

The admittance coefficients Y and Yb may be functions
of the con6guration of the incident wave, e.g., of the
angle of incidence, or of the mode type. They may also
be functions of frequency. We assume that Eq. (2.2)
holds also for zero frequency, in which case Y, and Yb
are negative real numbers.

In principle, the coefFicients Y and Yb can be meas-
ured, since for each incident wave there are two
reflected waves (one EM and one P wave). A calculation
of the coef6cients themselves, however, would have to
start from the opposite point of view. One would have
to solve in detail the plasma-metal boundary problem,
including the 6elds and electron motions inside the
metal.

When we apply the relations (2.1) and (2.2) to the
reflection problem, we shall 6nd that in general there is
a net transport of electron flux across the boundary. In
principle this is permissible, since we have an infinite
plasma and a boundary with an infinite sink capacity.
In a laboratory situation, however, the flux transport
would lead to a charge separation and so couM not be
allowed. Furthermore, in a region such as the iono-
sphere, the boundary cannot have an infinite capacity,
and flux transport could not be allowed there, either. To
be realistic, therefore, we shall ultimately require that

' J. A. Stratton, Etectrorrtagwettc Theory (McGraw-Hill Book
Company, Inc. , New York, 1941},p. 511; P. M. Morse and H.
Feshbach, Methods of Theoretical Phystcs (McGraw-Hill Book
Company, Inc. , New York, 1953},p. 1814.

5 P. M. Morse and K. U. Ingard, Encyclopedia of Physics, edited
by S.Fliigge (Springer-Verlag, Berlin, 1961),Vol. XI/1, pp. 34—99.

magnetic theory and in acoustics. It is not a quantity
which is usually brought into the boundary conditions,
since, for example, in a reflection problem its value
generally depends on the angle of incidence. Neverthe-
less, we shall assume a surface admittance relation and
shall use it as a boundary condition. Admittedly, we
shall not have solved the boundary-value problem, but
we shall be able to discuss in a simple manner the
reflection and absorption coefficients and the formation
of a sheath, in terms of the admittance coefficients.

In some other problems, the admittance in fact is
merely a convenient symbol, and boundary conditions
(e.g. continuity of nXE and nXH) also have to be
brought explicitly into the problem. ' In many acoustic
cases, however, the surface admittance is nearly in-
dependent of the incident wave, and it is then used
instead of other boundary conditions. '

The acoustic analogy to our reflection problem would
lead to a linear relation between x v and e~ on the plane
s=o, since the admittance is the ratio of velocity to
excess pressure. The excess pressure is the body force in
acoustics; but in the plasma the electric 6eld also
contributes to the body force, and we should include it
in the admittance. We assume, therefore, the bilinear
admittance relation:

Frc. 1. Incident P
wave, reQected P and
EM waves.

the net flux transport be zero:

((No+It)v z)=0, (2.3)

where the brackets signify a time average.
The above model is inconsistent, since we have ignored

thermal motions but have assumed that an electron
with velocity v due to passage of a wave can penetrate
the wall according to Eq. (2.2). To some extent, thermal
motions can be included by analyzing the thermal
fluctuations in density into a set of plasma waves. Each
of these sets up an elementary sheath, according to the
discussions below. Thus, even in the absence of a source
of coherent waves, there will be a sheath next to the wall.

E '=E„'(k '/k„) exp(ik ' r),

E,"=E„"(k,"/k„) exp(ik„" r),

E,"=E,"(yXk,"/k, ) exp(ik, " r).
(3.1)

The velocity 6elds are

v„'= —[icos/(rrtos, '))E„',
[iecc/(trtco 2))E ~

v,"=—[ie/(otto))E, ".

The density 6elds are

rtt' i(e=o/e)k, ' Ej, —
stt"—— i (e—p/e)k, E„"

The magnetic field is

H" = (cott o)-'k, r XE,".

(3 2)

(3 3)

(3.4)

Application of the boundary condition (2.1) gives

n=P, sing= (ko/k, ) sinn= (c/ea) sinn, (3.5)

as the phase requirements. The character of the reflected
electromagnetic wave will evidently be diRerent for
(c/ve) sinn less than and greater than unity. In the
latter case cosy is imaginary, and the wave becomes a
surface wave propagating in the x direction, and

III. REFLECTION COEFFICIENTS

A. Incident P1asma Wave

As shown in Fig. (1),a plane P wave is incident at the
angle 0.. Assume that there is a reflected I' wave at the
angle P and a reflected EM wave at the angle y. The
three waves have the same frequency, and the three
propagation directions are coplanar.

