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The method of closely coupled states is shown to be the lowest order approximation to a suitably modified
optical potential set of equations. These equations are then used with a variational expression for the
scattering amplitude to give an estimate for the correction to the method of closely coupled states.

I. INTRODUCTION

'HE problem of the scattering of a particle from a
complex scatterer (atom, nucleus, etc. ) is one of

the basic problems in physics. There are many methods
for attacking this problem, heuristic and formal. The
more formal' methods usually start with an expansion
of the total wave function 4, in terms of the complete
set of scatterer wave functions 4,

where x is the coordinate of the scattered particle and
s represents all the coordinates of the medium. ' The
sum in Eq. (1) is over all members of an infinity of
states so that some approximation must be made. We
shall discuss here two common approximations and
show their connection.

For the method of closely coupled states' one trun-
cates the sum in (1) at some finite number and then
uses the resulting expression as a trial function in a
variational expression for the elastic scattering ampli-
tude. There results a set of coupled equations for these
variationally determined P„. We shall describe this
calculation briefly in the next section.

Another approximation scheme for + is the optical
potential method. In this method one seeks to obtain
an equation for the scattered wave function, its(x) with
a complicated but in principle exact potential. In
practice, one is forced to make approximations for this
potential. This method can be generalized to yield a
set of "coupled optical potential equations. "The set of
equations obtained by the closely coupled state method
will appear as the first approximation to these equa-
tions. This will be described in Sec. (III).

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'H. Feshbach, Ann. Phys. 5, 357 (1958); M. H. Mittleman
and K. M. Watson, Phys. Rev. 113, 198 (1959).

'When the scattered particle is identical with some of the
particles in the scatterer. There are symmetry requirements on +.
Equation (1) is then correct but not as useful. The complications
introduced by the Pauli principle will not be treated here.

3 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, New York, 1949).

M. H. Mittleman and R. Pu, University of California Radia-
tion Laboratory Report, UCRL-6269, 1961 (unpublished).

Finally, we shall use this set to obtain corrections to
the method of closely coupled states and show that the
error in the scattering amplitude is linear in the error
in the optical potential.

III. THE METHOD OF CLOSELY COUPLED STATES

We start with Eq. (1) with the sum truncated at
e=N. In effect, this assumes that the first S states of
the scatterer are important and that the others don' t
exist. The unknown functions P„(x) are to be determined
variationally and must have the asymptotic behavior

lim p. (x) —& b„pe*v *+f.(i,p)e'v"*/x,

where

m
b fo(P,P) I( P,P—) =o-

27rh2
(3)

I( P„P,) = dxds e „—,& &*(Z—a)e„&+&. -

Here H is the total Hamiltonian

H =H,+T,+V (x,s),

where H, is the Hamiltonian for the scatterer alone,
T is the kinetic energy of the scattered particle and
V(x,s) is the interaction of the two. The exact wave
functions +(+) have the asymptotic conditions

lim +„&+&(x,s) ~
e+'""'

e+'" b.s+f„&+&(xp) C' (s) (6)

The prime on the sum limits the sum to energetically
open channels. If we use the truncated sum in (1) as a
trial function in (3) and allow the functions iP„ to be

' W. Kohn, Phys. Rev. 74, 1763 (1948).

where p„ is the momentum available to the scattered
particle after the state rt has been excited. fs is the
elastic scattering amplitude.

Kohn' has given a variational expression for fs which
can be written
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determined variationally, there results the set In practice one can only obtain Uoo approximately'

Upp Vpp+ Q Vp [E()—E„+e()—T,+igj 'V„() .(20)
neo

m=1, , X, (7)

where E„is the energy available to the scattered particle
when the scatterer is in the eth state and

V.„(~)= dse„*(s)V(x,s)C (s).

As we allow E to become larger, the approximate
result shouM approach the correct result. The difficulty
is that continuum states of the scatter cannot be in-
cluded. These are sometimes important.

%,=$pC p=7(o%, (9)

where xo projects onto the ground state of the scatterer.
This can be accomplished in many ways. We show only
the simplest here. The starting point is the integral
equation for the total wave function.

III. THE OPTICAL POTENTIAL METHOD

The usual optical potential methods seek to obtain
an equation for fp(x) or its equivalent 4', where

iV

r x
n=l

(21)

m is, of course, still a projection operator. The formalism
leading to (18) is now modified by the replacement
+0~ x. 4', is now interpreted as a column matrix and
the "optical potential" U+ now has non-diagonal matrix
elements among the first X states, but does not couple
to the higher states. We, therefore, obtain the set of
coupled equations

It is usually difficult to obtain any but the adiabatic
(T.= ep) part of the second term in (20). Therefore, in
practice this method allows excited states to enter only
adiabatically.

