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whence, using also Eq. (9),

I'(ts +nucleus~ e +nucleus)

F(ts +nucleus —+ e +y+nucleus)

Equation (12) shows that the ratio of the "double
conversion coefficient" to the "single conversion coeffi-
cient" is never greater than about 0.6 for the various
z's of interest. ' If, in addition, g~((g1, as for example
will be the case if the Z(x) of Eq. (2) is associated with
a nonvanishing matrix element for ti+ ~ e++sr' ~ e+

+y+y, the "double conversion coeflicient" is negligible

8Physically speaking, the "double conversion coefficient" is
not even bigger than the "single conversion coeScient" because
the nucleus necessarily takes up a relatively large recoil momen-
tum (=m&») in' +nucleus —~ e +nucleus while, as noted above,
the nucleus' recoil momentum in p, +nucleus —+ e +y+nucleus
is predominantly small.

compared to the "single conversion coefficient. '" Since,
according to Eq. (10), this "single conversion coeK-
cient" is significantly greater than unity, it is clearly
of considerable interest to conduct an experimental
search for ti +nucleus ~ e +y+nucleus. Such a
search is particularly appropriate since, of all the
neutrinoless p+ —+ e+ decays, the only one so far
without experimental investigation is the one which
from the present point of view is expected to be the
most probable, viz. , ts +nucleus ~ e +y+nucleus.

9 It should, of course, be remembered that if a nonvanishing
matrix element M Q ~ e +m') exists for p,

—+ e +m', the
strong-interaction nuclear absorption of the m0 induces
+nucleus ~ e +nucleus via I:p, +nucleus ~ e +m'+nucleus ~
e +nucleus at a rate ~(Z,ff3A). Indeed, with M (p ~ e +~)/0,
the process I might be more probable than the electroma netic-
"single conversion" process LEqs. (8)—(10)j which in thig case
would proceed via II: p +nucleus —+ e +m +nucleus —+ s +7r'
+y(virtual Coulomb)+nucleus —+ e +y+nucleus while, eas al
ready indicated, the electromagnetic "double conversion" process,
III: u +nucleus ~ e +u'+nucleus —+ e +s'+y (virtual Cou-
lomb)+y (virtual Coulomb)+nucleus —+ e +nucleus would in
this case be forbidden LEqs. (11) and (12) with gs=0$. Under
these circumstances, any actual nonvanishing rate for p, +nu-
leus —+ e +nucleus would have to be ascribed to process I.
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In this paper, a formalism for quantization is developed which starts out from the Hamilton-Iacobi
expression, BS/Bt+H(BS/Bq, q), and which leads to its usual quantum-mechanical operator equivalent by
means of straightforward algebra. The quantum-mechanical operator equivalents of II and p are then
seen to be the consequence of assigning a number of equally probable classical paths to a dynamical system.

INTRODUCTION
' ANY different formalisms have been developed
~ for passing from a classical Hamiltonian or

Lagrangian to a quantum-mechanical operator, but
there still remains some mystery about why the
differential operators which replace the momenta and
energy should have the form they are given. Dirac' in
his discussion of the action principle in his book and in
subsequent papers clarifies things considerably by
showing just how classical action is related to the
arbitrary phase 5 in the time-dependent wave function
Ib exp L(iS/lrt) 7.

Feynman' in his Lagrangian formulation of the
quantum mechanics goes a step further to show how
the probability amplitude for a particular space-time
path of a system is related to the classical Lagrangian
I-(X(t),X(t)) for this path. The total probability

' P. A. M. Dirac, Quuntmn .iVechunics {Oxford University Press,
New York, 1957), 4th ed. , p. 125.' R. Feynman, Revs. Modern Phys. 20, 367 (1948),

amplitude for a system's going from an initial state A
to a Anal state 8 is the sum of all the probability
amplitudes for all the possible paths from A to B.
Each such path contributes equally in magnitude to
the probability amplitude, but the phase for each path
is different and equal to the classical action (in units
of 5) for each path.