Using superscripts i and r for incident and reflected
waves, we write the electric fields as follows:
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exponentially attenuated in the s direction. Since
(c/vp)))1, the surface wave will be the usual situation,
and the freely propagating wave will exist only when the
incident plasma wave is nearly normal to the surface.

Such surface waves are also found in the reflections set
up by a planar density discontinuity in a plasma. '

Simultaneous application of conditions (2.1) and (2.2)
gives the reflection coefFicients:

Evr (b Yp+ cosa aY—cosn)Lcsc'n —(c/vp)'7'+ (c/vp) (aY —X) sinn

E~' (bYp —cosn+a Y, cosn)Lcsc'n —(c/vp)'7&+(c/vp)(aF', —X) sinn

2(1—aF',) cosn

Ev' (b Yp cos—n+aY, cosa)Lcsc'n (c—/vp)']l+ (c/vp) (aY,—X) sinn

(3 6)

(3 7)

where

a=ims)„'/(epp), b=npkv/&p

The average power low into the boundary is the real
part of the expression —~p(E&&H*+mvp'e~v*) z [II].
Since EXz=0, we have

P= —p' Re(mvpPrs~v* z} watts/m'. (3.8)

In terms of the reflection coe%cients, this can be written
(for sinn (vp/c)

E.'=E.'LyXk. '/k, ]exp(ik, ' r),
E,"=E,"I yXk, "/k,]exp(ik, " r),

E,"=E;Ik„"/k„]exp(ik, " r).

The velocity fields are

(3.10)

reduces to the usual one of a dielectric-metal boundary,
and I' waves are not generated.

I.et the incident wave be polarized in the plane of
incidence, as in Fig. 2. There will be reflected E3f and
I' waves, as shown. The electric fields are

P= —,'e,v, (1—x) ~ IE„'Ip

y&X- cos I1—(E, /E„')(E„/E, ')*7
+ (c/vp) sinn(E, "/E~')*(1+E„r/E„')}. (3.9)

When sin n) vp jc, the last term in Eq. (3.9) is imaginary,
and must be dropped. Eq. (3.9) can in turnbe written in
terms of the real and imaginary parts of F and 7b, but
this expression becomes rather complicated.

B. Incident Electromagnetic Wave

v, '= —
I ie/(mu) ]E,',

V,"=—Ze 7Sco

vv" = ties&/(neo—„')7E„"

The density field is

~~"=—z qo g

The magnetic fields are

H'= (capp)-'k. 'X E,',
H"= ((opp)-'k, "&(E,".

(3.11)

(3.12)

(3.13)

An incident plane EM wave can be decomposed into
two components, one polarized with the electric vector
parallel to the boundary, and the other polarized in the
plane of incidence. The former has x v= x.K=O every-
where and is not interesting. The problem, in this case,

n=P, sing= (vp/c) sinn,

and the reflection coefFicients

(3.14)

Application of the conditions (2.1) and (2.2) now
gives

2(X—aF',)E„"

E,' (vp/c) (X—aY ) tann+ (1 aY,) I csc a—(vp/c)']'* ——b Yp cscn

E," (vp/c)(X —aF,) tann —(1—aY,)L s c'ca(vp/c)']l+bYp csea

(vp/c) (X—aF', ) tann+ (1—aY,)Lcsc'n —(vp/c)P]& —b Yp cscn
(3.15)

(3.16)

The power flow across the boundary is

r
p E r

=P', pp(vp1 X)'*IE.'-I' «»nnI
I
1+

kE; k E,'

r~ Er
L1—(vp/c)' sin'a]l . (3.17)

X E.'i E,'

Again, the expression for the power in terms of the real
and imaginary parts of F, and F b is rather complicated.

IV. ELECTRON FLUX TRANSPORT AND
SHEATH FORMATION

We now consider Eq. (2.3), the condition that there
be no charge separation. The mean Aux of electrons
across the boundary is ((np+n&)v z). We have taken ep
constant and e& and v to vary harmonically in time.
Thus the mean electron Aux is proportional to the mean
power Row, Eq. (3.8). If we set the mean flux equal to

A. H. Kritz and D. Mintzer, Phys. Rev. 117, 382 (1960).
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zero we also set Eq. (3.9) or (3.17) equal to zero, accord-
ing to the circumstances. This would then lead to a
relation between e, Y, and I'& which presumably does
not exist. It would imply that the electron Qux is always
zero, whereas this is not necessarily true for a semi-
infinite plasma with a boundary with an infinite sink
capacity.