We can generalize the optical potential method to
allow for the nonadiabatic appearance of some of the
excited states. To do this, we re-define the projection
operator, mo, so that it now projects onto the first 3'lt of
the scatterer states

Here
+ (+) —x+ (1/ap) V+ (+) (10) v=1, , X (22)

where
ap=a+V, (11) Here again we must approximate for U

a=E H+iq. — (12)

The positive infinitesimal, g, is inserted to insure the
proper boundary condition for 4'~). x is the incident
wave, the product of a plane wave for the scattered
particle and the ground state of the medium. Combining
(9) and (10) yields

e.'+' =y+ (1/ap) pro Ve (+), (13)

so that
@(+)—F(+)@ (+)

P(+) = m p+ (1/ap) (1—xo) VF (+).

If we demand that 4', (+) satisfy an optical equation

@ (+) —x+ (1/ap)U(+)@ (+) (17)

since [ptp, apJ=O. [See Appendix. ] If we subtract (13)
from (10) we get

@(+)=+,(+)+(1/ao) (1—7)-o) V+(+).

We define the operator F+ by

U„„(+' V„„+Qy)v V„,[Ep E,+op T,+it)—j 'V, ,
—

N, m & Ã. (23)

Thus, the equations of the method of closely coupled
states appear as the lowest approximation in this
method. The second term in (23) can be obtained in
certain limits where it may actually dominate the first. '

As we allow JV to become larger, the number of states
which are loosely coupled becomes smaller, and this
method becomes formally identical with that of Sec.
II. However, in this method the remaining loosely
coupled states are always included, at least adiabatically.

IV. VARIATIONAL CORRECTIomS

The results of the preceding section may now be
corrected by use of the Kohn variational principle. We
shall take two approaches to this problem.

First, we allow for an error in the optical potentials
U„, so that the actual potentials used are U„,. The
uncoupled states are completely neglected, F&=z. Thus,

then U(+) is given by

U(+),VF(+)
and we obtain

[Eo—(T +Uoo'+')7' o=0. (19)

o M. H. Mittleman, Ann. Phys. 10, 268 (1960}.
7 This method has been expanded to allow for the identity of

the scattered particle with the particles in the scatterer. It will
be discussed in detail in a subsequent publication. In reference 4
it was pointed out that the inclusion of the second order part of
U gives the correct polarizability and that these corrections
actually dominate the first order terms in some cases.
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our trial function is +&'~'=4„&+', where +„&+&is deter- leads to a constraint on bx of the form
mined from (22) with U replaced by U&.

The variational expression (3) then yields
or

tr8tr =8tr (1—tr).

(31a)

(31b)
n 2, x= n~

2xh'

X Q +„,(-)*(*)(V..—U.-,]+-,")(~), (24)
n, m=1

Thus,

gl (@ (—)
t ~,g )(+.gU(+)@,(+))

2xh'
(32)

We had

and

Q
—P (—) tgP (+)

F (+) =~+ (1/a, ) (1—~) Vp (+)

F' )t=tr+F( "V(1—tr)(1/ap).

(27a)

so that the correction is proportional to the second
order terms in the optical potential.

A second approach is to assume an error in the optical
potential bU with a resultant error in%'. but to use the
exact F. This takes the, presumably small, errors in the
lowest E coupled states and rejects them in the higher
states. We shall see that it proves to be a better approxi-
mation than simply dropping the higher states. Consider
the integral in the variational expression. Its variation is

5I= (tw/2trh')(4( )aN'+) )
= (m/2trh')(O' QI)+ + ). (25)

We have set

The use of (31b) eliminates the x term yielding the
previously obtained result' that an error in the bound
state does not give any contribution to the scattering
amplitude in the variational expression. We are then
left with

fo fog
2zh'

d~ Z 4. ' '~&.~'+'0 '+'(~). (33)
n, tn=l
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Thus the error in the scattering amplitude is linear in
the error in the optical potential. However, the error in
the optical potential must be at least bilinear in the
potential if it is to be an improvement over the method
of coupled states.

But

So

Q p( )trop(+) p—( )t V'p(+)—
=p(—)tLgotr+ (1—tr) VF(+)]—F( 'tVF'+'.

Q (i,~+.P(—)t(1 ~) VP(+) P(-)tVP(+)
=«&—I &-»~Vs&+)

=trLao —trVP+']=tr(ao —U'+ )

APPENDIX

The proof of the relationship Ln. o, ao] which we use in
obtaining (13) involves the definition of the projection
operator, t)-o. In the notation of (1) it is defined as

~o= &(x—x')4 0(s)C o"(s'). (A.1)

That is, m. p projects onto the ground state of the medium,
and any state of the relative coordinate of the scattered
particle. This may also be written

The error in 4, is due to an error in U and a possible
error in the bound state wave function, so that

(S)&it xP@ («)eik x'74
(2tr)'

(A.2)

— E~,~ ~+~U~.
g U(+)

(29)

Here, br allows for an error in the bound-state wave
functions.

If we preserve the normalization of the bound states,
8x is not completely arbitrary. The normalization
condition

(30)

Now, since C pe'" is an eigenfunction of ap ~p must
commute with ap.

No assumption has been made about the ratio of pro-
jectile mass to the target mass. s is to be interpreted as
the internal coordinates of the target and x as the coordi-
nate of the projectile relative to the (moving) center
of mass of the target. In Eq. (5), the total center of mass
motion has already been removed.