As Feynman points out, the contribution from a
given path is "proportional to expLiS(X(t))/57, where
the action S(X(t))=J'J(X(t),X(t))dt is the time
integral of the classical Lagrangian taken along the
path in question. " He shows that there is a close
analogy between (X'IX), (the probability amplitude
for finding the system at X' at time t+c if it was at X
at a time t) and expLiS(X, X')/II7, and says: "ln fact
we now see that to a sufhcient approximation the two
quantities may be taken proportional to each other. "

In view of the intimate relationship between 5
which, as Dirac' has pointed out, is the classical
IIamilton-Jacobi function of the problem, and the
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quantum-mechanical probability amplitude, one may
inquire whether it is possible to derive the quantum-
mechanical operator for a given dynamical problem
from the Hamilton- Jacobi differential equation by
means of simple algebraic manipulations. It is the
purpose of this note to show that this can indeed be
done. One is then led automatically to a Lagrangian
formulation of quantum mechanics since the algebraic
expression one obtains becomes precisely the La-
grangian of the problem on passing over to the quantum-
mechanical domain.

The result of this procedure is to show more clearly
than has been done in the past how intimately the
classical action is related to the phase of the wave
function. Moreover, it is evident from this approach
that the Hamilton-Jacobi function, and hence also the
phase of the wave function, must be proportional to
the function that generates a gauge transformation.

P= BS/Bq (2)

We may combine (1) and (2) into the single equation,

BS/Bt+H (BS/Bq, q) =0. (3)

The solution of Eq. (3) is the classical action function
for the time interval to to t—that is, it is the time
integral of the classical Lagrangian:

S= L(q(t),q(t))dt;

and it is this function which remains stationary for
small variations of the classical orbit if those variations
vanish at to and at t.

We shall now show that we can obtain the Lagrangian
operator for the quantum-mechanical analog of the
classical path by a simple algebraic transformation of
the expression,

BS/Bt+H(BS/Bq, q).

Of course the final result will not be the quantum-
mechanical Lagrangian, since the operator will not be
applied to a wave function. But we shall see in the
concluding section of this paper how we are to pass
over to the quantum-mechanical case. We begin by

THE HAMILTON-JACOBI FORM AND ITS
QUANTUM-MECHANICAL OPERATOR

EQUIVALENT

If H(p, q) is the classical Hamiltonian of a dynamical
system whose generalized momenta and coordinates are

p and q, respectively, then we know that it is always
possible to generate a contact transformation by means
of a function S which satisfies the differential equation:

BS/Bt+H(P, q) =0,

and from which the momenta can be obtained by
means of the equation

noting that we can write

BS A 8) —I/t 8—e
—is//i ~eis/s —eis/5 e —i s/ s

Bt i Bt) i Bt

and

(it B~ —A Bq—e is/s( —
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We can combine these two equations to obtain

(AB ' —hB)' (BS'
e
—is/5( ei s//i+eis//i =

(
e is/Pi 2—

~

— (8)
&i Bq i Bqi k Bq

If H(BS/Bq, q) is the Hamiltonian of a dynamical
system, it is quadratic in BS/Bq and we may therefore
replace BS/Bq in this expression by its operator equiva-
lent (8).

Ke thus have

(BS ) (A B
HJ q f=-' e 's/"H] ———

q fe's/"
EBq' i Ei Bq' i

( AB-
+e's///H~ —

q ~e
's/& (9)

E i Bq' i

We have thus obtained an exact expression for the
classical Hamiltonian of the system in terms of its
quantum-mechanical operator and its complex conju-
gate by a purely forward mathematical procedure. As
it stands, the operator does not of course operate on a
wave function but instead on the function e+' '" (and
the complex conjugate operator operates on the complex
conjugate function e "'s/"). We may, in a manner of
speaking, refer to e' /" as the classical wave function
that must be assigned to a classical orbit of the system.