We resolve this problem by assuming that the 6elds
we have used above are not the complete set which
exists in the plasma. Since the system is linear, the extra
fields can only be the remnants of transients which
existed when the field was first excited.

Transients at frequencies co)0 and ~&or„either
propagate away from the boundary or else die out
exponentially in time. In principle, a standing wave at
or=~„can be a remnant of the transient, but we may
assume that the medium has a small loss, which serves
to reduce the standing wave to arbitrarily small values
after a sufficiently long time. The static remnant (~=0)
is all that is left of the transient. The small medium loss
will not dissipate the static field in the way that a lossy
dielectric discharges a capacitor, because we still have
the requirement (2.3), and the incident field must
maintain the static charge on the boundary.

Let pp be the static surface charge density on the
boundary. From Eqs. (3.1), (3.14), and (4.2) of [II),
this charge produces the following fields:

n, '= [p,/(eD) je

En'=z(po/«)e ' (4 1)

(4.2)

where the superscript 0 stands for the static components
of the fields.

The boundary condition (2.2) must be applied to
these static fields:

z vo= p,[F.o/«+F, '/(eD) j. (43)

In this manner the static field produces a steady Qux,
(no+nio)z. v', which cancels the average flux produced
by the oscillating components of the field. This Qux of
electrons proceeds at constant velocity away from the
boundary. The effect of the static pressure is cancelled
by the electric field [Eqs. (4.1) and (4.2)j so the net
static force on the particles is zero.

From Eq. (2.3) we now have

SpV 'X= —S] V 'X (4 4)

Pp=
mnov 0'[P.%O+ I'P/(eD) g

where the superscript co stands for the components at
frequency co, and where we have neglected e&' in com-
parison with no. By Eq. (3.8),

I'.,= —~2 Re(niv02ni~vi"* z}

is the average power associated with the first order ac
components of the wave. The static surface charge
density thus is given by

Bp"
(4.5)

Fro. 2. Incident L~3f
wave, reflected I M and
I' waves.

k
-X

It is reasonable to assume that P„&0, i.e., that the
wall is passive. By their definitions, F ' and I"& must
be negative. The surface charge is thus negative, and,
from Eq. (4.1), ni', the first-order static excess of
electrons in the plasma, is also negative. The quantity
e~ thus comprises a positive sheath next to the bound-
ary; the deficiency of electrons decreases exponentially
with a scale on the order of a Debye length.

The total average power absorbed at the wall (per
unit area), I'&, is now given by the following expression,
[II], evaluated at s=O.

I'i= —nitro'((ni'+ni") (v'+v")) z

novo'—(ni'v'+(ni"v")) z.

By Eq. (4.4), v' is a second order quantity, so the term
niov' is negligible compared with (ni"v"). Thus Pi=8„,
and the static fields, which neutralize the Qux transport,
have only a third order effect on the total energy
absorbed at the boundary. (The ac energy is a second
order term. ) The equilibrium reflection process can thus
be described in terms of electrons making inelastic
collisions with an impenetrable wall. The net Qux trans-
port is zero. The incident electrons have low density and
high velocity. The emergent electrons have a high
density but such a low velocity that they carry negligible
energy.

A. Discussion

We have shown that whenever there is a net power
Qow into the wall, there will be a sheath, connected with
the requirement that the net electron Qux be zero. This
result, as we have obtained it, depends on the condition
n&(E=O, for it is only with this condition that the ac
power Qow is proportional to the electron Qux. It does
not, however, directly depend on the admittance as-
sumption. We could have begun the discussion by
assuming static and ac velocity components of un-
determined amplitudes. The requirement of no charge
separation would then have led to a nonzero static
velocity, proportional to the power absorbed at the wall.
This static velocity would have had to be connected
with a steady field of force which pulled the electrons
out of the boundary. Finally, from the Klein-Gordon
equation, any one-dimensional static field must have the
exponential screening form. The strength of the sheath,
on the other hand, does depend directly on the admit-
tance parameters, as in Eq. (4.5).

The sheath formation in the transient period of a
reQection process can be described in the same terms as
used ordinarily when describing a sheath in terms of
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randomly moving particles. ' The electrons move much
more rapidly than the ions (we have assumed the ions
to be stationary) and, at the beginning of the process,
there is a net flux of electrons to the wall. These elec-
trons accumulate on the boundary and produce a static
field which opposes the electron flux until, in equilib-
rium, there is no net current flow into the wall.

The thermal fluctuations in electron density that
exist in the plasma can be regarded as a set of plasma
waves. Each of them, when striking a metal boundary,
will be reflected according to the processes discussed
above. Thus a sheath, with thickness on the order of a
Debye length, will be set up next to the wall, and power
will flow from the waves into the wall. This is equivalent
to the normal description of the cooling of a plasma by
its being in contact with the container. We have ob-
tained the results, however, from the linear continuum
theory, rather than from a statistical consideration of
random electron and ion motions.

J=nXH' K=K'Xn
p= eon. E' p"=pan. H'

Q=stpn v' F=sispp'sti',

(5 1)

regarded as radiating in an unbounded homogeneous
plasma, generates identically the scattered field outside
the scatterer, and the negative of the incident field
inside the scatterer.

This theorem is a generalization of the two usual
theorems which are separately applicable in electro-
magnetic theory and in acoustics. If we set the electronic

' L. Spitzer, Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956), p. 17.

V. A SCATTERING THEOREM

Let U be a source-free volume bounded by the surface
S with outward normal n. The medium inside V is
different from that outside, where there is a homoge-
neous plasma. In particular, S may be a metal surface.
Let there be an external harmonic source.

Define the set of incident fields as I":—(E',H"', v', sti'),
i.e., I' is the field that the source would generate in a
homogeneous unbounded plasma. Define the total field
I' as the field that actually exists in the presence of the
scatterer, and define the scattered field as I '= I'—I".
The sources of the scattered field are inside or on S, and
I ' satisfies the source-free fieM equations for the
homogeneous plasma everywhere outside S [II]. We
shall not be concerned with I" or I' inside V.

Now define a modified scattered field I', equal to I"
outside the scatterer, and equal to —I' inside the
scatterer. I evidently satisfies the source-free field
equations (for the homogeneous exterior medium)
everywhere except on S, where there are discontinuities
in I' equal to I' (evaluated on the outside of S). We
see from Eqs. (4.1) to (4.6) of [II] that the following
set of sources on S

charge (—e) equal to zero, the fields and sources
separate, and the two simpler theorems appear.

When S is a metal surface, nX K=0, and K and p"
are zero. In this case the electric current J is the actual
current flowing on the surface. The difference from the
usual free-space electromagnetic case is that Q and F
are not necessarily zero.

It is of interest to apply this theorem to the reflection
problem. For an incident plasma wave, Eqs. (3.1) to
(3.5) and (4.1) to (4.3) give the sources on S:
J= —x[4,/(cotsp)]E, " cos(0~x sinn —rot),

p= ep[(E„'—E„') cosn —(c/pp)E; sinn]
Xcos(tt&x sinn —rot)+pp,

Q= (epco/e) [(E "—E„")cosn ,X(e/t —p)E," sinn]

X sin(k„x sinn —a&t)

+0pp p[Y,%p+ YpP/(eD)],

F= n pets„D'(E„'+E„")sin(tt~x sinn —cot)

+me p'p p/(eD)

(5 2)

VI. DIPOLE ANTENNA

A. Introduction

One makes a very good approximation for the radia-
tion from a dipole antenna in free space, by assuming
that there is a sinusoidal current in the wire, and that it
radiates as if it were in free space, i.e., as if the metal
boundary were not there. A motivation for this pro-
cedure is obtained by regarding the dipole as a scatter-
ing problem. The arms of the dipole form a scattering
body, and the source is in the gap between the arms. The
incident field (in the absence of the wires) is nearly
neghgible, so that the total fieM is approximately
the same as the scattered field. The latter is generated
by the terminating currents (J and K) on the wire,
radiating as if they were in free space, according to our
discussion in the preceding section. But K=O because

The oscillating components of (J,p, Q) satisfy the
continuity equation (1.1), as they should. The static
component of Q is not connected to a singular static
distribution of J, as can be seen from the following
argument. The surface distribution of Q must be re-
garded as the limit of a continuous distribution spread
through a slab. We may take the slab of thickness s, and
the source volume density as Q., so that Q=sg„. By
using the relation V' J=eg„we see that J has only a
s-component, J,=zeg/s. This current has maximum
value eQ, and its integral, the two-dimensional surface
current, is zero in the limit s ~ 0.