Equation (9) is exact as long a,s H is a linear or a
quadratic function of the momenta. But even if H

We shall also require an expression for (BS/Bq)' in
terms of the operator $(5/i)B/Bq7 W.e have
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contained p to powers higher than 2, (9) would still
hold since the additional terms would contain as factors
derivatives of S of the form a "S/aq" with I&2. These,
however, can all be made to vanish since S can always
be chosen so that BS/aq is not an explicit function of q.
Indeed, we know from the usual definition of S that
BS/aq is a function only of p so that a'5/aq'=0.

If we combine (6) and (9) we can write (5) in the
form

BS BS Aa) It a
+H q

—& e isl—ii ~+H q ~

eis/a

at aq iati iaq l

perfect differential. This variational principle will then
also give P and Q as constants of the motion.

Since we can obtain the Hamilton-Jacobi form from
the expression

as/at+ H E— (14)

dS BS BS BS BS . BS
q+Z p+Z Q+Z P+

dt aq ap BQ BP at

by setting E equal to zero, we shall first see what our
variational principle leads to if we take this expression
for our Lagrangian. We shall transform it by using the
relations

—ha) —ft a
+e'at" —~+H —,q ~

e 'at" . (10) On substituting this into (14) and noting that
i at) i aq i

and
P = as/aq, P= as/BQ, —-

E H= as/at, —
where E(Q,P) ultimately must be determined on the
basis of one's choice of S. We also have, resulting
from such a transformation,

(Q pq H)dt +(Q—PQ E—(Q,P)+dS/—dt jdt. (12)

If one chooses S(p,q, t,P,Q) to satisfy the Hamilton-
Jacobi equation, then one must have

E=O, and P=Q=O, (13)

so that P and Q are both constants of the motion.
For the time being we shall not impose the condition

(13) on E but instead leave it as an arbitrary function
to be determined later. Furthermore, we shall not
introduce Q and P as constants of the motion at this
stage, but allow them to vary when we apply the
variational principle to the motion of our system.
Keeping this in mind we may now treat the Hamilton-
Jacobi form BS/at+H as some function of P, q, P, Q
whose behavior we want to investigate by means of a
variational principle.

At this point we shall make no use of the fact that
BS/at+H is to vanish along the classical path, but we
shall see that this is a consequence of our variational
principle for the correct Lagrangian. We shall now
show that if we choose K properly, the Hamilton-
Jacobi form itself is the correct Lagrangian of the
system as far as arbitrary variations are concerned; or
differs from the correct Lagrangian by, at most, a

THE HAMILTON-JACOBI FORM AND THE
CLASSICAL LAGRANGIAN

To see what physical significance the expression on
the right-hand side of (10) is to have in quantum
mechanics, we shall erst consider its classical counter-
part, the Hamilton-Jacobi form (5). As we have noted,
5 is just the function that generates a contact transfor-
mation from one set of dynamical variables, q, p to
another set Q, P such that

B5 85
P=O,

ap ap

BH
Zpaq Z—qap+Z—»Q+2 Q»+2 ap

B

BH BE BE
+P aq —P BQ—P» dt=0.

aq BQ BP

After some partial integrations and the discarding of
total time derivatives, we obtain the Hamiltonian
equations:

q= BH/ap, Q= BE/BP,

p = BH/aq, P= —BE/BQ—
(17)

If we now place the arbitrary function of E equal to
zero, we obtain Lfrom (17)$ the canonical equations of
motion with Q and P as constants of the motion. At
the same time (14) goes over into the Hamilton-Jacobi
form (5) and we see that a variational principle applied
to this expression as the Lagrangian leads to the
correct equations of motion.

Since (16) must vanish along the correct pa, th, and
since Q=O for E=0, we obtain

d5/dt=Q pq FI= z, —
so that.

5= Z,d't.

which is one of the properties of a contact transfor-
mation, we obtain the expression

dS/dt Qpq+—Q PQ+H E, —

where we have used the first two equations of (11).
We shall require the time integral of this expression

to be stationary for small variations of S. Since dS/dt
is a total derivative, this vanishes automatically
because 65 must vanish at the upper and lower limits
of the integral. We thus have for our stationary
condition
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It is instructive to see that the Hamilton-Jacobi form
diGers from the usual expression for the Lagrangian by
a perfect differential so that either expression may be
used in a variational principle. 4Ve have

Z=g pq H-
=p pq+ as/at (as—/at+H)
=p (as/aq) q+as/at (a—s/at+ FI).

If we now make use of the fact that Q is a constant
of the motion, we see that

p (as/aq) q+as/at =ds/dt,
so that

2=dS/dt (BS/—at+H).

Since in the usual variational principle the integral

dS BS
+Hi dt

dt at

is varied, we see that we may equally well vary the
integral

In carrying out this variation we must keep in mind
that although the integrand in the above expression
vanishes along the actual path, it does not vanish
along the varied path.

If we vary the above integral directly, we have (not
taking Q as a constant of the motion)

' as(q, Q,p, P) as+H, q dt
Bt, Bg

+—'( )H a=o.

On setting the coefficients of Bq and BP separately equal
to zero, we see that (BS/at+H) can be a function
neither of p nor of q and hence must be a constant
which we can choose equal to zero. Ke thus get the
Hamilton-Jacobi equation as a consequence of the
variational principle.

On setting the coefficient of BQ equal to zero and
using the fact that BS/BQ is equal to P, we see that the
variational principle also gives us I' as a constant of
the motion. Along the varied path, of course, neither
(BS/at+H) nor dP/dt vanishes.

Since (5) behaves like a Lagrangian for a classical
path, the operator in (10) when applied to an appro-
priate complex function should give us the quantum-
mechanical Lagrangian.

TRANSITION TO THE QUANTUM-MECHANICAL
LAGRAmorhz

To see how we are to pass over to the quantum-
mechanical Lagrangian we shall start out by considering
(10) again for a classical path. We have seen that the
classical path is given by that particular choice of S
which makes

t'ft a FA a
e ,sl-s

I

-—+HI -—
q (

e,six

&i a &iaq' i
t' —Aa) A a

+e's~e
~

~+H ———,q ~
e 'sle dt (18)

E i at) iaq' &

a minimum. This leads to a single well-defined S which
is a functional of the entire path. It is important to
note here that S is determined by the entire path along
which the system moves and hence must be treated
differently from the way in which any function of the
coordinates q appearing in the operator is treated.

As long as we are dealing with a classical system,
the path is completely determined, and only one S
(which is the total action of the system along the
path) can be assigned to the system. This is equivalent
to saying that there is a unit probability for 6nding
the system on that particular path which makes (18) a
minimum, and that we may assign to this path the
probability amplitude ei '" so that the probability of
finding the system somewhere along the path is pre-
cisely

~
—i S/@~AS/6 ]

This in itself is a rather remarkable way of considering
the classical motion of a particle, for it appears that
even without going over to quantum mechanics there
exists an operator (of the same formal structure as the
Schrodinger operator) which when operating on a
complex function of unit absolute value gives the
classical equations of motion. Just as in quantum
mechanics, we may in classical mechanics assign to the
motion of the particle a complex probability a,mplitude
which is just this complex function. Since this function
is of unit amplitude, the probability of finding the
particle anywhere but on the classically determined
path, is zero.

Although we have introduced a classical probability
amplitude, the interpretation of the quantity e ' / "e' /~

is not quite the same as the Born interpretation of /*It.
%hereas the latter is related to the probability of
finding the particle in a small neighborhood, of x, y, s,
the former relates to the probability of finding the
particle in a classically permissible orbit. In other
words, assigning to a particle the classical probability
amplitude ei /" does not mean that there is an equal
probability of finding the particle at each point of the
classical orbit, but rather that the unit probability
applies to the entire path.