The fields that these surface sources would radiate if
they existed by themselves in an unbounded plasma can
be found from Eqs. (5.1) to (5.7) of [II].It is easy to
show that these fields are identically the reflected fields,
in the region s)0; and the negative of the incident field,
in the region s(0.
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Consider an oscillating current filament along the
z-axis of a Cartesian coordinate system:

I,= Io cosh'
for

l
s

l
(L/2 =pr/(2k),

p= (ikIp/ar) sinks

I,=p=0, lsl )L/2.
We expect that this current will be close to the true
distribution of J on the surface of a thin wire dipole in a
plasma provided 2L is smaller than the EM mode
wavelength .

The radiated fieMs are computed according to the
methods developed in LII1. In the far field the EM mode
has an electric field with only a 0 component:

i&pppI pe'"'" sin8 cosL(prk, cos8)/(2k) j
E,eo

1—(k,/k)P cos'8

Associated with E,g is a magnetic f eld H „, and a
velocity field

The P mode, in the far held, has an electric 6eld with
a radial component:

ippI pXe"'~" cos8 cosl (prk„cos8)/(2k)$

2preppppkr 1—(k„/k)' cos'8

Associated with E„„is a velocity Beld ~„„and a density
field

The EM mode is a transverse electromagnetic field,
with a pattern with a null along the axis. The P mode
is a longitudinal field, with a pattern with a maximum
along the axis.

The components of radiation resistance are found by
integrating the radiated power densities and dividing
by —', l Ipl' This gives

R,= 120 (L/Xp)'(1 —X)'t1„
Ry= 120(L/Xp) (c/pp) X(1—X)'Ay,

where ) o is the free space wavelength, and the functions
A, and A„are
A. (q) = (2q)

—'(1+q—') LCin(pr+m q)
—Cin(pr —~q)]

+pr(2q)
—'(1—

q ')LSi(pc+ prq) —Si(pr —prq)]
—2q ' cos'(prq/2),

A„(s)= (2s') '(orLSi (pr+ pcs) —Si (pr —pcs) ]
—LCin (pr+ prs) —Cin (pr —m.s)]

+4s(1—s')—' cos'(7rs/2) ),
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where Si is the sine integral,

Cin(x) = L(1—cosx)/x)dx,
0

q = (2L/») (1—X) '*,

s= (2L/Xp) (c/pp) (1—X)'*.

The functions A, and A„are shown in Fig. 3. When s)&1,.( ) = '/( ').
As an illustration of these results, we show in Fig. 4

the two radiation resistance components as a function of
X, for the case (L/Xp) =0.25, c/pp ——100. The curve for
R„is shown dashed for X(0.5, because we have assumed
that the I mode will not propagate in this region I I].

The curve for R, starts at 19.6 ohms at X=0. This is
the usual free-space value of radiation resistance for a
)ip/4 dipole. R , then drops . to zero as X goes to 1, as
expected, since ~„=1—X. The component of radiation
resistance from the P mode is zero at X= 1, and has the
enormous value of 1.6& 105 ohms at X=0.999. The
total radiation resistance is the sum of the two com-
ponents and so it has the violent behavior of the P mode
near X= 1. The curves, however, were calculated as-
suming a loss-free plasma, and the peak would be
reduced if collisions were taken into account.

We wish to emphasize that the radiation resistance
shown in Fig. 4 is for a current filamerlt. It is not clear
how close this will be to the radiation resistance of a
metal wire dipole We were able to .separate the radiation
resistance for the current filament into the two compo-
nents, b ecaus e the P and EM modes are independent.
When all the sources for the wire dipole are taken into
account, there will still be two components of the radia-
tion resistance (I' and EM), but each will be due to the
combined e8ect of all sources.

It would be of considerable interest to measure
antenna imp edances in plasma. With a complete
impedance calculation one could study the plasma
itself. In particular, one might be able to investigate
the P mode experimentally. This would be valuable be-
cause, in spite of the extensive theoretical literature on
longitudinal waves in a homogeneous plasma, there is
very little experimental work. involving them directly.