To pass over to the quantum-mechanical Lagrangian



density we first note that we may no longer speak of a
precisely determined path for our system, but must
instead assign to it a group of permissible classical
paths in the manner described by Feynrnan in reference
2. The introduction of a set of permissible paths for our
system is in itself a departure from classical mechanics
since the solution of the Hamilton-Jacobi equation
gives a single well-defined path for the system if the
force field in which the system is moving, and the initial
conditions are given. However, it is precisely because
of the unpredictable fluctuations in the interaction of
the system with the force field that a group of equally
probable paths must be considered. This unpredicta-
bility arises because the system interacts with the force
field through the absorption and emission of individual
quanta by a process that cannot be analyzed in detail.
If no force field were present, the system (particle)
would Inove along a well-determined classical path and
the classical and quantum-mechanical descriptions
would be equivalent. Indeed, as long as a particle is in
free Qight, it is meaningless to differentiate between
its wave and particle properties, and one is then
justified in treating it as a particle.

Considering now a particle moving in a force field,
we must introduce a group of paths each of which will

have associated with it a well-defined action S. This
action will of course vary from path to path, but the
probability amplitude associated with a given path
will no longer be e' '". Instead we shall assign to the
ith path a probability amplitude A'e' ""where A is a
constant normalizing factor and is the same for each
of the paths.

We must now replace (18) by an integral over a sum
of terms each of which is similar to the integral in (18)
but in which 5 varies from term to term. We thus
have for the integral that is to be stationary the
expression

f AB (AB
QJ e—'s;//) +HJ q f

~~s;/5
f

zBt (i Bq'&

—AB —AB
+P e'~"" +H —

g e '~"") df. (1—9)
z Bt z Bq

We must not now vary this integral with respect to
the separate 5,'s as independent quantities, since such
a variation would lead to a set of separate classical
paths. Instead, we must assign to the complete ensemble
of paths a single probability amplitude and vary the
integral with respect to it. To carry out this variation
we shall have to transform the integrand so that this
single probability amplitude (together with its complex
conjugate) appears as a factor to which an operator
applies just the way e' t'" and e ' '" appear in the
classical integrand (10). We shall now show that this

+ Q g
—/(Si —S/)/5

BS; BS,+H~, q ~
. (20)

Bt &Bq' &

Since (20) is to be integrated over the entire domain
and the classical action is very large compared with A,

the second term in this expression will be very small
compared with the first term because e '( '—8~~~" for
i/ j is a very rapidly oscillating function. This term
will vanish in any case since BS;/Bt+H(BS;/Bq, q)
vanishes along the jth classical trajectory.

We see from (20) that the probability amplitude
that must be assigned to the ensemble of paths is
precisely the sum of the individual probability ampli-
tudes assigned to each classical path. We thus have
obtained a single probability amplitude by this process
which is a sum of complex terms.

We may compare this with Feynman's first postulate
on page 371 of reference 2 in which he states:

"If an ideal measurement is performed to determine
whether a particle has a path lying in a region of
space-time then the probability that the result will be
affirmative is the absolute square of a sum of complex
contributions, one from each path in the region. "The
difference between what Feynman has done and the
results obtained here, is that whereas he has introduced
the probability amplitude as a postulate, we have
derived it.

Since the probability amplitude for the entire domain
of all possible paths available to our system is propor-
tional to the wave function of the system, we may
replace g, e's"" by the wave amplitude P. Our vari-
ational principle then becomes

AB AB
)I/* — +H ——,q ~

P—
z Bt z Bq')

where the variation is to be taken with respect to f
and )f/~. This leads to the usual Schrodinger equation
and its complex conjugate,

can be done in a purely formal way and is a mathe-
matical consequence of (19).

If we consider the sums in the integrand of (19),we
see that because of the quantities in the brackets are
linear operators we have
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